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Abstract

When the entire world is eagerly waiting for a safe, e�ective and widely available COVID-19 vaccine, un-

precedented spikes of new cases are evident in numerous countries. To gain a deeper understanding about

the future dynamics of COVID-19, a compartmental mathematical model has been proposed in this paper

incorporating all possible non-pharmaceutical intervention policies. Model parameters have been calibrated

using sophisticated trust-region-re�ective algorithm and short-term projection results have been illustrated

for Argentina, Bangladesh, Brazil, Colombia and India. Control reproduction numbers (Rc) have been

calculated in order to get insights about the current epidemic scenario in the above-mentioned countries.

Forecasting results depict that the aforesaid countries are having downward trends in daily COVID-19 cases.

However, it is highly recommended to use e�cacious face coverings and maintain strict physical distancing,

as the pandemic is not over in any country. Global sensitivity analysis enlightens the fact that e�cacy of

face coverings is the most signi�cant parameter, which could signi�cantly control the transmission dynamics

of the novel coronavirus compared to other non-pharmaceutical measures. In addition, reduction in e�ective

contact rate with isolated patients is also essential in bringing down the epidemic threshold (Rc) below

unity. All necessary graphical simulations have been performed with the help of Caputo-Fabrizio fractional

derivatives. In addition, optimal control problem for fractional system has been designed and the existence

of unique solution has also been showed by using Picard-Lindelof technique. Finally, the unconditionally

stability of the given fractional numerical technique has been proved.
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1. Introduction1

To date, as there is no world-wide accepted vaccine that can provide full immunity to the human body2

against COVID-19, non-pharmaceutical intervention strategies are the realistic and e�ective solutions to3

control second wave of the pandemic. However, around 40 di�erent coronavirus vaccines are experiencing4

critical clinical trials and nine already in the �nal stage of testing on thousands of people. Importantly, a5

leading vaccine candidate developed by the University of Oxford is already in an advanced stage of testing and6

it has been found in trials that it can trigger an immune response [1]. Generally, an e�ective vaccine would7

take years, if not decades, to develop. As research in this �eld is happening at a breakneck speed, scientists8

believe that an e�ective vaccine is likely to become widely available by mid-2021. Lack of transparency9

could be a vital issue in upcoming days and a false sense of security could evolve among general people if10

the vaccine doesn't work e�ectively.11

Mathematical models can always provide considerable insights of the transmission dynamics and complex-12

ities of any infectious diseases, which eventually help government o�cials design overall epidemic planning.13

Importantly, mathematical analysis always plays a notable role in making vital public health decisions,14

resource allocation and implementation of social distancing measures and other non-pharmaceutical inter-15

ventions. From the beginning of the COVID-19 outbreak, mathematicians and researchers are working16

relentlessly and have already done tremendous contributions in limiting the spread of the coronavirus in17

di�erent parts of the world [2, 3, 4, 5, 6]. In an early contribution, Ferguson et al. [2] showed the impact of18

di�erent non-pharmaceutical intervention strategies on COVID-19 mortality by developing an agent-based19

model. In another study, Ngonghala et al. showed that e�ective and comprehensive usage of face coverings20

can signi�cantly limit the spread of the virus and reduce the COVID-induced mortality in di�erent states of21

the USA in general in the absence of community lockdown measures and stringent social distancing practice.22

On the other hand, Nabi [5] projected the future dynamics of COVID-19 for various COVID-19 hotspots by23

proposing a compartmental mathematical model and concluded that early relaxation of lockdown measures24

and social distancing could bring a second wave in no time. As a matter of reality, inhabitants in several25

countries compelled to violate containment measures due to prolonged lockdown measures and severe eco-26

nomic recession [4]. Netherlands having one of the best health care systems in the world, is grappling with27

continuous spikes in daily cases due to aversion to masks.28

In this study, in the absence of a safe, e�ective and world-wide approved vaccine, a new compartmental29

mathematical COVID-19 model has been designed incorporating all possible non-pharmaceutical intervention30

strategies such as wearing face coverings, social distancing, home or self-quarantine and self or institutional31

isolation. In addition, the impacts of di�erent interventions scenarios have been analysed rigorously. The32

aim of this work is to project the future dynamics of COVID-19 outbreak in �ve countries namely Argentina,33

Bangladesh, Brazil, Colombia and India which are worst-hit countries in the world. Estimation of parameters34
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has been performed by using real-time data, followed by a projection of the evolution of the disease. Global35

sensitivity analysis is applied to determine the in�uential mechanisms in the model that drive the transmission36

dynamics of the disease. For fractional simulations, we used the well known non-integer order derivative called37

Caputo-Fabrizio (CF) fractional derivative. Since last few decades, there are so many epidemic models have38

been solved by non-integer order derivatives. Recently some applications of non-integer order derivatives in39

mathematical epidemiology can be seen from [7, 8, 9, 10, 11]. There are so many research papers have been40

come to study the outbreaks of coronavirus, in which some are [12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. We41

performed the optimal control problem in CF derivative sense and provided the existence of unique solution42

by well-known technique named as Picard-Lindelof technique. We also proved the unconditionally stability43

of the given fractional numerical technique. We used the numerical data of all �ve given countries and44

perform the all necessary graphical simulations.45

The entire chapter is organized as follows. Materials and methods are presented in Section 2. Section 3 is46

solely devoted to asymptotic stability of the proposed model. In section 4, estimation of model parameters47

and projection results have been discussed using daily COVID-19 data of Argentina, Bangladesh, Brazil,48

Colombia and India. In section 5, to quantify the impact of di�erent model mechanisms, LHS-PRCC49

global sensitivity scheme has been performed. In section 6, numerical and graphical simulations have been50

illustrated using Caputo-Fabrizio fractional derivatives. Later, optimal control problem has been designed51

in fractional sense in section 7. The chapter ends with some insightful �ndings and strategies, which could52

signi�cantly control the transmission dynamics of COVID-19.53

2. Materials and methods54

2.1. Model formulation55

A compartmental mathematical has been designed to describe the transmission dynamics of the COVID-

19 incorporating all possible real-life interactions. Considering di�erent infection status, the entire hu-

man population (denoted by N(t) at time t) has been strati�ed into nine mutually-exclusive compartments

of susceptible individuals (S(t)), early-exposed individuals (E1(t)), pre-symptomatic individuals (E2(t)),

symptomatically-infectious (I(t)), asymptomatically-infectious or infectious individuals with mild-symptoms

(A(t)), quarantined infectious (Q(t)), hospitalised or isolated individuals (L(t)), recovered individuals (R(t)),

disease-induced death cases (D(t)). Hence,

N(t) = S(t) + E1(t) + E2(t) + I(t) +A(t) +Q(t) + L(t) +R(t) +D(t)

The following assumptions have been considered to formulate the above-mentioned model.56

• Vital dynamic (birth and natural deaths) has been ignored as the main objective of this study is to57

observe the short-term dynamics of COVID-19 pandemic.58
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Figure 1: Flow diagram of the COVID-19 transmission dynamics.

• Recovered individuals are immune to the disease which means that they cannot get reinfected. However,59

in a recent study of Tillett et al. [22], genomic evidence for reinfection with SARS-CoV-2 has been60

found. Nevertheless, it is important to note this singular �nding does not provide generalisability of61

this phenomenon and hence it is not considered in our study.62

The �ow diagram of the proposed model is illustrated in Figure 1, where susceptible individuals can become

infected by an e�ective contact with individuals in the pre-symptomatic (E2(t)), symptomatically-infectious

(I(t)), asymptomatically-infectious (A(t)), quarantined-infectious (Q(t)) and isolated-infectious (L(t)). Ef-

fective contact rates are λE2
, λI , λA, λQ, and λL respectively and the expressions are de�ned in (2). Impor-

tantly, the compartment E1(t) consists of early-infected individuals who are still not infectious, whereas the

individuals in pre-symptomatic cohort E2(t) have the capability of transmitting coronavirus before the end of

the disease incubation period. A proportion of individuals in newly-exposed compartment (E1(t)) progress to

pre-symptomatic class (E2(t)) at a rate κ1. After the completion of disease mean incubation period, at a rate

ρκ2, a fraction of individuals who have clear clinical symptoms of COVID-19 progress to I(t) compartment.

Individuals in E2(t) class who do not have any clear symptoms progress to A(t) class at a rate (1 − ρ)κ2.

Pre-symptomatic individuals are assumed to be self-quarantined at a rate q. With the help of diagnostic

or surveillance testing approaches, symptomatically-infectious individuals and asymptomatically-infectious

individuals are brought under institutional or home isolation at rates τA and τI respectively. Moreover,

the parameter γI(γA)(γQ)(γL) represents the recovery rate for individuals in the I(A)(Q)(L) class. Finally,

the disease-induced mortality rate for individuals in the I(Q)(L) compartment is de�ned by the parameter

δI(δQ)(δL). Considering all the above-mentioned interactions, the transmission dynamics of COVID-19 can
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be described by the following system of nonlinear ordinary di�erential equations.

dS

dt
= − (λI + λA + λQ + λL + λE2

)S,

dE1

dt
= (λI + λA + λQ + λL + λE2

)S − κ1E1,

dE2

dt
= κ1E1 − (κ2 + q)E2,

dI

dt
= ρκ2E2 − (τI + γI + δI) I,

dA

dt
= (1− ρ)κ2E2 − (τA + γA)A,

dQ

dt
= qE2 − (γQ + δQ)Q,

dL

dt
= τII + τAA− (δL + γL)L,

dR

dt
= γII + γAA+ γQQ+ γLL,

dD

dt
= δII + δLL+ δQQ.

(1)

where the forces of infection are de�ned below

λE2
= βE2

(1−mζ)
E2

N
,

λI = βI(1−mζ)
I

N
,

λA = βA(1−mζ)
A

N
,

λQ = βQ(1−mζ)
Q

N
,

λL = βL(1−mζ)
L

N
,

(2)

The parameters are described in Table 1.63

We set x = (S,E1, E2, I, A,Q,L,R,D)
′
the vector of state variable, Let f : R9 → R9 the the right hand side64

of system (1), which is a continuously di�erentiable function on R9. According to [23, Theorem III.10.VI], for65
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Parameter Description

βI (βA) (βQ) (βL) (βE2) E�ective contact rate (a measure of physical or social distancing)

m Proportion of individuals who use face coverings or surgical masks

ζ
E�cacy of face coverings at reducing outward transmission by infected

individuals as well as preventing acquisition

κ1
Rate of progression from early-exposed class (E1(t)) to pre-symptomatic

class (E2(t))

ρκ2
Rate of progression from pre-symptomatic class (E2(t)) to

symptomatically-infectious class (I(t))

(1− ρ)κ2
Rate of progression from pre-symptomatic class (E2(t)) to

asymptomatically-infectious class (A(t))

q Con�nement e�cacy

τI
Rate of self or institutional isolation for symptomatically-infectious pa-

tients

τA Rate of isolation for asymptomatically-infectious patients

γI Recovery rate for symptomatically-infectious patients

γA Recovery rate for asymptomatically-infectious individuals

γQ Recovery rate for quarantined-infectious individuals

γL Recovery rate for isolated or hospitalised individuals

δI Disease-induced death rate for symptomatically-infectious individuals

δL Disease-induced death rate for isolated individuals

δQ Disease-induced death rate for quarantined-infectious

Table 1: Model parameters and meaning

any initial condition in Ω, a unique solution of (1) exists, at least locally, and remains in Ω for its maximal66

interval of existence [23, Theorem III.10.XVI]. Hence, model (1) is biologically well-de�ned.67

2.2. Data sources68

From the beginning of the COVID-19 outbreak, Center of Disease Control and Prevention (CDC) is69

providing authoritative and genuine data of daily con�rmed COVID-19 cases. Daily con�rmed data of �ve70

di�erent countries named Argentina, Bangladesh, Brazil, Colombia and India have been compiled using71

that data repository. Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE)72

is carefully maintaining the data repository supported by ESRI Living Atlas Team and the Johns Hopkins73

University Applied Physics Lab (JHU APL). The repository is really simple to use and publicly available74

[24].75
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3. Mathematical analysis76

3.1. Asymptotic stability of disease-free equilibria77

The disease-free equilibrium point denoted by x0 can be de�ned as follows:

x0 = (S0, 0, 0, 0, 0, 0, 0, 0, 0)
′

= (N0, 0, 0, 0, 0, 0, 0, 0, 0)
′

Using notations in [25], matrices F and V for the new infection terms and the remaining transfer terms

are, respectively, given by

F =



0 βE2(1−mζ) S0

N0
βI(1−mζ) S0

N0
βA(1−mζ) S0

N0
βQ(1−mζ) S0

N0
βL(1−mζ) S0

N0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


,

V =



κ1 0 0 0 0 0

−κ1 κ2 + q 0 0 0 0

0 −ρκ2 τI + γI + δI 0 0 0

0 −(1− ρ)κ2 0 τA + γA 0 0

0 −q 0 0 γQ + δQ 0

0 0 −τI −τA 0 γL + δL


.

(3)

Then, the control reproduction ratio is de�ned, following [26, 25], as the spectral radius of the next generation

matrix, FV −1:

Rc = ρ(FV −1) = RE2
+RI +RA +RQ +RL (4)

where,78

RE2
=

βE2(1−mζ)

κ2 + q
,

RI =
ρκ2βI(1−mζ)

(κ2 + q)(γI + τI + δI)
,

RA =
κ2(1− ρ)βA(1−mζ)

(κ2 + q)(γA + τA)
,

RQ =
qβQ(1−mζ)

(κ2 + q)(γQ + δQ)
,

RL =
κ2βL(1−mζ) [τA(γI + δI)(1− ρ) + τI(ργA + τA)]

(κ2 + q)(γL + δL)(γA + τA)(γI + τI + δI)
,

where ρ(·) represents the spectral radius operator.79
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The formula for control reproduction number has been formulated. Indeed, the insightful epidemic80

threshold, Rc calculates the average number of new secondary COVID-19 cases generated by a COVID-1981

positive individual in a population a portion susceptible people are using e�ective face coverings. Di�erent82

non-pharmaceutical measures are acting as control measures which lead to bring down Rc under unity [25].83

Hence, we claim the following result followed by a direct consequence of the next generation operator method84

[25, Theorem 2]. where ρ(·) represents the spectral radius operator. The insightful epidemic threshold, R085

calculates the average number of new secondary COVID-19 infections generated by an COVID-19 positive86

patient in a completely susceptible population. The control of COVID-19 pandemic passes by the application87

of some control measures which contribute to decrease until R0 less than one [25]. Hence we claim the88

following result.89

Theorem 1. The COVID-19 transmission dynamics is in�uenced by the basic reproduction number R0 as90

follows:91

1. If R0 < 1, then a su�ciently small �ow of infected individuals will not generate an outbreak of the92

COVID-19,i.e the disease-equilibrium E0 is locally asymptotically stable on ω.93

2. If R0 > 1, then a su�ciently small �ow of infected individuals will generate an outbreak of the COVID-94

19, and the disease-equilibrium E0 is unstable.95

Lemma 1. If Rc < 1, the disease-free equilibrium x0 is locally asymptotically stable and unstable if Rc > 1.96

Remark 2. Lemma 1 implies that if Rc < 1, then a su�ciently small �ow of infected individuals will97

not generate an outbreak of COVID-19, whereas for Rc > 1, epidemic curve reaches a peak by growing98

exponentially and then decreases to zero as t→∞.99

The better control of the COVID-19 can be established by the fact that the DFE x0 is globally asymp-100

totically stable (GAS). In this context, we claim the following result.101

Theorem 3. if Rc < 1, then the manifold, W, of disease-free equilibrium points of the model (1) is GAS in102

D.103

In the absence of use of face coverings, i.e. m = 0, Rc converges to the basic reproduction number,

R0. Now, we will study the global stability of the disease-free equilibrium whenever the basic reproduction

number is less than one (Rc < 1). For this, we use the following Lyapunov function

L = a1E1 + a2E2 + a3I + a4A+ a5Q+ a6L. (5)
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By deriving this function along the trajectories of the system (1), we obtain

L̇ = a1Ė1 + a2Ė2 + a3İ + a4Ȧ+ a5Q̇+ a6L̇

= a1 [(λI + λA + λQ + λL + λE2
)S − κ1E1]

+ a2 [κ1E1 − (κ2 + q)E2] + a3 [ρκ2E2 − (τI + γI + δI) I]

+ a4 [(1− ρ)κ2E2 − (τA + γA)A] + a5 [qE2 − (γQ + δQ)Q]

+ a6 [τII + τAA− (δL + γL)L]

(6)

Since
S

N
≤ 1, we obtain

L̇ ≤ a1 [βI(1−mζ)I + βA(1−mζ)A+ βQ(1−mζ)Q+ βL(1−mζ)L+ βE2(1−mζ)E2 − κ1E1]

+ a2 [κ1E1 − (κ2 + q)E2] + a3 [ρκ2E2 − (τI + γI + δI) I]

+ a4 [(1− ρ)κ2E2 − (τA + γA)A] + a5 [qE2 − (γQ + δQ)Q]

+ a6 [τII + τAA− (δL + γL)L]

= (−a1κ1 + a2κ1)E1

+ [a1βE2
(1−mζ)− a2 (κ2 + q) + a3ρκ2 + a4(1− ρ)κ2 + a5q]E2

+ [a1βI(1−mζ)− a3 (τI + γI + δI) + a6τI ] I

+ [a1βA(1−mζ)− a4 (τA + γA) + a6τA]A

+ [a1βQ(1−mζ)− a5 (γQ + δQ)]Q+ [a1βL(1−mζ)− a6 (δL + γL)]L

(7)

We choose ai, i = 1, 2, ..., 6, such that coe�cients of E1, I, A, Q, and L become zero. That is

−a1κ1 + a2κ1 = 0

a1βI(1−mζ)− a3 (τI + γI + δI) + a6τI = 0

a1βA(1−mζ)− a4 (τA + γA) + a6τA = 0

a1βQ(1−mζ)− a5 (γQ + δQ) = 0

a1βL(1−mζ)− a6 (δL + γL) = 0

(8)

which the non-zero solution is given by

a6 =
a1βL(1−mζ)

δL + γL

a5 =
a1βQ(1−mζ)

δQ + γQ

a4 =
a1βA(1−mζ) + a6τA

τA + γA

a3 =
a1βI(1−mζ) + a6τI

τI + δI + γI

a2 = a1

(9)

9
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Plugging (9) into (7) gives

L̇ ≤ a1(κ2 + q)

[
βE2

(1−mζ)

κ2 + q
+

ρκ2βI(1−mζ)

(κ2 + q)(γI + τI + δI)
+
κ2(1− ρ)βA(1−mζ)

(κ2 + q)(γA + τA)

+
qβQ(1−mζ)

(κ2 + q)(γQ + δQ)
+
κ2βL(1−mζ) [τA(γI + δI)(1− ρ) + τI(ργA + τA)]

(κ2 + q)(γL + δL)(γA + τA)(γI + τI + δI)
− 1

]
E2.

(10)

Setting a1 =
1

k2 + q
, we �nally obtain

L̇ ≤ (RE2
+RI +RA +RQ +RL − 1)E2 = (Rc − 1)E2. (11)

From (11), it follows that L̇ < 0 if Rc < 1, and L̇ = 0 if and only if E1 = E2 = I = A = Q = L =104

0. Therefore, L is a Lyapunov function for system (1). Moreover, the maximal invariant set contained105

in {(S(t), E1(t), E2(t), I(t), A(t), Q(t), L(t), R(t), D(t)) ∈ Ω : L̇ = 0} is the continuum of the disease-free106

equilibrium (E0). Thus, from Lyapunov theory, we deduce that the disease-free equilibrium E0 is GAS if107

Rc < 1. Hence, it follows, by the LaSalle's Invariance Principal, that the continuum of disease-free equilibria108

of the model (1) is a stable global attractor in Ω whenever Rc ≤ 1 The previous analysis can be summarize109

as follows:110

Theorem 4. If Rc ≤ 1, then the disease-free equilibrium E0 is globally asymptotically stable on Ω.111

4. Model calibration and forecasting112

The model (1) calibration has been performed using a newly developed optimization algorithm based113

on trust-region-re�ective (TRR) algorithm, which can be regarded as an evolution of Levenberg-Marquardt114

algorithm [5]. This robust optimization procedure can be used e�ectively for solving nonlinear least-squares115

problems. This algorithm has been implemented using the lsqcurve�t function, which is available in the116

Optimization Toolbox in MATLAB. Necessary model parameters have been estimated using this optimization117

technique. Daily infected cases data have been collected from a trusted data repository, which is available118

online. A 7-day moving average of the daily reported cases has been used for our model calibration due to119

moderate volatile nature of real data. It has been observed that the number of daily testing in Argentina,120

Bangladesh, Brazil, Colombia and India have been really inconsistent. With an aim to capture the real121

outbreak scenario, the 7-day moving average has been used in this regard.122

4.1. Argentina123

On March 3, 2020, Argentina registered its �rst COVID-19 case. As a consequence, government o�cials124

immediately deploy strict lockdown, quarantine and isolation measures to curb the spread of the novel125
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Figure 2: Fitting performance of the model for daily infected cases in Argentina from March 04 to November 11, 2020.

Figure 3: Fitting performance of the model for cumulative infected cases in Argentina from March 04 to November 11, 2020.

coronavirus in the community. Due to unbearable economic crisis, inhabitants of the country have already126

started violating staying at home and quarantine orders. The country could face a second wave of infection127

in near future in the absence of non-pharmaceutical intervention measures. The robustness of our model128

�tting performance has been illustrated in Figs. 2 and 3 as of November 11, 2020. Moreover, projection129

results from mid November to early April for daily and cumulative cases in Argentina have been depicted130

in Figs. 4 and 5. According to our projection results, the daily could reach upto 2450K cases by the end131

of March 2021, if the current trend holds. Model parameters presented in the Table 2 have been calibrated132

using observed real data from March 4 to November 11, 2020.133

As we can see the results from the proposed model responses complement the real data very well. The134

control reproduction number (Rc) is estimated to be ∼ 1.37 (95%CI : 1.03− 1.59) as of November 11 and135

prior established �ndings 1 − 5 for COVID-19 really match well with the estimation [30, 5]. The tally of136

cumulative infected cases is projected to reach 2450K and country's death toll could mount to 52.6K by the137

end of March 2021. Table 2 illustrates model calibration results and baseline parameter values.138
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Figure 4: Projection results for daily new con�rmed cases for Argentina from early March to late March 2021.

Figure 5: Projection results for cumulative cases for Argentina early March to late March 2021.
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Parameter Range (Unit) Baseline

value

TRR output Reference

βI 0.1�1.5 day−1 0.55 0.3 [27, 5]

βA 0.1�0.9 day−1 0.3 0.15 [27, 5]

βQ 0.1�0.9 day−1 0.5 0.3 [27, 5]

βL 0.1�0.9 day−1 0.3 0.35 [5, 6]

βE2 0.05�0.3 day−1 0.3 0.1 [6]

m 0.01�0.3 (dimension-

less)

0.1 0.15 [6]

ζ 0.5 (dimensionless) 0.5 0.5 [6]

κ1
1

4
day−1

1

4

1

4
[3, 6]

κ2 1 day−1 1 1 [3]

q 0.1�0.6 day−1 0.3 0.25 Estimated

ρ 0.6�0.7 (dimension-

less)

0.65 0.65 [6]

τI
1

14
− 1

5
day−1 1/10 1/10 [5, 6]

τA
1

14
− 1

5
day−1 1/10 1/10 [5, 6]

γI
1

14
− 1

7
day−1 1/7 0.143 [28, 29]

γA
1

10
− 1

7
day−1 1/7 0.143 [28, 29]

γQ
1

21
− 1

10
day−1 1/14 0.071 [28, 29]

γL
1

21
− 1

10
day−1 1/14 0.071 [28, 29]

δI 0.0001�0.01 day−1 0.001 0.00033 [2, 5]

δL 0.0001�0.01 day−1 0.001 0.001 [2, 5]

δQ 0.0001�0.01 day−1 0.001 0.00033 [2, 5]

Table 2: Calibrated parameters of the proposed model (1) using trust-region-re�ective algorithm and daily COVID-19 cases

data of Argentina.

4.2. Bangladesh139

Due to prolonged lockdown measures and severe economic recession, inhabitants of Bangladesh have140

started violating safety measures like wearing face coverings and maintaining physical distancing. Figs. 6141

and 7 illustrate the model �tting performance with observed data from early March to mid November for142
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Figure 6: Fitting performance of the model for daily infected cases in Bangladesh from March 08 to November 11, 2020.

Figure 7: Fitting performance of the model for cumulative infected cases in Bangladesh from March 08 to November 11, 2020.

Bangladesh. The estimated error is found to be hovering around 10% for daily new cases. The actual143

outbreak scenario in Bangladesh is still a puzzle to be solved for the health o�cials due to scant COVID-19144

testing program. The control reproduction number (Rc) is estimated to be ∼ 1.17 (95%CI : 0.95− 1.39) as145

of November 11 and prior established �ndings for this metric go well with the estimation [30, 5]. The tally of146

cumulative infected cases is projected to reach 436K around March 31, 2021 and the estimated total death147

cases could reach 11, 400 by the end of March, 2021. Table 3 illustrates the key features used to calibrate148

this scenario, which have been justi�ed in prior clinical studies and relevant literature.149

4.3. Brazil150

COVID-19 pandemic emerged in Latin America a bit later than other continents and Brazil is among the151

hardest-hit countries in the world. When late-stage clinical trials of Chinese-developed CoronaVac vaccine152

are going on in Brazil, the inhabitants of Brazil are witnessing unprecedented spikes in new COVID-19 cases.153
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Figure 8: Projection results for daily new con�rmed cases for Bangladesh from early March to late March 2021.

Figure 9: Projection results for cumulative cases for Bangladesh early March to late March 2021.
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Parameter Range (Unit) Baseline

value

TRR output Reference

βI 0.1�1.5 day−1 0.55 0.15 [27, 5]

βA 0.1�0.9 day−1 0.3 0.1 [27, 5]

βQ 0.1�0.9 day−1 0.5 0.1 [27, 5]

βL 0.1�0.9 day−1 0.3 0.12 [5, 6]

βE2 0.05�0.3 day−1 0.3 0.11 [6]

m 0.01�0.3 (dimension-

less)

0.1 0.3 [6]

ζ 0.5 (dimensionless) 0.5 0.5 [6]

κ1
1

4
day−1

1

4

1

4
[3, 6]

κ2 1 day−1 1 1 [3]

q 0.1�0.6 day−1 0.3 0.47 Estimated

ρ 0.6�0.7 (dimension-

less)

0.65 0.65 [6]

τI
1

14
− 1

5
day−1 1/10 1/8 [5, 6]

τA
1

14
− 1

5
day−1 1/10 1/8 [5, 6]

γI
1

14
− 1

7
day−1 1/7 1/12 [28, 29]

γA
1

10
− 1

7
day−1 1/7 1/10 [28, 29]

γQ
1

21
− 1

10
day−1 1/21 0.071 [28, 29]

γL
1

21
− 1

10
day−1 1/21 0.071 [28, 29]

δI 0.0001�0.01 day−1 0.001 0.0004 [2, 5]

δL 0.0001�0.01 day−1 0.001 0.0009 [2, 5]

δQ 0.0001�0.01 day−1 0.001 0.0007 [2, 5]

Table 3: Calibrated parameters of the proposed model (1) using trust-region-re�ective algorithm and daily COVID-19 cases

data of Bangladesh.

As of November 15, 2020, Brazil reported 5,863,093 cases and related 165,811 deaths. The model �tting154

performance for Brazil from late February to mid November are illustrated in Figs. 10 and 11. Historical155

data from late February to November 11, 2020 have been considered to calibrate the model parameters.156

It is clearly visible in the �gures that the responses from the proposed model �t the real data very well.157
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The control reproduction number is estimated about ∼ 2.12 as of November 11, which is in between the158

observed �ndings for COVID-19 [30, 5]. Fig. 13 illustrates that the tally of total infected cases could mount159

to 6368.6K by the end of March 2021 if current trend is held, and death toll could surpass 215K within this160

time period. Table 4 depicts the key features used to calibrate this scenario.161

Parameter Range (Unit) Baseline

value

TRR output Reference

βI 0.1�1.5 day−1 0.55 0.15 [27, 5]

βA 0.1�0.9 day−1 0.3 0.1 [27, 5]

βQ 0.1�0.9 day−1 0.5 0.21 [27, 5]

βL 0.1�0.9 day−1 0.3 0.23 [5, 6]

βE2 0.05�0.3 day−1 0.3 0.1 [6]

m 0.01�0.3 (dimension-

less)

0.1 0.1 [6]

ζ 0.5 (dimensionless) 0.5 0.5 [6]

κ1
1

4
day−1

1

4

1

4
[3, 6]

κ2 1 day−1 1 1 [3]

q 0.1�0.6 day−1 0.3 0.2 Estimated

ρ 0.6�0.7 (dimension-

less)

0.65 0.65 [6]

τI
1

14
− 1

5
day−1 1/10 1/12 [5, 6]

τA
1

14
− 1

5
day−1 1/10 1/12 [5, 6]

γI
1

14
− 1

7
day−1 1/10 0.143 [28, 29]

γA
1

10
− 1

7
day−1 1/10 0.143 [28, 29]

γQ
1

21
− 1

10
day−1 1/17 0.071 [28, 29]

γL
1

21
− 1

10
day−1 1/18 0.071 [28, 29]

δI 0.0001�0.01 day−1 0.001 0.004 [2, 5]

δL 0.0001�0.01 day−1 0.001 0.0099 [2, 5]

δQ 0.0001�0.01 day−1 0.001 0.007 [2, 5]

Table 4: Calibrated parameters of the proposed model (1) using trust-region-re�ective algorithm and daily COVID-19 cases

data of Brazil.
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Figure 10: Fitting performance of the model for daily infected cases in Brazil from February 25 to November 11, 2020.

Figure 11: Fitting performance of the model for cumulative infected cases in Brazil from February 25 to November 11, 2020.

4.4. Colombia162

Colombia is one of the hardest-hit countries in Latin America which has already surpassed one million163

con�rmed coronavirus cases. As of November 15, 2020, Colombia has seen 1,198,746 con�rmed cases of164

COVID-19 and the country's death toll climbed to 34,031. Our model �tting performance with the historical165

data is quite outstanding depicted in Figs. 14 and 15. According to our projection results illustrated in Figs166

16 and 17, the tally of cumulative cases could reach approximately 1730K cases and the number of daily167

cases could hover around 2000 cases by the end of March 2021. The control reproduction number (Rc) is168

estimated to be ∼ 1.19 as of November 11, 2020. According to our analysis, the epidemic threshold (Rc)169

could be brought under unity by the end of December 2020 by following strict distance maintaining protocol170

and mass-level usage of e�cacious face coverings.171
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Figure 12: Projection results for daily new con�rmed cases for Brazil from early March to late March 2021.

Figure 13: Projection results for cumulative cases for Brazil early March to late March 2021.

Figure 14: Fitting performance of the model for daily infected cases in Colombia from March 06 to November 11, 2020.
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Figure 15: Fitting performance of the model for cumulative infected cases in Colombia from March 06 to November 11, 2020.

Figure 16: Projection results for daily new con�rmed cases for Colombia from early March to late March 2021.

Figure 17: Projection results for cumulative cases for Colombia early March to late March 2021.
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Parameter Range (Unit) Baseline

value

TRR output Reference

βI 0.1�1.5 day−1 0.55 0.11 [27, 5]

βA 0.1�0.9 day−1 0.3 0.1 [27, 5]

βQ 0.1�0.9 day−1 0.5 0.1 [27, 5]

βL 0.1�0.9 day−1 0.3 0.12 [5, 6]

βE2 0.05�0.3 day−1 0.3 0.11 [6]

m 0.01�0.3 (dimension-

less)

0.1 0.3 [6]

ζ 0.5 (dimensionless) 0.5 0.5 [6]

κ1
1

4
day−1

1

4

1

4
[3, 6]

κ2 1 day−1 1 1 [3]

q 0.1�0.6 day−1 0.3 0.1 Estimated

ρ 0.6�0.7 (dimension-

less)

0.65 0.65 [6]

τI
1

14
− 1

5
day−1 1/10 1/9 [5, 6]

τA
1

14
− 1

5
day−1 1/10 1/11 [5, 6]

γI
1

14
− 1

7
day−1 1/7 1/12 [28, 29]

γA
1

10
− 1

7
day−1 1/7 1/10 [28, 29]

γQ
1

21
− 1

10
day−1 1/14 1/20 [28, 29]

γL
1

21
− 1

10
day−1 1/14 1/21 [28, 29]

δI 0.0001�0.01 day−1 0.001 0.0002 [2, 5]

δL 0.0001�0.01 day−1 0.001 0.00058 [2, 5]

δQ 0.0001�0.01 day−1 0.001 0.0005 [2, 5]

Table 5: Calibrated parameters of the proposed model (1) using trust-region-re�ective algorithm and daily COVID-19 cases

data of Colombia.

4.5. India172

When India is celebrating a busy festival season, the tally of fresh COVID-19 cases continued to rise.173

Relaxation in protective and social-distancing measures could result in a signi�cant upsurge in daily cases174

in upcoming days. Fig. 18 illustrates the fact that India is witnessing a downward trend after having175
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Figure 18: Fitting performance of the model for daily infected cases in India from January 30 to November 11, 2020.

Figure 19: Fitting performance of the model for cumulative infected cases in India from January 30 to November 11, 2020.

peak. According to our projection results, India could reel under the second wave of infection unless non-176

pharmaceutical interventions strategies are followed comprehensively. As of November 15, the country's177

caseload now stands at 8,850,338 and it's death toll has mounted to 130,187. Figs. 18 and 19 illustrate the178

�tting performance of our proposed model for India from late January to mid November. Historical data179

from January 30 to November 11 have been considered to calibrate the model parameters. As we can see180

from the �gures, model-�tting is exceptionally well for the historical observed data. Based on our projection181

results from Fig. 20, the number of daily cases could be brought under 1000 cases if mass-level e�cacious182

face coverings is strictly maintained. The control reproduction number Rc is estimated to be ∼ 1.41 as of183

November 11, which complements the prior studied observations [30, 5]. The tally of cumulative infected184

cases is projected to reach 11259K by the end of March 2021 if current trend continues. In addition, country's185

death toll could mount to 187K over the period. Tab. 6 illustrates the key features used to calibrate this186

scenario.187

22

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 18, 2020. ; https://doi.org/10.1101/2020.11.17.20233031doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.17.20233031
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 20: Projection results for daily new con�rmed cases for India from late January 2020 to late March 2021.

Figure 21: Projection results of cumulative cases for India from late January 2020 to late March 2021.
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Parameter Range (Unit) Baseline

value

TRR output Reference

βI 0.1�1.5 day−1 0.55 0.18 [27, 5]

βA 0.1�0.9 day−1 0.3 0.13 [27, 5]

βQ 0.1�0.9 day−1 0.5 0.2 [27, 5]

βL 0.1�0.9 day−1 0.3 0.22 [5, 6]

βE2 0.05�0.3 day−1 0.3 0.15 [6]

m 0.01�0.3 (dimension-

less)

0.1 0.23 [6]

ζ 0.5 (dimensionless) 0.5 0.5 [6]

κ1
1

4
day−1

1

4

1

4
[3, 6]

κ2 1 day−1 1 1 [3]

q 0.1�0.6 day−1 0.3 0.25 Estimated

ρ 0.6�0.7 (dimension-

less)

0.65 0.65 [6]

τI
1

14
− 1

5
day−1 1/10 1/8 [5, 6]

τA
1

14
− 1

5
day−1 1/10 1/9 [5, 6]

γI
1

14
− 1

7
day−1 1/7 1/12 [28, 29]

γA
1

10
− 1

7
day−1 1/7 1/10 [28, 29]

γQ
1

21
− 1

10
day−1 1/14 1/16 [28, 29]

γL
1

21
− 1

10
day−1 1/14 1/18 [28, 29]

δI 0.0001�0.01 day−1 0.001 0.0002 [2, 5]

δL 0.0001�0.01 day−1 0.001 0.00032 [2, 5]

δQ 0.0001�0.01 day−1 0.001 0.0003 [2, 5]

Table 6: Calibrated parameters of the proposed model (1) using trust-region-re�ective algorithm and daily COVID-19 cases

data of India.

5. Global sensitivity analysis188

With an aim to quantify the most dominant mechanisms in the proposed model, a renowned global sen-189

sitivity analysis approach Partial Rank Correlation Coe�cient (PRCC) method has been carried out. This190
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method can provide considerable insights about the relationship between model responses (state variables)191

and model parameters (sampled by Latin Hypercube Sampling method) in an outbreak setting [31]. PRCC192

values are generally bounded between -1 and 1. A monotonic relationship between the model input parame-193

ters and the model outputs is generally assumed in this method. Apart from qualitative relationship, precise194

quantitative impact of di�erent parameters on model responses can be determined by calculating the PRCC195

values. Uniform distribution of all model parameters have been considered to generate LHS matrices. A196

positive PRCC value depicts that the model output can be increased by increasing the respective model input197

parameter. Similarly, model output can be decreased by forcing down the corresponding input parameter.198

In addition, a negative PRCC value indicates a negative correlation between the model input and output.199

When it comes to analyse a complex model, it often get really challenging to control the parameters.200

In this context, sensitivity analysis can give considerable insights regarding the quantitative relationship201

between model responses and model input parameters. However, it is really challenging for complex models202

to determine the qualitative and quantitative relationship with su�cient accuracy. As we can see from Figure203

22, nearly the same qualitative relationship has been found between the number of symptomatic infectious204

individuals (one of the crucial model responses) and three parameters which are e�ective contact rate with205

isolated infected individuals (βL), e�cacy of face coverings (ζ) and face coverings compliance for our studied206

�ve countries. The public health implications of these �ndings are the dynamics of COVID-19 could be207

controlled by encouraging mass-level usage of e�cacious face coverings. In addition, the high signi�cance of208

βL indicates that immediate isolation of detected patients is highly required.209

6. Solution of the model in Caputo-Fabrizio fractional derivative sense210

6.1. Preliminaries211

Here we recall the de�nitions of Caputo and Caputo-Fabrizio fractional derivatives.212

De�nition 1. [32] The Caputo de�nition of non-integer order derivative of order % > 0 of a function

G : (0,∞)→ R is de�ned by

D%
tG (t) =

1

Γ(n− %)

∫ t

0

(t− τ)
n−%−1

Gn(τ)dτ (12)

where n = [%] + 1 and [%] is the integer part of %.213

De�nition 2. [33, 34] For G ∈ H1(c, d) and 0 < % < 1, the Caputo-Fabrizio (CF) fractional derivative (FD)

of order % is de�ned by

CF
c D%

tG(t) =
1

1− %

∫ t

c

dG(η)

dη
exp[−θ(t− η)]dη

where θ = %
1−%

The CF non- integer order integral is de�ned as

CF
c I%t G(t) = (1− %)G(t) + %

∫ t

c

G(η)dη.
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(a) Sensitivity analysis for Argentina

(b) Sensitivity analysis for Bangladesh

(c) Sensitivity analysis for Brazil

(d) Sensitivity analysis for the Colombia

(e) Sensitivity analysis for India

Figure 22: Sensitivity of the symptomatically-infectious cases while changing parameters in the proposed model as indicated

by the PRCC index for �ve di�erent countries
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6.2. Existence and uniqueness analysis214

Now, we prove the existence of unique solution for the given COVID-19 model in the sense of Caputo-

Fabrizio fractional derivative by the application of �xed-point theory. In this concern, the proposed system

can be rewritten in the equivalent form as follows:

CFD%
t S(t) = G1(t, S(t)),

CFD%
tE1(t) = G2(t, E1(t)),

CFD%
tE2(t) = G3(t, E2(t)),

CFD%
t I(t) = G4(t, I(t)),

CFD%
tA(t) = G5(t, A(t)),

CFD%
tQ(t) = G6(t, Q(t)),

CFD%
tL(t) = G7(t, L(t)),

CFD%
tR(t) = G8(t, R(t)),

CFD%
tD(t) = G9(t,D(t)).

(13)

By applying the CF non-integer order integral operator, the above system (13), reduces to the following

integral equation of Volterra type of order 0 < % < 1.

S(t)− S(0) = (1− %)G1(t, S) + %

∫ t

0

G1(χ, S)dχ,

E1(t)− E1(0) = (1− %)G2(t, E1) + %

∫ t

0

G2(χ,E1)dχ,

E2(t)− E2(0) = (1− %)G3(t, E2) + %

∫ t

0

G3(χ,E2)dχ,

I(t)− I(0) = (1− %)G4(t, I) + %

∫ t

0

G4(χ, I)dχ,

A(t)−A(0) = (1− %)G5(t, A) + %

∫ t

0

G5(χ,A)dχ,

Q(t)−Q(0) = (1− %)G6(t, Q) + %

∫ t

0

G6(χ,Q)dχ,

L(t)− L(0) = (1− %)G7(t, L) + %

∫ t

0

G7(χ,L)dχ,

R(t)−R(0) = (1− %)G8(t, R) + %

∫ t

0

G8(χ,R)dχ,

D(t)−D(0) = (1− %)G9(t,D) + %

∫ t

0

G9(χ,D)dχ.

(14)
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Now, we get the subsequent iterative algorithm

Sn+1(t) = (1− %)G1(t, Sn) + %

∫ t

0

G1(χ, Sn)dχ,

E1n+1(t) = (1− %)G2(t, E1n) + %

∫ t

0

G2(χ,E1n)dχ,

E2n+1(t) = (1− %)G3(t, E2n) + %

∫ t

0

G3(χ,E2n)dχ,

In+1(t) = (1− %)G4(t, In) + %

∫ t

0

G4(χ, In)dχ,

An+1(t) = (1− %)G5(t, An) + %

∫ t

0

G5(χ,An)dχ,

Qn+1(t) = (1− %)G6(t, Qn) + %

∫ t

0

G6(χ,Qn)dχ,

Ln+1(t) = (1− %)G7(t, Ln) + %

∫ t

0

G7(χ,Ln)dχ,

Rn+1(t) = (1− %)G8(t, Rn) + %

∫ t

0

G8(χ,Rn)dχ,

Dn+1(t) = (1− %)G9(t,Dn) + %

∫ t

0

G9(χ,Dn)dχ.

(15)

Here we assume that we can get the exact solution by taking the limit as n tends to in�nity.215

6.2.1. Existence analysis by using Picard-Lindelof approach216

Let us consider

F1 = sup
C[c,z1]

‖ G1(t, S) ‖, F2 = sup
C[c,z2]

‖ G2(t, E1) ‖, F3 = sup
C[c,z3]

‖ G3(t, E2) ‖, F4 = sup
C[c,z4]

‖ G4(t, I) ‖,

F5 = sup
C[c,z5]

‖ G5(t, A) ‖, F6 = sup
C[c,z6]

‖ G6(t, Q) ‖, F7 = sup
C[c,z7]

‖ G7(t, L) ‖, F8 = sup
C[c,z8]

‖ G8(t, R) ‖,

F9 = sup
C[c,z9]

‖ G9(t,D) ‖,

(16)

where

Cc,z1 = |t− c, t+ c|×[S − z1, S + z1] = D1 ×B1,

Cc,z2 = |t− c, t+ c|×[E1 − z2, E1 + z2] = D1 ×B2,

Cc,z3 = |t− c, t+ c|×[E2 − z3, E2 + z3] = D1 ×B3,

Cc,z4 = |t− c, t+ c|×[I − z4, I + z4] = D1 ×B4,

Cc,z5 = |t− c, t+ c|×[A− z5, A+ z5] = D1 ×B5,

Cc,z6 = |t− c, t+ c|×[Q− z6, Q+ z6] = D1 ×B6,

Cc,z7 = |t− c, t+ c|×[L− z7, L+ z7] = D1 ×B7,

Cc,z8 = |t− c, t+ c|×[R− z8, R+ z8] = D1 ×B8,

Cc,z9 = |t− c, t+ c|×[D − z9, D + z9] = D1 ×B9.

(17)
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considering the Picard operator as

φ : C(D1, B1, B2, B3, B4, B5, B6, B7, B8, B9)→ C(D1, B1, B2, B3, B4, B5, B6, B7, B8, B9), given as follows:

φζ(t) = ζ0(t) + ∆(t, ζ(t))(1− %) + %

∫ t

0

∆(s, ζ(s))ds,

where ζ(t) = {S(t), E1(t), E2(t), I(t), A(t), Q(t), L(t), R(t), D(t)}, ζ0(t) = {S0, E10 , E20 , I0, A0, Q0, L0, R0, D0}

and ∆(t, ζ(t)) = {G1(t, S(t)),G2(t, E1(t)),G3(t, E2(t)),G4(t, I(t)),G5(t, A(t)),G6(t, Q(t)),

G7(t, L(t)),G8(t, R(t)),G9(t,D(t))}. Next we assume that the solution of the non-integer order model are

bounded within a time period,

‖ ζ(t) ‖∞ ≤ max{z1, z2, z3, z4, z5, z6, z7, z8, z9, },

‖ ζ(t)− ζ0(t) ‖=‖ ∆(t, ζ(t))(1− %) + %

∫ t

0

∆(s, ζ(s))ds ‖

≤‖ ∆(t, ζ(t)) ‖ (1− %) + %

∫ t

0

‖ ∆(s, ζ(s)) ‖ ds

≤
(

(1− %) + %ζ0

)
max{F1, F2, F3, F4, F5, F6, F7, F8, F9} < bF ≤ d = max{z1, z2, z3, z4, z5, z6, z7, z8, z9},

where we demand that

b < d
F . Now by the application of �xed point theorem pertaining to Banach space along with the metric, we

obtain

‖ φζ1 − φζ2 ‖∞ = supt→B |ζ1 − ζ2|. Now we have

‖ φζ1 − φζ2 ‖=‖ {∆(t, ζ1(t))−∆(t, ζ2(t))}(1− %) + %

∫ t

0

{∆(s, ζ1(s))−∆(s, ζ2(s))}ds ‖

≤‖ ∆(t, ζ1(t))−∆(t, ζ2(t)) ‖ (1− %) + %

∫ t

0

‖ ∆(s, ζ1(s))−∆(s, ζ2(s)) ‖ ds

≤ (1− %)β ‖ ζ1(t)− ζ2(t) ‖ +%β

∫ t

0

‖ ζ1(s)− ζ2(s) ‖ ds

≤ {(1− %)β + %βt0} ‖ ζ1(t)− ζ2(t) ‖

≤ fβ ‖ ζ1(t)− ζ2(t) ‖,

(18)

with β < 1. Since ζ is a contraction, we have fβ < 1, hence the given operator φ is also a contraction.217

Therefore, the model involving C-F derivative given in Eq. (13) has a unique set of solution.218

6.3. Solution method in Caputo-Fabrizio Operator219

We now derive the solution method for I(t) equation of the system (13) and for the rest of the equations

it will be similar. The corresponding Volterra integral equation for I(t) is as follows.

I(t) = I(0) + (1− %)G4(t, I(t)) + %

∫ t

0

G4(s, I(s))ds (19)
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We have the following estimations at tk

I(tk) = I0 + (1− %)G4(tk−1, I(tk−1)) + %

∫ tk

0

G4(t, I(t))dt, (20)

and at tk+1

I(tk+1) = I0 + (1− %)G4(tk, I(tk)) + %

∫ tk+1

0

G4(t, I(t))dt. (21)

Subtracting equation (21) from (20), we obtain

I(tk+1)− I(tk) = (1− %) (G4(tk, I(tk))− G4(tk−1, I(tk−1))) + %

∫ tk+1

tk

G4(t, I(t))dt. (22)

Then by linear interpolation about G4(t, I(t)) and applying trapezoid rule for integration on the integral

term, we can then write ∫ tk+1

tk

G4(t, I(t))dt u
3∆t

2
G4(tk, I(tk))− ∆t

2
G4(tk, I(tk)) (23)

where ∆t = tk − tk−1. Hence, we have the numerical approximation for equation of I(t) as

I(tk+1) = I(tk) +

(
1− %+

3%∆t

2

)
G4(tk, I(tk))−

(
1− %+

%∆t

2

)
G4(tk−1, I(tk−1)). (24)

Theorem 5. The numerical approximation (24) is unconditionally stable if

‖G4(tk+1, I(tk+1))− G4(tk, I(tk))‖→ 0.

Proof. Let I(t) be the solution of a di�erential equation as shown in (19) under CF non- integer order

derivative operator sense. Then we have to evaluate the norm

‖I(tk+1)− I(tk)‖ =

∥∥∥∥(1− %) (G4(tk, I(tk))− G4(tk−1, I(tk−1))) + %

∫ tk+1

tk

G4(η, I(η))dη

∥∥∥∥
≤ (1− %) ‖(G4(tk, I(tk))− G4(tk−1, I(tk−1)))‖+ %

∥∥∥∥∫ tk+1

tk

G4(η, I(η))dη

∥∥∥∥ . (25)

For k →∞, we have

‖I(tk+1)− I(tk)‖∞ ≤ lim
k→∞

(1− %) ‖(G4(tk, I(tk))− G4(tk−1, I(tk−1)))‖+ lim
k→∞

%

∥∥∥∥∫ tk+1

tk

G4(η, I(η))dη

∥∥∥∥
< lim
k→∞

(1− %) ‖(G4(tk, I(tk))− G4(tk−1, I(tk−1)))‖

+ lim
k→∞

%

∫ tk+1

tk

∣∣∣∣∣∣
k∑
j=0

k∏
j=0

η − tj
∆t
G4(tj , I(tj))

∣∣∣∣∣∣ dη
Clearly, the second term of the above inequality approaches zero when k →∞. Now, if ||G4(tk+1, I(tk+1))−220

G4(tk, I(tk))||→ 0 as k →∞, we educe that the numerical solution is stable.221
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6.4. Graphical simulations222

After giving the all necessary theoretical concerns, now we do the graphical simulations via CF fractional223

derivative. In our paper, we are using the real numerical data of COVID-19 for �ve di�erent countries named224

as Argentina, Bangladesh, Brazil, Colombia and India respectively. Here �rst we perform the graphs for225

Argentina COVID-19 cases. To perform numerical simulations, we use parameter values summarize in Table226

2. In the family of Figure 23, we analysed the plots of S(t), E1(t), E2(t), I(t), A(t) and Q(t). We observed227

that for di�erent fractional order values peaks are well de�ned and when we decrease the fractional order228

then the peaks sifted towards the later time period. In the group of Figs. 24- 25, �rst we show the nature of229

L(t), R(t), D(t) and then analysed the plots of I(t) versus S(t), A(t), Q(t), L(t) and R(t). In the comparison230

of given classes with infected individuals, we see that when the infectious I(t) increases then asymptomatic231

infectious A(t) also increases with same nature. In sub-�gs. 24d- 25b, we see that the fractional order does232

not play any big role because the nature of the classes is nearly same at all di�erent fractional order values233

%. Initial values of given classes for Argentina are S(0) = 45333107, E1(0) = 10, E2(0) = 4, I(0) = 2, A(0) =234

1, Q(0) = 0, L(0) = 0, R(0) = 0 and D(0) = 0. We have used the total population of the country for S(0).235
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Figure 23: Plots of S(t), E1(t), E2(t), I(t), A(t) and Q(t) for Argentina data
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Figure 24: Plots of L(t), R(t), D(t) and relationship of I(t) versus S(t), A(t), Q(t), L(t), R(t) for Argentina data
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Figure 25: I(t) versus L(t), R(t) for Argentina data

Now we perform the graphs for COVID-19 cases in Bangladesh. To perform numerical simulations,236

we use parameter values summarize in Table 3. In the family of Figure 26, we analysed the plots of237

S(t), E1(t), E2(t), I(t), A(t) and Q(t). We observed that for di�erent fractional order values peaks are well238

de�ned and when we decrease the fractional order then the peaks sifted towards the later time period.239

In the group of Figures 27- 28, �rst we show the nature of L(t), R(t), D(t) and then analysed the plots240

of I(t) versus S(t), A(t), Q(t), L(t) and R(t). In the comparison of given classes with infected individu-241

als, we see that the nature of infectious I(t) is same as for Argentina, as when the population of infected242

individuals increases then asymptomatic infectious A(t) also increases with same nature. In sub-�gures243

27d- 28b, we see that the fractional order does not play any big role because the nature of the classes244

is nearly same at all di�erent fractional order values %. Initial values of given classes for Bangladesh are245

S(0) = 164689383, E1(0) = 10, E2(0) = 4, I(0) = 2, A(0) = 1, Q(0) = 0, L(0) = 0, R(0) = 0 and D(0) = 0.246

We have used the total population of the country for S(0).247
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Figure 26: Plots of S(t), E1(t), E2(t), I(t), A(t) and Q(t) for Bangladesh data
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Figure 27: Plots of L(t), R(t), D(t) and relationship of I(t) versus S(t), A(t), Q(t), L(t), R(t) for Bangladesh data
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Figure 28: I(t) versus L(t), R(t) for Bangladesh data

In the family of Figures 29- 31, we exempli�ed the graphs for COVID-19 cases in Brazil. To perform248

numerical simulations, we use parameter values summarize in Table 4. In the family of Figure 29, we249

analysed the plots of S(t), E1(t), E2(t), I(t), A(t) and Q(t). We observed that for di�erent fractional order250

values peaks are well de�ned and when we decrease the fractional order then the peaks sifted towards the251

later time period. In the collection of Figures 30- 31, �rst we show the nature of L(t), R(t), D(t) and then252

analysed the plots of I(t) versus S(t), A(t), Q(t), L(t) and R(t). In the comparison of given classes with I(t),253

we again observed that the nature of infectious I(t) is same as for above countries, as when the population254

of infected individuals increases then asymptomatic infectious A(t) also increases with same nature. In255

sub-�gures 30d- 31b, we see that the fractional order does not play any big role because the nature of the256

classes is nearly same at all di�erent fractional order values %. Initial values of given classes for Brazil are257

S(0) = 212559417, E1(0) = 10, E2(0) = 4, I(0) = 2, A(0) = 1, Q(0) = 0, L(0) = 0, R(0) = 0 and D(0) = 0.258

We have used the total population of the country for S(0).259
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Figure 29: Plots of S(t), E1(t), E2(t), I(t), A(t) and Q(t) for Brazil data
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Figure 30: Plots of L(t), R(t), D(t) and relationship of I(t) versus S(t), A(t), Q(t), L(t), R(t) for Brazil data
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Figure 31: I(t) versus L(t), R(t) for Brazil data

To continue the graphical simulations for the above mentioned countries to study the outbreaks of COVID-260

19, in the family of Figures 32- 34, we exempli�ed the graphs for COVID-19 cases in Colombia. To perform261

numerical simulations, we have taken the numerical values summarize in Table 5. In the family of Figure262

32, we analysed the plots of S(t), E1(t), E2(t), I(t), A(t) and Q(t). We observed that the nature of peaks is263

mostly same as for other above analysed data, for di�erent fractional order values peaks are well de�ned and264

when we decrease the fractional order then the peaks sifted towards the later time period. In the collection265

of Figures 33- 34, �rst we show the nature of L(t), R(t), D(t) and then analysed the plots of I(t) versus266

S(t), A(t), Q(t), L(t) and R(t). When we compare the given classes with I(t), we again observed that when267

the population of infected individuals increases then asymptomatic infectious A(t) also increases with same268

nature. In sub-�gures 33d- 34b, we see that the fractional order does not play any big role because the269

nature of the classes is nearly same at all di�erent fractional order values %. Initial values of given classes270

for Colombia are S(0) = 50882891, E1(0) = 10, E2(0) = 4, I(0) = 2, A(0) = 1, Q(0) = 0, L(0) = 0, R(0) = 0271

and D(0) = 0. We have used the total population of the country for S(0).272
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Figure 32: Plots of S(t), E1(t), E2(t), I(t), A(t) and Q(t) for Colombia data

41

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 18, 2020. ; https://doi.org/10.1101/2020.11.17.20233031doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.17.20233031
http://creativecommons.org/licenses/by-nc-nd/4.0/


___ ϱ = 1

---ϱ = 0.95

-.-ϱ = 0.90

... ϱ = 0.85

50 100 150 200 250 300
t

1×106

2×106

3×106

4×106

5×106

L(t)

(a)

___ ϱ = 1

---ϱ = 0.95

-.-ϱ = 0.90

... ϱ = 0.85

50 100 150 200 250 300
t

1×107

2×107

3×107

4×107

5×107

R(t)

(b)

___ ϱ = 1

---ϱ = 0.95

-.-ϱ = 0.90

... ϱ = 0.85

50 100 150 200 250 300
t

100000

200000

300000

400000

500000

D(t)

(c)

___ ϱ = 1

---ϱ = 0.95

-.-ϱ = 0.90

... ϱ = 0.85

500000 1.0×106 1.5×106 2.0×106 2.5×106 3.0×106 3.5×106
I(t)

1×107

2×107

3×107

4×107

5×107

S(t)

(d)

___ ϱ = 1

---ϱ = 0.95

-.-ϱ = 0.90

... ϱ = 0.85

500000 1.0×106 1.5×106 2.0×106 2.5×106 3.0×106 3.5×106
I(t)

500000

1.0×106

1.5×106

2.0×106
A(t)

(e)

___ ϱ = 1

---ϱ = 0.95

-.-ϱ = 0.90

... ϱ = 0.85

500000 1.0×106 1.5×106 2.0×106 2.5×106 3.0×106 3.5×106
I(t)

1×106

2×106

3×106

4×106

Q(t)

(f)

Figure 33: Plots of L(t), R(t), D(t) and relationship of I(t) versus S(t), A(t), Q(t), L(t), R(t) for Colombia data

42

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 18, 2020. ; https://doi.org/10.1101/2020.11.17.20233031doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.17.20233031
http://creativecommons.org/licenses/by-nc-nd/4.0/


___ ϱ = 1

---ϱ = 0.95

-.-ϱ = 0.90

... ϱ = 0.85

500000 1.0×106 1.5×106 2.0×106 2.5×106 3.0×106 3.5×106
I(t)

1×106

2×106

3×106

4×106

5×106

L(t)

(a)

___ ϱ = 1

---ϱ = 0.95

-.-ϱ = 0.90

... ϱ = 0.85

500000 1.0×106 1.5×106 2.0×106 2.5×106 3.0×106 3.5×106
I(t)

1×107

2×107

3×107

4×107

5×107

R(t)

(b)

Figure 34: I(t) versus L(t), R(t) for Colombia data

Eventually, we have done the graphical simulations for India which is the second highest populous country273

and also the second worst-hit country by COVID-19. To study the outbreak of COVID-19 in India, in the274

family of Figures 35- 37, we exempli�ed the all necessary graphs of given classes to observe the dynamics of275

COVID-19. To perform numerical simulations, we took the numerical values from the Table 6. In the family276

of Figure 35, we analysed the plots of S(t), E1(t), E2(t), I(t), A(t) and Q(t). We observed that the nature of277

peaks is mostly same as for other above analysed data, for di�erent fractional order values peaks are well278

de�ned and when we decrease the fractional order then the peaks sifted towards the later time period. In279

the collection of Figures 36- 37, �rst we show the nature of L(t), R(t), D(t) and then analysed the plots of280

I(t) versus S(t), A(t), Q(t), L(t) and R(t). When we compare the given classes with I(t), we again observed281

that when the population of infected individuals increases then asymptomatic infectious A(t) also increases282

with same nature. In sub-�gures 36d- 37b, we observed that at the di�erent fractional order values the283

nature of the classes is nearly same. Initial values of given classes for India are S(0) = 414001316, E1(0) =284

10, E2(0) = 4, I(0) = 2, A(0) = 1, Q(0) = 0, L(0) = 0, R(0) = 0 and D(0) = 0. We have used the 30% of the285

total population of India for S(0).286
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Figure 35: Plots of S(t), E1(t), E2(t), I(t), A(t) and Q(t) for India data
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Figure 36: Plots of L(t), R(t), D(t) and relationship of I(t) versus S(t), A(t), Q(t), L(t), R(t) for India data
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Figure 37: I(t) versus L(t), R(t) for India data

From the all above graphical observations we found that the Caputo-Fabrizio fractional derivative playing287

well to study the outbreaks of coronavirus in the aforesaid �ve countries.288

7. Optimal control problem formulation289

In this concern, our main aim is to decrease the number of infected individuals with COVID-19 at

the same time decrease the cost J(v) associated with their strategies. For this purpose, we use a control

function v = (v1, v2, v3), where v1(t) is for introducing the public education or aware the public with health-

care measures, v2(t) is the control function for enhancement of the strength of treatment for the infected

individuals, v3(t) is the control function for the necessary suggestions of health care measures for those who

are in asymptomatic infectious class and yet not admitted in the hospital.

CFD%
t S(t) = −(1− v1)(λI + λA + λQ + λL + λE2

)S,

CFD%
tE1(t) = (1− v1)(λI + λA + λQ + λL + λE2

)S − κ1E1,

CFD%
tE2(t) = κ1E1 − (κ2 + q)E2,

CFD%
t I(t) = ρκ2E2 − (τI + γI + δI + v2)I,

CFD%
tA(t) = (1− ρ)κ2E2 − (τA + γA + v3)A,

CFD%
tQ(t) = qE2 − (γQ + δQ)Q,

CFD%
tL(t) = τII + τAA− (δL + γL)L,

CFD%
tR(t) = γII + γAA+ γQQ+ γLL.

(26)

To de�ne the optimal control problem (OCP), we are excluding the death equation D(t), because there290

is no signi�cance of deaths in optimal controls. Now consider the state system given in (26) in R8,291
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with the set of admissible control function. Ω = {(v1(.), v2(.), v3(.)|vi is Lebseguemeasurable on[ 0, 1]292

0 ≤ (v1(.), v2(.), v3(.) ≤ 1 So the objective functional is de�ned by293

J((v1(.), v2(.), v3(.)) =

∫ T

0

[ I(t) +
1

2
(k1v

2
1(t) + k2v

2
2(t) + k3v

2
3(t))] dt (27)

where the constants k1, k2 and k3 are a measure of associative cost with the controls v1, v2 and v3. Then294

we �nd the optimal controls v1, v2 and v3 to minimize the cost function.295

J((v1, v2, v3) =

∫ T

0

µ(S,E1, E2, I, A,Q,L,R, v1, v2, v3, t) dt (28)

subject to constraint,296

CF
0 Dt

%S(t) = φ1,
CF
0 Dt

%E1(t) = φ2, ...
CF
0 Dt

%R(t) = φ8297

where φj = φ(S,E1, E2, I, A,Q,L,R, V1, V2, V3, t), j = 1, 2, ...8 and the given initial coordination are298

agreed S(0) = S0, E1(0) = E10, R(0) = R0299

Now let us take the following modi�ed cost function

x̃ =

∫ T

0

[ H(S1, E1, ...R, vi, t)−
8∑
j=1

(θjφj(S1, E1, ...R, vi, t) dt (29)

where i = 1, 2, 3 and j = 1, 2, 3...8 Hence the Hamiltonian is de�ned as follows:300

H(S1, E1, ...R, vi, t) = µ(S1, E1, ...R, vi, t) +

8∑
j=1

(θjφj(S1, E1, ...R, vi, t) (30)

where i = 1, 2, 3 and j = 1, 2, 3...8 from Equation 29 and 30, the necessary and su�cient conditions for301

the functional optimal control problem (FOCP) are given as:302

CF
0 D%θ1 =

∂H

∂S
, CF

0 D%θ2 =
∂H

∂E1
, ... CF

0 D%θ8 =
∂H

∂R
(31)

0 =
∂H

∂vi
(32)

CF
0 Dt

%S(t) =
∂H

∂θ1
, ... CF

0 Dt
%R(t) =

∂H

∂θ8
(33)

Moreover, θj(T ) = 0, j = 1, 2, ...8, are the lagseuges multipliers Eqn 31 and 32 express the necessary303

condition in terms of a Hamiltonian for the OCP de�ned above.304
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7.1. Optimality conditions for fractional order305

Let us write the Hamiltonian function as follows:306

H(S1, E1, ...R, vi, θ) = I + 1
2 (k1v

2
1 + k2v

2
2 + k2v

3
2) + θ1[−(1− v1)(λI + λA + λQ + λL + λE2)S] + θ2[(1−307

v1)(λI + λA + λQ + λL + λE2
)S − κ1E1] + θ3[κ1E1− (κ2− q)E2] + θ4[ρκ2E2− (τI + γI + δI + v2)I] + θ5[(1−308

ρ)κ2E2− (τA+γA+v3)A] + θ6[qE2− (γQ+ δQ)Q] + θ7[τ1I+ τAA− (δL+γL)L] + θ8[γII+γAA+γQQ+γLL]309

where θj , j = 1, 2, ...8, representing the lagragars multipliers called co-states.310

311

Theorem: If v∗1 , v
∗
2 and v∗3 are optimal controls of the given OCP if S∗, E∗1 , ...R

∗ are corresponding

optimal paths, then there exists co-state variables θ∗1 , ..., θ
∗
8 , such that besides the given control system is

satis�ed, the following conditions are satis�ed:

Co-state equations:

CF
c D%θ∗1 = (1− v1)(λI + λA + λQ + λL + λE2

)θ∗1 − (1− v1)(λI + λA + λQ + λL + λE2
θ∗2 ,

CF
c D%θ∗2 = κ1θ

∗
2 − κ1θ∗3

CF
c D%θ∗3 = βE2

(1−mζ)
S

N
θ∗1 − βE2

(1−mζ)
S

N
θ∗2 + (κ2 + q)θ∗3 − ρκ2θ∗4 − (1− ρ)κ2θ

∗
5 − qθ∗6

CF
c D%θ∗4 = βI(1−mζ)

S

N
θ∗1 − βI(1−mζ)

S

N
θ∗2 + (II + YI + δI + v2)θ∗4 − τIθ∗7 − γIθ∗8

CF
c D%θ∗5 = βA(1−mζ)

S

N
θ∗1 − βA(1−mζ)

S

N
θ∗2 + (τA + γA + v3)θ∗5 − τAθ∗7 − γAθ∗8

CF
c D%θ∗6 = βQ(1−mζ)

S

N
θ∗1 − βQ(1−mζ)

S

N
θ∗2 + (γQ + δQ)θ∗6 − γQθ∗8

CF
c D%θ∗7 = βL(1−mζ)

S

N
θ∗1 − βL(1−mζ)

S

N
θ∗2 + (δL + γL)θ∗7 − γLθ∗8

CF
c D%θ∗7 = 0,

(34)

with transversality conditions θj(T ) = 0, j = 1, 2, ...8 and optimality conditions given by312

H(S∗(t), ...R∗(t), θ∗(t), v∗i (t)) = min
0≤(vi≤1

H(S∗(t), ...R∗(t), θ∗(t), v∗i (t))

v∗1(t) = min{1,max(0,
(θ∗2 − θ∗1)(λI + λA + λQ + λL + λE2

)S∗

D1
},

v∗2(t) = min{1,max(0,
θ∗4I
∗

D2
)},

v∗3(t) = min{1,max(0,
θ∗5A

∗

D3
)}.

(35)

Proof: The adjoint system (34) i.e CFc D%θ∗1 , ...,
CF
c D%θ∗8 are obtained from the Hamiltonian H as313

− dθ1
dt = ∂H

∂S ,
− dθ2
dt = ∂H

∂E1
, ...− dθ8dt = ∂H

∂R314

with zero �nal time conditions or transversality conditions,315

θ1(T ) = 0, θ2(T ) = 0, .... and θ8(T ) = 0 and the characteristic of the fractional optimal control given316

by (35) is obtained by solving the Eqn ∂H
∂v1

= 0, ... ∂H∂v3 = 0 on the interior of the control set and using the317

property of control space v.318
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8. Conclusions319

Di�erent mathematical paradigms can provide considerable insights and scienti�c evidences pertinent to320

any ongoing epidemic dynamics. Based on those valuable information, health o�cials and public health321

experts can set up potential control strategies to battle against any epidemic. From the emergence of the322

novel coronavirus in China, researchers and scientists are working relentlessly to develop various mathematical323

modeling approaches to gain a deeper understanding on the progression dynamics of COVID-19 in the world.324

In addition, in the absence of any safe, e�ective and widely available COVID-19 vaccine, di�erent preventive325

measures are the most e�ective tool in combating against the virulent virus. On the basis of robust forecasting326

results of reliable epidemiological models, government o�cials can deploy di�erent public health intervention327

strategies to control the rapid transmission of the virus. In this chapter, a compartmental mathematical has328

been designed to describe the transmission dynamics of the COVID-19 incorporating all possible real-life329

interactions and e�ective non-pharmaceutical interventions. Disease-free equilibrium (DFE) of the proposed330

model is found to be globally asymptotically stable (GAS), whenever control reproduction number (Rc) less331

than unity. In addition, advanced forecasting techniques have also been applied for Argentina, Bangladesh,332

Brazil, Colombia and India to portray the future dynamics of the pandemic in near term. It has been333

enlightened in our study that mass-level using of highly e�ective face coverings could be a crucial factor334

in controlling the spread of coronavirus. Moreover, strict social-distancing measures and comprehensive335

contact-tracing are also e�ective strategies in battling against this pandemic. The public health implication336

of these insightful �ndings is government o�cials can undertake crucial clinical and public health decisions337

by analyzing all mathematical results and scienti�c evidences. Caputo-Fabrizio non-integer order derivative338

has been applied to solve the proposed mathematical model in fractional sense. We proved the existence339

of unique solution for the proposed fractional initial value problem. We proved the unconditional stability340

of the given technique. An important concern of fractional optimal control problem is given to suggest the341

heath care measures for reducing the transmissibility of COVID-19 infection in the population.342
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