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ABSTRACT  

Objectives: Integrating electronic health records (EHR) data from several clinical sites offers great 

opportunities to improve estimation with a more general population compared to analyses based 

on a single clinical site. However, sharing patient-level data across sites is practically challenging 

due to concerns about maintaining patient privacy. The objective of this study is to develop a novel 

distributed algorithm to integrate heterogeneous EHR data from multiple clinical sites without 

sharing patient-level data.  

 

Materials and Methods: The proposed distributed algorithm for binary regression can effectively 

account for between-site heterogeneity and is communication-efficient. Our method is built on a 

pairwise likelihood function in the extended Mantel-Haenszel regression, which is known to be 

statistically highly efficient. We construct a surrogate pairwise likelihood function through 

approximating the target pairwise likelihood by its surrogate. We show that the proposed surrogate 

pairwise likelihood leads to a consistent and asymptotically normal estimator by effective 

communication without sharing individual patient-level data. We study the empirical performance 

of the proposed method through a systematic simulation study and an application with data of 

14,215 COVID-19 patients from 230 clinical sites at UnitedHealth Group Clinical Research 

Database. 

 

Results:  The proposed method was shown to perform close to the gold standard approach under 

extensive simulation settings. When the event rate is <5%, the relative bias of the proposed 

estimator is 30% smaller than that of the meta-analysis estimator. The proposed method retained 

high accuracy across different sample sizes and event rates compared with meta-analysis. In the 
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data evaluation, the proposed estimate has a relative bias <9% when the event rate is <1%, whereas 

the meta-analysis estimate has a relative bias at least 10% higher than that of the proposed method.   

 

Conclusions: Our simulation study and data application demonstrate that the proposed distributed 

algorithm provides an estimator that is robust to heterogeneity in event rates when effectively 

integrating data from multiple clinical sites. Our algorithm is therefore an effective alternative to 

both meta-analysis and existing distributed algorithms for modeling heterogeneous multi-site 

binary outcomes. 

 

Keywords: distributed computing; heterogeneity; multi-site analysis; surrogate pairwise 

likelihood function. 
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INTRODUCTION 

Electronic health records (EHR) data have become one of the most well-known data 

sources for medical and health research use. EHRs contain various elements of patient-level health 

information, including diagnoses, medications, procedures, imaging, and clinical notes [1-4]. 

Synthesis of this real-world evidence (RWE) from multiple clinical sites provides a larger sample 

size of the population compared to a single site study [5].  Analyses using larger populations 

benefit from better accuracy in estimation and prediction. Furthermore, the integration of research 

networks inside healthcare systems allows rapid translation and dissemination of research findings 

into evidence-based healthcare decision making to improve health outcomes, consistent with the 

idea of a learning health system [6-11]. 

In the past few years, several successful networks have been founded and become 

beneficial to multicenter research. One of them is the Observational Health Data Sciences and 

Informatics (OHDSI) consortium [12]. OHDSI was founded for the primary purpose of developing 

open-source tools that could be shared across multiple sites. OHDSI developed the Observational 

Medical Outcomes Partnership (OMOP) Common Data Model (CDM) for data standardization 

[13]. The OMOP allows each institution to transform the local EHR data to the CDM’s standards. 

This procedure makes it feasible for the researchers to develop methods that can be simultaneously 

applied to the datasets from many institutions. The conversion and standardization of the data 

format decrease the probability of translation error and also increase the efficiency of data analysis. 

Another successful network is the National Pediatric Learning Health System (PEDSnet), a 

National Pediatric Learning Health System, within the PCORnet system [14,15]. This network 

contains eight large pediatric health systems in the US. Comprising clinical information from 

millions of children, PEDSnet offers the capacity to conduct multicenter pediatric research with 
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broad real-world evidence. The Sentinel System is another example of a multi-site network, a 

national electronic system for monitoring performance of FDA-regulated medical products [16]. 

In multi-center studies, maintaining privacy of patient data is a major challenge [17-19]. 

Due to data privacy policies, directly sharing patient-level data, especially demographic, 

comorbidity, and outcome data, is restricted and poorly feasible in practice. The Health Insurance 

Portability and Accountability Act of 1996 (HIPAA) introduced a privacy rule to regulate use of 

protected health information (PHI) often found in EHRs, requiring de-identification of PHI before 

use in biomedical research [18]. De-identified PHI has been shown to be susceptible to re-

identification, causing concern among patients [20,21].  

In light of patient privacy concerns, many multicenter EHR-based studies currently 

conduct analyses by combining shareable summary statistics through meta-analysis [22-24]. While 

relatively simple to use, meta-analysis has been shown to result in biased or imprecise estimation 

in the context of rare outcomes, as well as with smaller sample sizes [25]. Other than meta-analysis, 

several distributed algorithms have been developed and considered in studies with multi-site data. 

In these distributed algorithms, a model estimation process is decomposed into smaller 

computational tasks that are distributed to each site. After parallel computation, intermediate 

results are transferred back to the coordinating center for final synthesis. Under this framework, 

there is no need to share patient-level data across sites. For example, GLORE (Grid Binary 

LOgistic Regression) was developed for conducting distributed logistic regressions [26], and 

WebDISCO (a Web service for distributed Cox model learning) was developed to fit the Cox 

proportional hazard model distributively and iteratively [27]. Both algorithms have been 

successfully deployed to the pSCANNER consortium [28]. Through iterative communication of 

aggregated information across the sites, these two algorithms provide accurate and lossless results, 
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which are equivalent to fitting a model on the pooled data from all sites. However, in practice these 

two methods can be time-consuming and communication-intensive due to the need for iteratively 

transferring data. To overcome this limitation, non-iterative privacy-preserving distributed 

algorithms for logistic regression (termed as ODAL) and Cox model (termed as ODAC) through 

the construction of a surrogate likelihood have been proposed [25,29,30]. 

However, all of the aforementioned distributed algorithms rely on the assumption that data 

across clinical sites are homogeneous. This assumption is often inaccurate in biomedical studies 

because it ignores the heterogeneity caused by the intrinsic differences across clinical sites or 

population characteristics. Ignoring heterogeneity across clinical sites can induce biases in 

estimating associations between the exposures of interest and outcomes [17,31]. Recently, a single 

Robust-ODAL algorithm was proposed to account for the heterogeneity across the clinical sites, 

but it only considers the limited situation when there exist a small number of outlying studies 

within the network [32]. 

One motivating example is the EHR data of 14,215 patients who were diagnosed with 

COVID-19 prior to June 29, 2020 from 230 sites in the UnitedHealth Group Clinical Research 

Database. There is a substantial difference in clinical practices across these sites due to such factors 

as geographical variability in disease patterns, variations in patients’ characteristics, and regional 

differences in practice patterns. Therefore, developing methods to account for the heterogeneity in 

the data is especially needed when analyzing multi-site data within the networks.  

To fill the above methodology gap, in this paper, we develop an effective privacy-

preserving distributed data integration algorithm. We propose a distributed algorithm for binary 

regression to account for between-site heterogeneity by efficient communication (i.e., only 

requires one round of communication of aggregated information among the sites). Influenced by 
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the pairwise likelihood in the extended Mantel-Haenszel regression [31] and the idea proposed by 

Jordan et al. (2019) [33], we construct a surrogate pairwise likelihood through approximating the 

target pairwise likelihood by its surrogate. We show that the proposed surrogate pairwise 

likelihood leads to a consistent and asymptotically normal estimator, which is asymptotically 

equivalent to the maximum pairwise likelihood estimator based on the pooled data. This result is 

established based on U statistics, which is different from Jordan et al. (2019) [33]. We evaluate 

the empirical performance of the proposed method through simulation studies and apply the 

proposed method to investigate the associations between length of stay and the risk factors of 

interests. Figure 1 shows the comparisons between the pooled analysis, meta-analysis method, 

iterative distributed algorithms, and the proposed method from various aspects. The proposed 

method can retain high estimation accuracy, protect patient privacy, handle heterogeneity, and 

save communication cost compared to the others. 

[INSERT FIGURE 1 HERE] 

 

MATERIALS AND METHODS 

Surrogate Pairwise Likelihood 

Suppose we have K different clinical sites. To keep the notation simple, we assume that each site 

has an equal number of n patients. Let {!!"} denote the collection of risk factors and {"!"} denote 

the independent response variable for the j-th patient in the i-th site where # = 1, . . . , ( and ) =

1, . . . , *. The logistic regression model to characterize the association between the risk factors and 

the outcome is 

+,-)./01 ("!" = 1|!!")5 = 6! + 8!!" 																																																		(1)	
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where +,-).(:) = +,-	{:/(1 − :)}, !! represents the site-specific prevalence of response variable, 

and " is the log odds ratio, meaning the association between risk factors !!" and the outcome "!". 

Following Liang (1987)’s extended Mantel-Haenszel regression, the pairwise likelihood 

can be constructed by conditioning ("!","!$) on their order statistics. The pairwise likelihood for 

the i-th site can be written as  

?!(8) = 	∏ A1 + B!:	{−C"!" − "!$DC!!" − !!$D
%8}E

&'
'(")$(* 																															(2)	

	
We note that unlike generalized linear mixed effect model, where site-specific effects !!’s are 

assumed to follow a known distribution, the conditional pairwise likelihood eliminates the 

nuisance parameters (6', . . . , 6+) through the conditioning technique, hence avoids estimation of 

the nuisance parameters. Moreover, as studied in Liang (1987), the estimator, defined as the 

maximum of the pairwise likelihood, retains high statistical efficiency. 

Now summing over all K sites, the overall likelihood function can be written as the product 

of ?! , 

?∗(8) = ∏ ?!(8)+
!-' = ∏ ∏ A1 + B!:	{−C"!" − "!$DC!!" − !!$D

%8}E
&'
		'(")$(*

+
!-' 			(3)	

	
which can be calculated if we have access to the patient-level data from all sites. 

However, in practice, the individual patient-level data are only available at the local site 

and for the rest of the clinical sites in the network, we can only access aggregated information. 

Motivated by the surrogate likelihood in Jordan et al. (2019) which approximates the target 

pairwise likelihood by the likelihood from a single site, we propose a surrogate pairwise likelihood 

which can still handle the heterogeneity across the clinical sites. 

For simplicity, we assume the first site as the local site, where we have access to the 

individual patient-level data. Let +'(8) denote the pairwise log-likelihood function for the local 
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site, +'(8) = ∑ [1 + B!:	{−C"'" − "'$DC!'" − !'$D
%8}]&'/C*.D")$ . We construct the following 

surrogate log pairwise likelihood function +K'(8) with the patient-level data from the local site, the 

initial value "# , and the aggregated information $+/(8# ) and $.+!(8L). Specifically, we define 

 

+1% (8) = +1(8) + {M+(8# ) − M+1(8# )}(8− 8# ) + (2−2! )"{627(2! )−6271(2! )}(2−2! )
2                      (4) 

 

where +'(8) is the log pairwise likelihood function calculated from patient-level data in the local 

site; $:+(8L) = *&' ∑ M:+!(8L)+
!-' , N	 = 	1, 2  and	 {M+!(8L)}!-',…+ , {M.+!(8L)}!-',…,+  are the first 

and second gradients of the surrogate pairwise likelihood function at "#  respectively. By 

maximizing the surrogate pairwise likelihood +K'(8) we obtain the surrogate estimator "&. 

A natural choice of the initial value of "#  is the maximum likelihood estimator of the local 

site +'(8). Alternatively, since the performance of the surrogate estimator "& may depend on the 

choice of the initial values, we may use the inverse variance weighted average of the estimates 

from all sites, i.e.,  

"# = (∑ O( /
−1<

/=1 )−1 ∑ O( /
−1<

/=1 8# /	                         (5) 

where "̄! is the maximum of the pairwise likelihood and OQ! = RQ',!
&'(8L!)RQ.,!(8L!)RQ',!

&'(8L!)/C*.D is 

the covariance matrix of "̄! in the i-th site; )S',!(8) and )S.,!(8) are functions of " for the i-th site. 

The definition of the covariance matrix, the asymptotic distribution of the surrogate estimator "&, 

the derivation of the limiting distribution of "& are provided in Supplementary Appendix 1.  

 

Algorithm 

The proposed surrogate pairwise likelihood leads to the following algorithm. 
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Algorithm: Proposed method 
Input: Patient-level data {"!"} and {$!"}, where %  denotes site index and &  the observation 
index, where % = 1,… , + and & = 1,… , ,. Note that {"!"} and {$!"} are stored in the i-th site 
locally. 
Output: Estimator "& of the association between {"!"} and {$!"}. 

1:   Obtain "- ! =./0 1."	3!(5) and 78! with patient-level data in the i-th site                      
2:   Broadcast "- ! and 78! , and calculate initial value	8L  with equation (5) 
3:   Suppose the 1st site is the local site that we have access to the individual patient-level data 
4:   Transfer "#  to the local site 
5:   for i in c(1:K) do 
6:       Calculate	9+/(8- ), $.+!(8L) 
7:       Transfer the intermediate results to the local site 
8:   end for  
9:   Construct 3:#(5) as in equation (4) in the local site with "# ,	9+/(8- ), $.+!(8L) 
10:   Obtain "& by maximizing 3:#(5) 
11:   Calculate variance of "& with equation (A.4) and (A.5) in Supplementary Appendix 1 

 

In the following figure, we provide a graphical explanation to illustrate the implementation of the 

proposed algorithm.  

[INSERT FIGURE 2 HERE] 

REMARK 1: We implemented the proposed algorithm with R calling C programming language, 

which is a few dozen times faster than using R programming language only. Such implementation 

is necessary for the application of our algorithm to real-world settings where the number of patients 

in each site is relatively large.  

 

REMARK 2: In the situation that each site is treated as the local site, each site can obtain its own 

surrogate pairwise likelihood estimate. These estimates can be further synthesized together with 

the inverse variance weighted average method to obtain an overall estimate. 

 

Simulation Design  
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To evaluate the empirical performance of the proposed algorithm, we conduct a simulation study 

to cover a wide spectrum of practical settings. We set the total number of sites, K = 5 or 20 and 

sample size of each site is 1000 (i.e., the total numbers of patients are 5000 and 20,000 

respectively.) 

In our simulation study, we consider a setting where a binary outcome is associated with 

two risk factors, (!', !.), where !' represents a continuous predictor (e.g., age) and !. is a binary 

predictor (e.g., sex, race). The binary outcome Y (e.g., presence/absence of hospitalization) is 

generated from a Bernoulli distribution, with the conditional probability specified by the following 

logistic regression model,  

+,-).{01 (T = 1|!)	} = 	8? +	8'!' +	8.!.	
	

where "'  and ".  are the coefficients of !'  and !.  respectively, and "?  is the intercept, 

characterizing the prevalence of the outcome Y. We set the true value of "' is 1 and of ". is -1. 

The distribution of !' for each study site is U()(−1, 1) to mimic the empirical distribution of  

variable “age”, and !. is generated from a Bernoulli distribution with probability equal to 0.5 to 

mimic the empirical distribution of variable “sex”. 

We simulated three scenarios of the disease prevalence. The medians of the prevalence are 

20%, 5%, and 0.5%. Specifically, the prevalence of the sites is randomly generated from a range 

of values as presented in Figure 3. We also simulated two scenarios of heterogeneity under each 

disease prevalence to mimic less heterogeneous cases (upper panel) and more heterogeneous 

(lower panel) cases, where the prevalence ranges are larger than those of the less heterogeneous 

cases.  

[INSERT FIGURE 3 HERE] 
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Under each scenario, we compared the proposed method with the pairwise likelihood 

method (Liang, 1987), which can be treated as the gold standard and the commonly used meta-

analysis. In the pairwise likelihood method, we assume that we have the access to all of the patient-

level data. The simulation was conducted with 100 replications. 

 

Data Evaluation 

Our analytical dataset is composed of hospitalized patients who were diagnosed with COVID-19 

prior to June 29, 2020 from a single large national health insurer, which covers a broad swath of 

the population. The data are from multiple EHR systems including EPIC [34], Cerner [35], and 

others. The data are recorded from * = 	230  sites with W = ∑ (!+
!-' = 14,215	 insured 

(Commercial and Medicare) patients; see Figure 4 (a) for the details of inclusion-exclusion criteria 

and the distribution of COVID patients across the United States. Our objective is to develop an 

association model between clinical-and-demographic covariates (i.e., age, sex, line of business, 

and Charlson comorbidity index) and therapeutic patient outcomes. More details about the data 

quality are provided in Supplementary Appendix 2. 

Outcomes are defined by combining both hospitalizations (days) and the status of patients 

being expired (i.e., a binary value taking value 1 if a patient is deceased or 0 otherwise). Consider 

three composite binary outcomes which take values 1 if the event occurs, and 0, otherwise. Here 

the events are defined as (a) LOS > 1 week and patient died, (b) LOS > 3 weeks and patient died, 

and (c) LOS > 4 weeks and patient died, respectively. Figure 4 (b) illustrates the prevalence rates 

of composite outcomes by 230 hospitals and Figure 4 (c) shows the number of COVID-19 

hospitalizations included in the study across 47 states in the U.S. These two figures exhibit 

substantial variation in prevalence rates across sites. Moreover, patients admitted within the same 
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hospital are subject to somewhat similar care, administrative facilities, and treatments provided by 

the same physicians. This phenomenon leads us to treat sites as internally homogeneous and 

externally heterogeneous blocks. For details of the covariates, we refer to Table 1. 

 
[INSERT FIGURE 4 HERE]  

[INSERT TABLE 1 HERE]  

 

RESULTS 

Simulation studies results 

For simplicity, we only present the results for the estimation of coefficient "' and the results for 

the other coefficients are similar. Figure 3 shows the violin plot of the relative bias compared with 

the pairwise likelihood method under different numbers of sites and event rates. The first row in 

each panel is for the results when the total number sites, K = 5, and the second row is for K = 20. 

The black dashed line represents zero relative bias compared with the gold standard method. From 

the figure we observe that for all scenarios, the proposed method obtains smaller relative bias 

compared with meta-analysis. Importantly, as the event rate decreases under both less and more 

heterogeneous cases, the meta-analysis estimator is observed to have larger bias. When the event 

rate is <5%, the relative bias of the proposed estimator is 30% smaller than that of the meta-analysis 

estimator. In summary, the proposed method can provide better performance than the meta-

analysis estimators to handle the heterogeneity across the clinical sites when the event is rare.  

 

 

Data evaluation results 

[INSERT FIGURE 5 HERE]  
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We primarily focus on estimating and comparing parameter estimates by the proposed method and 

the meta-analysis method. We stress that the parameter estimates need to be interpreted with 

caution since the effects’ magnitudes or directions might be misleading without adjusting for 

potential confounders in the model. Figure 5 illustrates the results obtained by the pairwise 

likelihood method (i.e., gold standard), the proposed method, and meta-analysis. As the prevalence 

rate decreases (i.e., in rare events), the proposed method outperforms meta-analysis in terms of 

estimating parameters. Specifically, the odds ratio (OR) of the proposed method remains closer to 

that of the gold standard approach, compared with the OR of meta-analysis. The proposed 

estimates have a relative bias <9% when the event rate is <1%, whereas the meta-analysis estimates 

have a relative bias at least 10% higher than that of the proposed method. This observation matches 

with that of the simulation study.  

Besides, meta-analysis underestimates variance (or standard error of estimates) leading to 

far narrower confidence intervals relative to those of the gold standard method, especially for rare 

events. Ignoring between-and-within sites correlation in meta-analysis is likely to induce bias and 

underestimate uncertainty in parameter estimates leading to conflicting inference about the testing 

of significance of the effect size. For example, 95% confidence intervals of ORs for Charlson score 

based on meta-analysis does not contain OR value of one implying its significance, which is 

inconsistent with the inference based on the gold standard method. In contrast, the proposed 

method produces comparable inferences to the gold standard method.     

 

DISCUSSION 

In this paper, we proposed an effective privacy-preserving distributed algorithm for modeling 

binary outcomes while accounting for heterogeneity across clinical sites. Motivated by real-world 
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multicenter data, the proposed method requires transferring initial values and intermediate 

information instead of patient-level data. Our algorithm provides an estimator that is robust to 

heterogeneity in event rates. In simulations, the proposed method is shown to have higher accuracy 

than meta-analysis when the outcome is relatively rare, suggesting its utility in a rare-event 

context. 

 There are several advantages of our proposed algorithm compared to existing methods for 

privacy-preserving data analysis. Relative to meta-analysis, our method accesses patient data at a 

higher granularity while requiring minimal additional effort to institute. For multi-site studies 

operating under a common data model, such as OHDSI, analyses using our method can be carried 

out at individual sites concurrently without the need for any site-specific modifications. In 

addition, there are many benefits of using our method compared to existing distributed algorithms. 

First, compared to the iterative algorithms such as GLORE and WebDISCO [26,27], the proposed 

algorithm does not require iterative communication across the sites, leading to the reduction in 

communication costs and administrative efforts. Secondly, to implement the proposed method, the 

patient-level data are only required in one single site. For the other sites within the network, the 

aggregated information will be used instead of patient-level data transfer across the sites to 

construct the surrogate pairwise likelihood function. Given the understandable privacy- and 

proprietary-related sensitivities health systems have to provide “outside” collaborators with access 

to patient-level data, limiting the need to use such data to only one site would be extremely 

beneficial to a multi-site project in terms of feasibility, costs, and time. Thirdly, by canceling out 

the baseline probability function, the proposed method can handle the heterogeneity in the event 

rate between the sites. In addition, the proof of the proposed method is established based on U 

statistics and is different from that of Jordan et al. (2019) [33]. In terms of computational 
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complexity, the implementation of the proposed method is slow when the sample size is large 

compared with the traditional regression model. We thus implemented the algorithm with R calling 

C, which is a few dozen times faster than using the R programming language only. The R and C 

code will be made available at https://github.com/Penncil and through our R package: ‘pda’. 

 To investigate the proposed non-iterative distributed algorithm, we can extend it in several 

aspects. First, the proposed pairwise likelihood function can only handle the heterogeneity of the 

intercepts in the regression model. To handle the other types of heterogeneity (e.g., heterogeneous 

effects of the predictors), more robust algorithms should be developed. Secondly, we are going to 

develop methods for other types of outcomes, such as continuous and time-to-event data. In 

addition, the development of distributed algorithms to handle the missingness in the longitudinal 

EHR is needed in the future. Lastly, we have been working on the development of the open-source 

software R package to implement the proposed distributed algorithm within a multicenter network. 

We believe that the proposed algorithm would be a robust method to account for the heterogeneity 

across multiple clinical sites, leading to a better data integration framework inside health systems. 

 

CONCLUSION 
 
The proposed distributed algorithm provides an estimator that is robust to heterogeneity in event 

rates when effectively integrating data from multiple clinical sites. Through a simulation study and 

a real-world use case using data from the UnitedHealth Group Clinical Research Database, the 

proposed method is shown to be an effective alternative to both meta-analysis and existing 

distributed algorithms for modeling heterogeneous multi-site binary outcomes. 
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Figure 1:  Comparisons between pooled analysis, meta-analysis, iterative distributed algorithms, 

and the proposed method. The proposed method can retain high accuracy when estimating 

association between exposures and outcome of interest. In addition, the proposed method can 

handle heterogeneity across the sites and protect patient privacy with efficient communication.  

  

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 18, 2020. ; https://doi.org/10.1101/2020.11.17.20220681doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.17.20220681


 

 

Figure 2:  Illustration of the proposed method. Step I: Using data from each local site to estimate 

"̄!, where % = 1,… , + and broadcast the values to calculate the weighted initial value	8L . Step II: 

With	8L , calculating the intermediate terms	9+/(8- ), $%+/(8# ) at each site and then transfer the results 

back to the local site. With the intermediate results and	8L  to construct the surrogate pairwise log-

likelihood function 3:#(5) in the local site. Maximizing 3:#(5) to obtain the estimator "&. 
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Figure 3: Upper panel: relative bias of "'  estimation compared with the pairwise likelihood 

method under three scenarios with median prevalence 20%, 5%, and 0.5% when the total number 

of sites is 5 or 20 (i.e., K = 5 or 20). Lower panel: relative bias of "' estimation compared with 

the pairwise likelihood method under three scenarios with median prevalence 20%, 5%, and 0.5% 

with larger heterogeneity (i.e., larger prevalence range than upper panel) when the total number of 

sites is 5 or 20 (i.e., K = 5 or 20). 
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Figure 4: (a) Diagram of the patient inclusion-exclusion criteria. (b) Box plots of the prevalence 

rates of composite outcomes of 230 hospitals. (c) COVID-19 cases distribution: number of 

COVID-19 hospitalizations included in the study are represented across 47 states. 
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Number of patients 14,215 

Number of hospitals 230 

Patient Level Characteristics  

 Mean Age in years (Median, SD) 71.1 (73, 14.3) 

 Sex  

 Male (%) 6,925 (48.7%) 

 Female (%) 7,290 (51.3%) 

 Mean Charlson Score (Median, SD) 3.4 (3.0, 3.0) 

 Insurance Type  

 Medicare Advantage (%) 11,460 (80.6%) 

 Commercial (%) 2,755 (19.4%) 

Patient Outcomes  

 Mean Length of Stay in days (Median, SD) 10.2 (6, 12.6) 

 Length of Stay ≥ 1 day and Died (%) 1,716 (12.7%) 

 Length of Stay ≥ 8 day and Died (%) 843 (5.9%) 

 Length of Stay ≥ 15 day and Died (%) 436 (3.1%) 

 Length of Stay ≥ 22 day and Died (%) 234 (1.6%) 

 Length of Stay ≥ 29 day and Died (%) 124 (0.9%) 

 

Table 1. Summary characteristics of the 14,215 patients from 230 hospitals in our population. 
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Figure 5: Point estimates and 95% confidence intervals (CI) for the association (in odds ratio scale) 

between the LOS (i.e., length of stay) and covariates (i.e., sex, age, Charlson score, line of business, 

from left to right). Each row represents an event rate of the outcome: 6%, 2%, and <1% from top 

to bottom. Each column represents the estimation of the covariate.
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