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Abstract 

Linear mixed models (LMMs) are commonly used in many areas including epidemiology for analyzing 

multi-site data with heterogeneous site-specific random effects. However, due to the regulation of 

protecting patients’ privacy, sensitive individual patient data (IPD) are usually not allowed to be shared 

across sites. In this paper we propose a novel algorithm for distributed linear mixed models (DLMMs). 

Our proposed DLMM algorithm can achieve exactly the same results as if we had pooled IPD from all 

sites, hence the lossless property. The DLMM algorithm requires each site to contribute some 

aggregated data (AD) in only one iteration. We apply the proposed DLMM algorithm to analyze the 

association of length of stay of COVID-19 hospitalization with demographic and clinical characteristics 

using the administrative claims database from the UnitedHealth Group Clinical Research Database. 

 

1. Introduction 

The COVID-19 outbreak has become a pandemic, causing a large increase in mortality and posing a 

heavy burden to the healthcare system. Much research has been done on treatment efficacy and adverse 

clinical outcomes [1-5] and much remains to be done. As studies continue to be conducted and 

published, multi-site collaboration is demanded for evidence synthesis [3,4]. Multi-site studies based 

on healthcare data, including the electronic health record (EHR) and claims data, can integrate clinical 

information across multiple sites or systems to improve estimation and predictive performance due to 

use of a larger and more inclusive sample from the population of interest. 

 

One primary challenge for multi-site collaboration is preserving the privacy of protected health 

information. Sensitive individual patient data (IPD) including the patient's identity, diagnoses and 

treatments are usually not allowed under privacy regulation to be shared across networks. Existing 

approaches to performing multi-site studies, e.g. distributed algorithms, have the drawback of biased 

estimation [12] or communication burden due to the requirement of iterative transmission of 

summarized data [14,15]. Specifically, for ordinary linear regression, identical results with pooled 

analysis can be obtained by lossless compression [7]. Another important challenge of analyzing multi-

site data is the heterogeneity of data distribution across sites. Many existing approaches for multi-site 

analysis assume the data are homogeneously distributed across sites. This assumption may be violated 

in practical scenarios and thus make the model vulnerable in estimation and hypothesis testing. For 

instance, in this manuscript we consider the length of stay of the hospitalization due to COVID-19 as 

the continuous outcome. Heterogeneity across countries, regions, and sub-populations has been reported 

in the literature [2]. The aforementioned lossless compression approach [7] for ordinary linear 

regression, fails to take the heterogeneity into account. 
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In this paper we propose a novel algorithm for distributed linear mixed models (DLMMs). Linear mixed 

models (LMMs) are commonly used in many areas including epidemiology for analyzing multi-site 

data with heterogeneity. The model assumes site-specific random effects of the covariates (and 

intercept) on a continuous outcome. To the best of our knowledge, there is no existing approach for 

fitting LMMs in a distributed manner, see Figure 1 for the comparison of several approaches in this 

context. Our proposed distributed LMM can achieve exactly the same results as if we had pooled 

individual patient data from all sites, hence the lossless property. These lossless results can be obtained 

by requiring the sharing of summary statistics from each site in only one iteration. We apply the 

proposed DLMM to analyze the association of length of stay of COVID-19 hospitalization with 

demographic and clinical characteristics using the administrative claims database for Medicare 

Advantage members from a large US Health insurance provider (Appendix Figure 2A).  

 

 
Figure 1. Comparison of several approaches for linear regression analysis of multi-site EHR data with 

heterogeneity. 

 

 

2. Method 

2.1 Linear mixed model 

Due to the heterogeneity of data across sites, the effects of the covariates on the outcome among sites 

in the linear regression model may not always be the same [7]. A linear mixed model is thus often used. 

Assume for the 𝑗th patient at the 𝑖th site, 𝑦𝑖𝑗 is the continuous outcome, 𝑥𝑖jis the 𝑝-dimensional covariate 

vector and 𝛽 is the vector of fixed effects, 𝑧𝑖jis the 𝑞-dimensional covariate vector having random effect 

𝑢𝑖, and 𝜖𝑖jis the random error. 

𝑦𝑖𝑗 = 𝑥𝑖j
𝑇 𝛽 + 𝑧𝑖𝑗𝑢𝑖 + 𝜖𝑖𝑗 , 𝑖 = 1, . . . , 𝐾, 𝑗 = 1, . . . , 𝑛𝑖 ,                              (1) 

where 𝑢𝑖 ∼ 𝑁(0, 𝑉),  𝜖𝑖𝑗 ∼ 𝑁(0, σ2). The random effects covariates 𝑧𝑖jcan be part or all of 𝑥𝑖𝑗, or 

constant if random intercept only. The random effect covariance matrix 𝑉 can admit certain structures 

with unknown parameters. For instance we can assume the random effects are independent, i.e. 𝑉 =

𝑑𝑖𝑎𝑔(𝜎1
2, . . . , 𝜎𝑞

2). These parameters (e.g. variance components) and the fixed effects 𝛽 are usually 

estimated by maximum likelihood (ML) or restricted maximum likelihood (REML) estimation [6]. The 

log-likelihood of LMM using all the data is  
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 𝐿(𝛽, σ2, 𝑉) = −
1

2
∑ {𝑙𝑜𝑔|𝛴𝑖| + (𝑌𝑖 − 𝑋𝑖𝛽)𝑇𝛴𝑖

−1(𝑌𝑖 − 𝑋𝑖𝛽)}𝐾
𝑖=1 ,   (2) 

where 𝑋𝑖  and 𝑌𝑖 are the covariate matrix and the outcome vector of the 𝑖th site, |. | is the matrix 

determinant and 𝛴𝑖 = 𝛴𝑖(𝜎2, 𝑉)  =  𝑍𝑖 𝑉𝑍𝑖
𝑇 + σ2𝐼𝑛𝑖

.  

 

The maximum likelihood estimation can be further simplified by profiling out 𝛽 and σ2 from (2). 

Denote 𝛩 = 𝑉/𝜎2, given 𝛩, the estimation of 𝛽 and σ2 are  

  𝛽(𝛩)  = (∑ 𝑋𝑖
𝑇𝛤𝑖

−1𝑋𝑖
𝐾
𝑖=1 )−1(∑ 𝑋𝑖

𝑇𝛤𝑖
−1𝑌𝑖

𝐾
𝑖=1 ),     (3) 

𝜎̃2(𝛩) =
1

𝑁
∑ (𝑌𝑖 − 𝑋𝑖𝛽(𝛩))𝑇𝛤𝑖(𝜃)−1(𝑌𝑖 − 𝑋𝑖𝛽(𝛩))𝐾

𝑖=1 ,    (4) 

where 𝛤𝑖 = 𝛤𝑖(𝛩)  =  𝑍𝑖 𝛩𝑍𝑖
𝑇 + 𝐼𝑛𝑖

. Thus the profile log-likelihood with respect to only 𝛩 is 

 𝐿𝑝(𝛩) = −
1

2
∑ {𝑛𝑖𝑙𝑜𝑔𝜎̃2(𝛩) + 𝑙𝑜𝑔|𝛤𝑖| + (𝑌𝑖 − 𝑋𝑖𝛽(𝛩))𝑇𝛤𝑖

−1(𝑌𝑖 − 𝑋𝑖𝛽(𝛩))},𝐾
𝑖=1   (5) 

and the restricted profile log-likelihood is 

𝐿𝑟(𝛩) = 𝐿𝑝(𝛩) −
1

2
∑ {𝑙𝑜𝑔|𝑋𝑖

𝑇𝛤𝑖
−1𝑋𝑖| − 𝑛𝑖𝑙𝑜𝑔𝜎̃2(𝛩)}𝐾

𝑖=1 ,    (6) 

The ML or REML estimate of 𝛩can be obtained by maximizing (5) or (6). The estimates of 𝛽 and σ2 

can be subsequently obtained by (3) and (4). We denote these estimates as (𝛽̂, 𝜎̂2, 𝛩̂). The variance of 

the estimated fixed effects 𝛽̂ is thus  

𝑉(𝛽̂) = 𝜎̂2(∑ 𝑋𝑖
𝑇𝛤𝑖(𝛩̂)−1𝑋𝑖

𝐾
𝑖=1 )−1.      (7) 

or the sandwich estimator:  

(∑ 𝑋𝑖
𝑇𝛤𝑖(𝛩̂)

−1
𝑋𝑖

𝐾
𝑖=1 )−1{∑ 𝑋𝑖

𝑇𝛤𝑖(𝛩̂)−1𝐾
𝑖=1 𝑋𝑖

𝑇(𝑌𝑖  −  𝑋𝑖𝛽̂)(𝑌𝑖  −  𝑋𝑖𝛽̂)𝑇  𝛤𝑖(𝛩̂)−1𝑋𝑖}(∑ 𝑋𝑖
𝑇𝛤𝑖(𝛩̂)−1𝑋𝑖

𝐾
𝑖=1 )−1. 

 

2.2 Distributed linear mixed model 

It’s easy to see from (5) that there is no closed-form estimation for LMM. Thus unlike in the ordinary 

linear model [7], the LMM estimation is not trivial to be distributed to each site losslessly. Fortunately, 

with some linear algebra, we can disentangle the data (𝑌𝑖 , 𝑋𝑖) and the parameters 𝛩 in |𝛤𝑖| and 𝛤𝑖
−1and 

thus reconstruct the profile log-likelihood (5) without communicating individual patient data. 

Specifically, we utilize the Woodbury matrix identity [8] to obtain  

𝛤𝑖
−1 = 𝐼𝑛𝑖

− 𝑍𝑖(𝛩−1 + 𝑍𝑖
𝑇𝑍𝑖)−1𝑍𝑖

𝑇,      (8) 

and the matrix determinant lemma [9] to obtain  

 |𝛤𝑖| = |𝐼𝑞 + 𝑍𝑖
𝑇𝑍𝑖𝛩|,        (9) 

where 𝐼𝑞 is the 𝑞 × 𝑞 identity matrix. We focus on the situation that the covariates in 𝑍 are a subset of 

that in 𝑋. The more general case is similar and will be elaborated in the Appendix. We require the 𝑖th 

site to contribute some summary statistics, i.e. the 𝑝 × 𝑝 matrix 𝑆𝑖
𝑋 = 𝑋𝑖

𝑇𝑋𝑖 , the 𝑝 × 1 vector 𝑆𝑖
𝑋𝑦 =

𝑋𝑖
𝑇𝑦𝑖 , the scalar  𝑠𝑖

𝑌 = 𝑦𝑖
𝑇𝑦𝑖 and the sample size 𝑛𝑖. The exact log-likelihood (5) (or a restricted 

likelihood (6)) can then be reconstructed using these summary statistics. The details of the 

reconstruction are in the Appendix. The result by the DLMM algorithm is thus identical to that of the 

pooled LMM analysis, see Figure 2. 
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Figure 2. Schematic overview of the proposed algorithm for distributed linear mixed model (DLMM). 

The linear mixed model takes into account the heterogeneity of the effect of the covariates 𝑋 on the 

continuous outcome 𝑦 across sites. The proposed distributed algorithm achieves identical results as 

pooling the individual patient data (IPD) from all sites, by requiring only aggregated data (AD) 

𝑆𝑖
𝑋 , 𝑆𝑖

𝑋𝑦 , 𝑠𝑖
𝑦and sample size 𝑛𝑖 from the 𝑖th site. The distributed algorithm is privacy-preserving as only 

summary statistics (i.e. 𝑝 × 𝑝 matrices, 𝑝 × 1 vectors and scalars) are being communicated. 

 

2.3 Selection of variance components 

We test the significance of random effects of each individual covariate by likelihood ratio test. For 

simplicity we assume the potential random effects are independent and the random intercept always 

exists, i.e. 𝑉 = 𝑑𝑖𝑎𝑔(𝜎1
2, . . . , 𝜎𝑞

2) and 𝜎1
2 > 0, for the covariate corresponding to variance component 

𝜎𝑘
2, 𝑘 ≥ 2, we test  

𝐻0: σ1
2 > 0, 𝜎2

2 =. . . = σ𝑞
2 = 0  𝑣𝑠  𝐻1: 𝜎1

2 > 0, 𝜎𝑚
2 > 0, σ2

2 =. . . = σ𝑚−1
2 = σ𝑚+1

2 =. . . = σ𝑞
2 = 0.   

The likelihood ratio test (LRT) gives the likelihood ratio 

𝐿𝑅 = −2{𝑠𝑢𝑝𝐻0
𝐿(𝛽, σ2, 𝑉) − 𝑠𝑢𝑝𝐻1

𝐿(𝛽, σ2, 𝑉)},    (10)  

follows a 50:50 mixture of 𝜒0
2and 𝜒1

2[10,11]. Notice both the log-likelihoods in (10) can be 

reconstructed by the communicated summary statistics.  

 

2.4 Best linear unbiased predictors for the random effects. 

Finally, the BLUP [6] of the random effects 𝑢𝑖at the 𝑖th site is  

  𝑢̂𝑖 = 𝛩̂𝑍𝑖
𝑇𝛤𝑖(𝛩̂)−1(𝑦𝑖 − 𝑋𝑖𝛽̂).       (11) 

Conditioning on 𝑋𝑖 ,𝑢̂𝑖has mean zero and covariance matrix  

Var(𝑢̂𝑖 | 𝑋𝑖) = 𝛩̂𝑍𝑖
𝑇[𝜎̂2 𝛤𝑖(𝛩̂)−1  − { 𝜎̂2𝛤𝑖(𝛩̂)−1𝑋𝑖 (∑ 𝑋𝑖

𝑇𝛤𝑖(𝛩̂)−1𝑋𝑖
𝐾
𝑖=1 )−1𝑋𝑖

𝑇  𝛤𝑖(𝛩̂)−1}]𝑍𝑖 𝛩̂.   

Since we are more interested in prediction of 𝑢𝑖, it is more appropriate to use prediction intervals as 

below 
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Var(𝑢̂𝑖 −  𝑢𝑖) = 𝑉 −  𝛩̂𝑍𝑖
𝑇[𝜎̂2 𝛤𝑖(𝛩̂)−1  − { 𝜎̂2𝛤𝑖(𝛩̂)−1𝑋𝑖 (∑ 𝑋𝑖

𝑇𝛤𝑖(𝛩̂)−1𝑋𝑖
𝐾
𝑖=1 )−1𝑋𝑖

𝑇  𝛤𝑖(𝛩̂)−1}]𝑍𝑖 𝛩̂.   

We summarize the analysis with the proposed DLMM algorithm as in Algorithm 1.  

 

Algorithm 1. Analysis with the distributed linear mixed model algorithm 

1. In site 𝑖 = 1, . . . , 𝐾, calculate and share 𝑆𝑖
𝑋 = 𝑋𝑖

𝑇𝑋𝑖, 𝑆𝑖
𝑋𝑦 = 𝑋𝑖

𝑇𝑦𝑖, 𝑠𝑖
𝑦 = 𝑦𝑖

𝑇𝑦𝑖 and sample size  𝑛𝑖. 

2. Perform the likelihood ratio test for the significance of random effects of each covariate by (10). 

3. With the significant random effects identified by the above step, reconstruct the profile log-likelihood 

(5) or the restricted profile log-likelihood (6), obtain the estimate 𝛩̂. 

4. Obtain 𝛽̂ = 𝛽(𝛩̂)and 𝜎̂2 = 𝜎̃2(𝛩̂)by (3) and (4). 

5. Calculate the variance of the estimated fixed effects 𝛽̂ by (7). 

6. Calculates the BLUPs of the random effects in each site by (11). 

 

3. Multi-site analysis of COVID-19 hospitalization length of stay 

We demonstrate the utility and lossless property of the DLMM method by studying the association of 

length of stay of COVID-19 hospitalization with patients’ demographic and clinical characteristics. We 

emphasize that this example is for illustrative purposes only and to this end we considered only 

covariates that have already been well-documented in the literature. 

 

We identified patients who were admitted as inpatients to a hospital with a primary or secondary 

diagnosis of COVID-19 between January 1, 2020 and September 30, 2020. The data are collected from 

𝐾 = 538 sites in the UnitedHealth Group Clinical Research Database and the total number of patients 

is 𝑁 = ∑ 𝑛𝑖
𝐾
𝑖=1 = 47756. The detailed inclusion criteria is in Appendix Figure 1A. We treat length of 

stay as a continuous outcome. The demographic characteristics include age, gender and race and the 

clinical characteristics include a history of cancer, chronic obstructive pulmonary disease (COPD), heart 

disease, hypertension, hyperlipidemia, kidney disease and obesity. Charlson comorbidity index score is 

also included as a measure of the overall patient’s burden of diseases; the higher the score, the more 

severe the patient’s health condition is. We provide the details of the definition of the characteristics in 

the Appendix Table 2A.  

 
(a)           (b) 
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              (c)              (d) 

Figure 2. (a) The mean and standard deviation of length of stay of 47756 hospitalized COVID-19 

patients from 538 hospitals. The data are collected from a single large US insurer and separated into 

their respective hospital sites to illustrate the algorithm. The area of each dot is proportional to the 

number of patients at that hospital and color represents the region. (b) Fixed effects estimation of linear 

mixed model by the proposed DLMM algorithm vs the pooled analysis. (c) Fixed effects’ standard error 

estimation of linear mixed model by the proposed DLMM algorithm vs the pooled analysis. (d) 

Variance components estimation of linear mixed model by the proposed DLMM algorithm vs the 

pooled analysis.  

 

We select the covariate-specific random effects 𝑢𝑖𝑚 , 𝑚 = 1, . . . , 𝑞, as described in Section 2.3. For 

simplicity we assume the random effect of different covariates are independent, i.e. 𝑉 =

𝑑𝑖𝑎𝑔(𝜎1
2, . . . , 𝜎𝑞

2). We select the covariates for which the corresponding p-value ≤0.05. In particular, 

we select random slopes for obesity, diabetes, kidney-diseases, and charlosn scores. A LMM with 

random intercept and random effects for obesity, diabetes, kidney-diseases, and charlosn scores is then 

fitted by either pooling the IPD together, or the proposed DLMM algorithm. We also calculate the 

BLUPs and the prediction intervals of the random effects at each site by (11) in Section 2.4. 

 

We compare the result of the pooled analysis and the distributed algorithm in Figure 2 and Appendix 

Figure 3A. Specifically, the estimation of the fixed effects, their standard errors, the variance 

components are shown to be identical by the pooled analysis or the distributed algorithm. The estimated 

BLUPs by either the pooled analysis or the distributed algorithm are also shown to be identical in Figure 

3A. The forest plot of fixed effects estimation and BLUPs of the random effects at a specific site are 

shown in Figure 3. Notice male, older age (≥80), higher Charlson score, obesity, prevalence of diabetes,  

and kidney diseases are shown to be significantly associated with longer COVID-19 hospitalization and 

Caucasian race, compared to others, is significantly associated with shorter COVID-19 hospitalization. 

The results match with that of literature for most of the covariates [16-19]. 
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      (a) 

 
      (b) 

Figure 3. (a) Fixed effects of demographic and clinical characteristics on COVID-19 hospitalization 

length of stay. A vertical reference line is drawn for convenience in comparison. Reported are the 

estimated effect sizes, 95% confidence intervals and corresponding p-values based on Wald test. (b) 

BLUPs for random effects corresponding to a site located in the south region; reported are 95% 

prediction intervals.     

 

4. Discussion and future work 

Special care must be taken with healthcare data in order to preserve patient privacy. Anonymizing data 

while preserving features that are important for understanding an individual’s health is highly non-

trivial. In addition, large, representative datasets are especially scarce. Distributed models solve the 

privacy issue by requiring that only summary level statistics are shared. The one-shot model presented 

here requires only the 𝑝 × 𝑝 matrix of summary statistics, sample size, and 𝑝-dimensional vector be 

sent once. This allows for efficient sharing to build models for various applications across healthcare 

where data may remain completely protected by eliminating the need for data pooling at a central 

source. By considering a large, more diverse sample from multiple sites we expect a more robust 

outcome which benefits all institutions.  
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Appendix 

A1. Reconstruction of the (restricted) LMM likelihood. 

In the case that the random effects covariates in 𝑍 is not a subset of the fixed effects covariates in 𝑋, 

the proposed DLMM algorithm requires the 𝑖𝑡ℎ site to communicate 

● 𝑝 × 𝑝 𝑚𝑎𝑡𝑟𝑖𝑥 𝑆𝑖
𝑋 = 𝑋𝑖

𝑇𝑋𝑖 , 𝑝 × 𝑞 𝑚𝑎𝑡𝑟𝑖𝑥 𝑆𝑖
𝑋𝑍 = (𝑆𝑖

𝑍𝑋)𝑇 = 𝑋𝑖
𝑇

𝑍𝑖 , 

● 𝑝 − 𝑑𝑖𝑚 𝑣𝑒𝑐𝑡𝑜𝑟 𝑆𝑖
𝑋𝑦 = (𝑆𝑖

𝑦𝑋)𝑇 = 𝑋𝑖
𝑇

𝑦𝑖 , 𝑞 − 𝑑𝑖𝑚 𝑣𝑒𝑐𝑡𝑜𝑟 𝑆𝑖
𝑍𝑦 = (𝑆𝑖

𝑦𝑍)𝑇 = 𝑍𝑖
𝑇

𝑦𝑖 , 

● 𝑠𝑐𝑎𝑙𝑎𝑟 𝑆𝑖
𝑦 = 𝑦𝑖

𝑇𝑦𝑖 , 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒 𝑛𝑖, 

for reconstructing the (restricted) LMM likelihood. 

 

Below are the details of the reconstruction. By (8),  

𝑋𝑖
𝑇𝛤𝑖

−1𝑋𝑖 = 𝑆𝑖
𝑋 − 𝑆𝑖

𝑋𝑍(𝛩−1 + 𝑆𝑖
𝑍)−1𝑆𝑖

𝑍𝑋,      

𝑋𝑖
𝑇𝛤𝑖

−1𝑌𝑖 = 𝑆𝑖
𝑋𝑦 − 𝑆𝑖

𝑋𝑍(𝛩−1 + 𝑆𝑖
𝑍)−1𝑆𝑖

𝑍𝑦
, 

𝑌𝑖
𝑇𝛤𝑖

−1𝑌𝑖 = 𝑠𝑖
𝑦 − 𝑆𝑖

𝑦𝑍(𝛩−1 + 𝑆𝑖
𝑍)−1𝑆𝑖

𝑍𝑦
, 

thus 𝛽(𝛩)and 𝜎̃2(𝛩) can be reconstructed by (3) and (4). Notice the unknown parameters are contained 

only in 𝛩 and are separated from the summary statistics. Therefore, the profile log-likelihood (5) with 

respect to 𝛩 can be reconstructed as  

𝐿𝑝(𝛩) = −
1

2
∑{𝑛𝑖𝑙𝑜𝑔𝜎̃2(𝛩) + 𝑙𝑜𝑔|𝛤𝑖| + 𝑌𝑖

𝑇𝛤𝑖
−1𝑌𝑖 − 2𝛽(𝛩)𝑇𝑋𝑖

𝑇𝛤𝑖
−1𝑌𝑖 + 𝛽(𝛩)𝑇𝑋𝑖

𝑇𝛤𝑖
−1𝑋𝑖𝛽(𝛩)}

𝐾

𝑖=1

, 

where |𝛤𝑖| = |𝐼𝑞 + 𝑆𝑖
𝑍𝛩| according to (9). The restricted profile log-likelihood (6) can also be 

reconstructed in the same way.   

 

 

A2. Further information on data sources 

A2.1 Standardization of data entry and data structure 

Medical and pharmacy claims data are captured, predominantly electronically, from sites of care 

seeking third-party reimbursement for both Medicare and commercial plans using the industry standard 

data collection forms HCFA/CMS-1500 for facility claims, UB04/CMS-1450 for professional services 

and outpatient claims, and NCPDP for pharmacy claims or their electronic equivalents. Structured data 

from these standardized forms are coded using the International Classification of Diseases, Tenth 

Revision, Clinical Modification (ICD-10-CM), National Drug Codes (NDC), Current Procedural 

Terminology (CPT) codes, and Logical Observation Identifiers Names and Codes (LOINC) codes, and 

Diagnosis Related Groups (DRG). This nomenclature ensures consistency of data collection across 

geographic regions, health systems, and payers throughout the United States. 

A2.2 Methods to Control for Errors in Sampling and Data Collection 

Claims that do not adhere to the form or coding standards described above are rejected from 

reimbursement, minimizing the risk that inappropriately structured data are included in the database. 

Data specific to SARS-CoV-2 and COVID-19 has an additional Quality Control layer to control for 

errors in sampling and data collection; this is described below in the section on Quality Control. 
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Figure 1A. Flow chart of cohort definition for the COVID-19 hospitalization length of stay study using 

UHG claims data. 

A2.3 Quality control 

A COVID-19 data source-specific layer of quality control is also present, given the rapidly evolving 

situation. Members with a qualified COVID-19 related hospital admission are included in the report 

when any diagnosis matches qualified ICD-10 codes of U071, U072, or B9729. Suspected COVID-19 

inpatient cases are manually reviewed daily by health plan clinical staff via clinical notes to determine 

an individual’s COVID-19 status. Each case is then manually flagged as either negative, confirmed, 

presumed positive, or needs clinical review. If a case is confirmed, it is not reviewed again. If a case is 

listed as negative or unknown, it is periodically reviewed for changes in the record. All others are 

reviewed and updated daily. 

A2.4 Data Sharing 

The data are proprietary and are not available for public use but, under certain conditions, may be made 

available to editors and their approved auditors under a data use agreement to confirm the findings of 

the current study. 
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Figure 2A. COVID-19 inpatient case distribution: number of hospitalizations by state. Data are 

extracted from UHG Clinical Research Database from Jan 1 to Sep 30, 2020. 
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Table 1A. UHG COVID-19 hospitalized patients characteristics. 

Patients Number 47756 

Hospitals by Region, count (%) Total 538 (100%) 

Mid-west            143 (26.6%) 

North-east         116 (21.6%) 

South            246 (45.7%) 

West              33 (6.13%) 

Patient Level Characteristics  

 Age category, count (%):[18, 65) 5638 (11.8%) 

    [65, 80) 24571 (51.5%) 

    ≥ 85 17547 (36.7%) 

 Gender, count (%):  Male (%) 21625 (45.3%)  

    Female (%) 26131 (54.7%) 

 Race, count (%): Caucasian (%) 35083 (73.5%)  

    Other/unknown (%) 12673 (26.5%) 

 Charlson Score, count (%):[0, 2)        12578 (26.3%)  

    [2, 5)        16805 (35.2%) 

    ≥ 5        18373 (38.5%) 

 Comorbidities, count (%):Cancer          9612 (20.1%) 

   Chronic Obstructive Pulmonary Disease        12035 (25.2%) 

   Diabetes        21327 (44.7%) 

   Heart disease        28586 (59.9%) 

   Hyperlipidemia        28954 (60.6%) 

   Hypertension        37986 (79.5%) 

   Kidney disease        17664 (36.5%) 

   Obesity          5865 (12.3%) 

Patient Outcome: Length of Stay in days, mean (sd) (8.6, 11.1) 
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Table 2A. ICD-10-CM codes used to calculate Charlson comorbidity score. 

Comorbidity ICD-10-CM Codes 

Acquired 

immunodeficiency 

syndrome (AIDS) 

B20, B21, B22, B24 

Arthritis M05, M06, M315, M32, M33, M34, M351, M353, M360 

Cerebrovascular Disease G45, G46, H340, I60, I61, I62, I63, I64, I65, I66, I67, I68, I69 

Congestive Heart Failure 

(CHF) 
I099, I110, I130, I132, I255, I420, I425, I426, I427, I428, I429, I43, I50, P290 

Chronic obstructive 

pulmonary disease 

(COPD) 

I278, I279, J40, J41, J42, J43, J44, J45, J46, J47, J60, J61, J62, J63, J64, J65, J66, J67, J684, 

J701, J703 

Dementia F00, F01, F02, F03, F051, G30, G311 

Diabetes E100, E101, E106, E108, E109, E110, E111, E116, E118, E119, E120, E121, E126, E128, E129, 

E130, E131, E136, E138, E139, E140, E141, E146, E148, E149 

Diabetes with 

complications 

E102, E103, E104, E105, E107, E112, E113, E114, E115, E117, E122, E123, E124, E125, E127, 

E132, E133, E134, E135, E137, E142, E143, E144, E145, E147 

Mild Liver Disease B18, K700, K701, K702, K703, K709, K713, K714, K715, K717, K73, K74, K760, K762, K763, 

K764, K768, K769, Z944 

Moderate/ Severe Liver 

Disease 
I850, I859, I864, I982, K704, K711, K721, K729, K765, K766, K767 

Metastatic solid 

malignancy 
C77, C78, C79, C80 

Myocardial infarction I21, I22, I252 

Paralysis G041, G114, G801, G802, G81, G82, G830, G831, G832, G833, G834, G839 

Peripheral Vascular 

Disease 
I70, I71, I731, I738, I739, I771, I790, I792, K551, K558, K559, Z958, Z959 

Peptic Ulcer Disease K25, K26, K27, K28 

Renal Disease I120, I131, N032, N033, N034, N035, N036, N037, N052, N053, N054, N055, N056, N057, 

N18, N19, N250, Z490, Z491, Z492, Z940, Z992 

Tumor C00, C01, C02, C03, C04, C05, C06, C07, C08, C09, C10, C11, C12, C13, C14, C15, C16, C17, 

C18, C19, C20, C21, C22, C23, C24, C25, C26, C30, C31, C32, C33, C34, C37, C38, C39, C40, 

C41, C43, C45, C46, C47, C48, C49, C50, C51, C52, C53, C54, C55, C56, C57, C58, C60, C61, 

C62, C63, C64, C65, C66, C67, C68, C69, C70, C71, C72, C73, C74, C75, C76, C81, C82, C83, 

C84, C85, C88, C90, C91, C92, C93, C94, C95, C96, C97 
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   (a)      (b) 

 
   (c)      (d) 

 
   (e)      (f) 

Figure 3A. Comparison of the best linear unbiased predictors (BLUPs) of the random effects by pooled 

and DLMM methods. The BLUPs are obtained from a linear mixed model with COVID-19 
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hospitalization as the outcome and demographics and comorbidity variables as covariates. Diabetes, 

obesity, kidney disease and Charlson score are selected as having significant random effects.  
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