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Title 

 

Accuracy of deep learning based computed tomography diagnostic system of COVID-19: a consecutive 

sampling external validation cohort study 

 

Abstract: 

Objectives: Ali-M3, an artificial intelligence, analyses chest computed tomography (CT) and detects the 

likelihood of coronavirus disease (COVID-19) in the range of 0 to 1. It demonstrates excellent 

performance for the detection of COVID-19 patients with a sensitivity and specificity of 98.5 and 99.2%, 

respectively. However, Ali-M3 has not been externally validated. Our purpose is to evaluate the external 

validity of Ali-M3 using Japanese sequential sampling data. 

Methods: In this retrospective cohort study, COVID-19 infection probabilities were calculated using Ali-

M3 in 617 symptomatic patients who underwent reverse transcription-polymerase chain reaction (RT-

PCR) tests and chest CT for COVID-19 diagnosis at 11 Japanese tertiary care facilities, between January 

1 and April 15, 2020. 

Results: Of 617 patients, 289 patients (46.8%) were RT-PCR-positive. The area under the curve (AUC) 

of Ali-M3 for predicting a COVID-19 diagnosis was 0.797 (95% confidence intervals [CI]: 0.762‒0.833) 

and goodness-of-fit was P = 0.156. With a cut-off of probability of COVID-19 by Ali-M3 diagnosis set at 

0.5, the sensitivity and specificity were 80.6% and 68.3%, respectively, while a cut-off of 0.2 yielded a 

sensitivity and specificity of 89.2% and 43.2%, respectively. Among 223 patients who required oxygen 

support, the AUC was 0.825 and sensitivity at a cut-off of 0.5 and 0.2 were 88.7% and 97.9%, 

respectively. Although the sensitivity was lower when the days from symptom onset were few, sensitivity 

increased for both cut-off values after 5 days. 

Conclusions: Ali-M3 was evaluated by external validation and shown to be useful to exclude a diagnosis 

of COVID-19. 

 

Key words: 

Main Document (no author names)
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COVID-19; artificial intelligence; chest CT imaging; reverse transcription polymerase chain reaction; 

external validation study 

 

Key Points:  

1. The area under the curve (AUC) of Ali-M3, which is an AI system for diagnosis of COVID-19 based 

on chest CT images, was 0.797 and goodness-of-fit was P = 0.156.  

2. With a cut-off of probability of COVID-19 by Ali-M3 diagnosis set at 0.5, the sensitivity and 

specificity were 80.6% and 68.3%, respectively, while a cut-off of 0.2 yielded 89.2% and 43.2%. 

3. Although low sensitivity was observed in less number of days from symptoms onset, after 5 days 

high increasing sensitivity was observed. In patients requiring oxygen support, the AUC was higher 

that is 0.825. 

Abbreviations: 

AI = artificial intelligence 

COVID-19 = coronavirus disease 2019 

CT = computed tomography 
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Introduction 

A proper triage system is necessary during this coronavirus disease (COVID-19) pandemic era,[1, 2] as 

improper triage systems may disadvantage patients and lead to wastage of personal protective equipment 

(PPE) and hospital infections through admission of infected patients to facilities, causing collapse of the 

medical system. Although reverse transcription-polymerase chain reaction (RT-PCR) tests have been 

developed, the delay in waiting for RT-PCR results can hamper proper triage.  

 

Computed tomography (CT) is a fast and useful diagnostic tool. Some studies have reported the 

characteristic findings on chest CT images of COVID-19 patients.[3-8] Use of chest CT images by 

radiologists has shown high diagnostic performance for COVID-19. However, even radiologists’ 

interpretations vary largely, because of the influence of their habituation in the interpretation of COVID-19 

CT images.[9] Therefore, using CT as a diagnostic tool in general clinical practice is difficult in the current 

situation. 

 

Diagnostic support systems using artificial intelligence (AI) have the potential to replace many of the 

routine detection, characterisation, and quantification tasks currently performed by radiologists using 

cognitive ability.[10] AI can prevent the variability of diagnosis from inter- and intra-reader variability. In 

China, where COVID-19 infection originated, many AI systems were developed for establishing a diagnosis 

of COVID-19 based on chest CT images.[11-15] One such system, Ali-M3, can detect the likelihood of 

COVID-19 in the range of 0 to 1, and has excellent accuracy for the detection of COVID-19 with an 

accuracy, sensitivity, and specificity of 99.0, 98.5, and 99.2%, respectively. Although Ali-M3 has excellent 

accuracy, it was developed in a virtual population, which consisted of 3,067 examinations for COVID-19; 

1,996 for community-acquired pneumonia; and 1,975 for non-pneumonia, which was different from the 

general population and its accuracy could be overestimated.[16] 

 

To use Ali-M3 to diagnose exclusion of COVID-19, its external validity must be evaluated based on the 
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distribution of diseases in a real-world setting. We here conducted a retrospective cohort study to evaluate 

the external validity of Ali-M3 using the Japanese sequential sampling data of patients who underwent RT-

PCR tests and chest CT for diagnosis of COVID-19. 

 

Materials and Methods 

Study design 

This retrospective cohort study consisted of 11 Japanese tertiary care facilities that provided treatment 

for COVID-19 in each area. We partially followed the guidelines of the Transparent Reporting of a 

Multivariable Prediction Model for Individual Prognosis or Diagnosis Statement to plan and report this 

study (Supplemental Table 1).[17] The institutional review board of each facility approved the study and 

the need to obtain written informed consent was waived. 

 

Participants 

We included patients who underwent both RT-PCR examinations and chest CT for the diagnosis of 

COVID-19. The potentially eligible participants were identified on the advice of physicians that both RT-

PCR test and chest CT be obtained when the patients presented with symptoms or were suspected of 

having COVID-19. The detailed information of the inclusion criteria is shown in Supplemental Table 2. 

We selected patients by using consecutive sampling methods between January 1 and April 15, 2020. The 

RT-PCR results were extracted from the patients’ medical records at each facility. Patients were excluded 

when the time-interval between chest CT and the first RT-PCR assay was longer than 7 days. 

All available data on the database were used to maximize the power and generalizability of the 

results. 

 

Chest CT protocols 

All images were obtained on one of five types of CT systems, with the patient in the supine position. 

The details of scanning parameters and systems are shown in Supplemental Table 3. 
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Image analysis 

We used a three-dimensional deep learning framework for the detection of COVID-19 infections.[16] 

The details of this model are included in Appendix 1. The learning of Ali-M3 was stopped before our 

evaluation. We set a cut-off point for the model output at 0.5, because this cut-off point was used during 

the developing stage. The investigators who entered the CT images data into Ali-M3 were blinded to the 

RT-PCR results. 

 

Reference standard 

The diagnosis of COVID-19 was established by the RT-PCR test, which detected the nucleic acid of 

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the sputum, throat swabs, and 

secretions of the lower respiratory tract samples.[18] We established the RT-PCR tests as the main 

reference standard. Although the findings of chest CT, interpreted by radiologists, were included as the 

reference standard in the derivation study, we did not include it as the reference standard in the present 

study. 

 

Statistical analysis 

Statistical analysis was performed using R statistical software, version 3.6.3 (R Foundation for 

Statistical Computing). Data analysis was performed in a complete-case dataset. Continuous variables are 

presented as means (standard deviation) and categorical variables are presented as counts and 

percentages. Using the RT-PCR results as reference, the area under the curve (AUC), sensitivity, 

specificity, positive-predictive value, and negative-predictive value of the likelihood of COVID-19 as 

derived from the Ali-M3’s analysis of chest CT imaging were calculated. A 95% confidence interval (CI) 

was determined by the Wilson score method. The goodness-of-fit was calculated using the Le Cessie‒Van 

Houwelingen normal test statistic for the unweighted sum of squared errors. 
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Sensitivity analysis 

1. Moving cut-off point 

The objective of this study was to determine whether this AI model could be used as a screening tool 

for COVID-19 in the real world. In a clinical situation, physicians require an accurate diagnosis of 

COVID-19; hence, they insist more on sensitivity than on specificity. For sensitivity analysis, we moved 

the cut-off point and observed sensitivities and specificities to minimize overlooking COVID-19 patients. 

 

2. Simulation of imperfect reference 

In the main analysis, we assumed RT-PCR as the perfect reference (100% sensitivity and 100% 

specificity). However, in the real world, RT-PCR is not the perfect reference since the sensitivity of the 

RT-PCR test was estimated at 0‒80%.[19] To evaluate the effect of this imperfect reference, we 

calculated the sensitivity, specificity, and AUC of Ali-M3 using the methods and R code described in the 

Supplemental Material when varying the sensitivity, but fixing the specificity of RT-PCR at 100%.[20] 

 

3. Effect of the number of days after symptom onset 

The number of days that have passed since the onset of symptoms affects the performance of 

antibody and RT-PCR tests in COVID-19 patients.[19, 21] However, it was not clear if this could affect 

CT images in COVID-19 patients. Sensitivity and specificity were calculated for a group of patients 

whose symptom onset date was known, among those were those with 14 days or more, as well as those at 

every 2 days from 0 to 13 days after symptom onset. 

 

4. Effect of symptom severity 

Imaging is not routinely indicated as a screening test for COVID-19 in asymptomatic individuals.[22] 

However, CT images are used in assessment of disease severity. We established the severity by 

evaluating whether oxygen therapy was required and if the patient was asymptomatic while undergoing 

CT. 
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5. Effect of reconstruction slice 

The thickness of the reconstruction slice can affect the diagnostic performance.[23] We separated the 

dataset for the main analysis by a 3-mm reconstruction slice thickness to account for the fissure in our 

data set between 3 mm and 4 mm and calculated the performance of the model in each dataset. 

 

Results 

Study population characteristics 

Figure 1 shows the patient flow diagram. Data of 749 patients were evaluated. We assessed 617 

symptomatic patients in this validation study. The characteristics of the study population for the main 

analysis datasets are shown in Table 1. Overall, 289 patients (46.8%) were diagnosed with COVID-19 

using the RT-PCR test. Thirteen patients need more than two RT-PCR tests before being diagnosed with 

COVID-19. Major symptoms were dry cough (37.6%), fever (33.5%), and sore throat (25.8%).  

 

Model performance 

The performance of the confidence score after validation among symptomatic patients is shown in 

Figure 2. The performance of the confidence score was P = 0.156 for the goodness-of-fit, and the AUC 

was 0.797 (95% CI 0.762‒0.833). The relationship between the score and predicted probability is shown 

in Figure 2. The optimal cut-off point with maximal sensitivity and specificity was 0.5, and the sensitivity 

and specificity were 80.6% (233 of 289) [95% CI: 75.6‒85.0%] and 68.3% (224 of 328) [95% CI, 63.0‒

73.3%], respectively. 

 

Sensitivity analysis 

1. Moving cut-off point 

Table 2 shows the relationship between cut-off points for the confidence score and performance. 

When the cut-off point was 0.2, the sensitivity and specificity were 89.2% and 43.3%, 

respectively. 
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2. Simulation of imperfect reference 

Figure 3 shows the sensitivity and specificity, with the assumption of imperfect reference of RT-

PCR test. The AUC was 0.865. When the cut-off point was set at 0.5, using the Youden Index, 

the sensitivity and specificity were 80.6% and was 81.3%, respectively. When the cut-off point 

was set at 0.2, the sensitivity and specificity were 89.2% and 51.9%, respectively. 

3. Effect of number of days after symptom onset 

Of all symptomatic patients, 600 patients (97.2%) were included in this sensitivity analysis. Of 

these, the number of days after the onset of symptoms was not known for 17 patients. Figure 4 

shows the relationship between test performance and the number of days since the onset of 

symptoms when the confidence score of Ali-M3 was set at 0.5 or 0.2. Sensitivity values started 

at 0.7 and increased up to 1.0 until 10‒11 days in both cases. However, specificity values 

remained similar across the strata. The sensitivity increased over 0.9 when the confidence score 

was set at 0.2 than when the confidence score was set at 0.5. 

4. Changing the eligibility criteria 

The effects of changing the criteria for patient eligibility are shown n Figure 5.  

Dataset focused on asymptomatic patients 

There were 86 asymptomatic patients (RT-PCR positive: 37). Using these patients only, the AUC 

was 0.623. When the cut-off point was 0.5, the sensitivity and specificity were 51.4% and 59.2%, 

respectively. When the cut-off point was 0.2, the sensitivity and specificity were 44.9% and 

73.0%, respectively. 

Dataset focused on patients needing oxygen therapy 

There were 223 patients who required oxygen support (RT-PCR positive: 97). When using these 

patients only, the AUC was 0.828. When the cut-off point was set at 0.5, the sensitivity and 

specificity were 88.7% and 57.9%, respectively. When the cut-off point was set at 0.2, the 

sensitivity and specificity were 97.9% and 34.9%, respectively. 
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5. Effect of the thickness of the CT reconstruction slice of CT 

There were 320 patients (RT-PCR positive: 121) with a reconstruction slice thickness of under 3 

mm When considering these patients only, the AUC was 0.825. When the cut-off point was set at 

0.5, the sensitivity and specificity were 82.6% and 69.7%, respectively. When the cut-off point 

was set at 0.2, the sensitivity and specificity were 94.2% and 51.5%, respectively. In patients with 

a reconstruction slice thickness over 3 mm, the AUC was 0.789 (Supplement Figure 1) 

 

Discussion 

In this external validation study, our results indicated that Ali-M3 could be useful for early triage of 

suspected COVID-19 patients with symptoms at a lower cut-off. In particular, higher accuracy was 

observed in patients with higher severity and a few days since symptom onset, and with images with a 

thinner reconstructed CT slice thickness.  

 

Currently, all patients with symptoms, such as fever, are triaged as COVID-19 patients. Thus, medical 

practitioners must use PPE for each patient.[24] Additionally, bed zoning is essential to avoid 

contamination of non-infected patients.[25] On the other hand, under-triage cause hospital infections 

through admission of infected patients to facilities. This should continue until a definitive diagnosis is 

established. Since Ali-M3 is available on the cloud, the physician can receive the results immediately by 

sending the digital imaging and communications in medicine images from the ordinal picture archiving 

and communication system. When applying triage, clinicians require sufficient accuracy in terms of 

sensitivity, but specificity is less important.[19] The high sensitivity obtained at a cut-off of 0.2 with the 

AI diagnosis is useful for exclude the diagnosis of COVID-19. 

 

Ali-M3 also has the potential to support a diagnosis of COVID-19. The tools currently used for 

diagnosing COVID-19 infection are antibody, antigen, and RT-PCR tests. Both antigen and RT-PCR tests 

use tracheal secretions or saliva. An antigen test requires an antigen protein above a given detectable 
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level, and is currently inferior to RT-PCR tests. As the same patient sample is used, the antigen test 

cannot support the RT-PCR test. The RT-PCR test is currently used as a gold standard, but the sensitivity 

changes depending on the number of days after the onset of symptoms.[19] Therefore, for an exclusion 

diagnosis, multiple tests staggered over time are needed, rather than a single negative RT-PCR test. Even 

when this test is performed as rapidly as possible, it still requires a few days to obtain multiple test results. 

On the other hand, Ali-M3 uses the configurational information of patients' lungs, and can add different 

information than obtained from RT-PCR, thereby complementing the drawbacks of RT-PCR. 

 

In this study, the diagnostic accuracy at the validation stage was lower than the accuracy at the 

development stage. A two-gate (case‒control) design was used in the development of the AI system but in 

the present study for evaluating the ability of Ali-M3 to assess a COVID-19 diagnosis by chest CT image, 

we used a single-gate (cohort) design. Although many studies have used the two-gate design in evaluation 

of AI for the diagnosis of COVID-19,[26] the two-gate design is generally prone to overestimation of 

diagnostic test results.[27] Thus, blindly using the results based on a two-gate design in a clinical 

situation can be inappropriate. Moreover, other factors should be considered. With the use of a two-gate 

design, the fact that RT-PCR is an imperfect reference standard is typically ignored. Furthermore, 

performing culture and tests to ascertain the true sensitivity of this test is difficult. In the present study, we 

simulated the diagnostic ability of Ali-M3 with consideration that the sensitivity of the reference standard 

was imperfect, which leads to underestimation of the specificity and AUC of Ali-M3, without distortion 

of the sensitivity. Furthermore, the outcomes while developing Ali-M3 and while examining its adequacy 

were different. Taking into account the patient flow in China, the outcomes at the development stage were 

set as positive cases with RT-PCR negative results and positive CT image findings.[28] This had a small 

effect on the sensitivity, but a large effect on the specificity. For example, if in the development stage, 

33.9% of the positive patients had negative RT-PCR results and positive CT image findings,[28] then the 

performance that showed a sensitivity of 98.5% and specificity of 99.2% in the developing Ali-M3,[16] 

changes from 97.7% to 100% for sensitivity and from 80.8% to 81.6% for specificity when positive RT-
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PCR  is the  only reference used. Upgrading to a diagnostic AI that targets only RT-PCR-positive cases 

at the development stage is desirable. 

 

This study had some limitations. First, the differentiation performance of Ali-M3 was poor in 

asymptomatic patients; thus, Ali-M3 should not be used to screen asymptomatic patients. While an 

alternative to the RT-PCR test for COVID-19 is expected in terms of screening for nosocomial infections 

and screening on admission for patients with other diseases, Ali-M3 is not recommended for this purpose. 

Second, we could not differentiate COVID-19 from other viral pneumonias. Compared to the past five 

seasons, the number of Japanese people infected with influenza during this season was markedly low.[29] 

In fact, only a few cases in our cohort were diagnosed with other viral pneumonias. Third, it could not 

reflect the difference in imaging features caused by different COVID-19 types. In addition to type A 

COVID-19 that was initially prevalent in Asia, type B and type C were prevalent in Europe and in the 

United States. These different types were not determined in the PCR test, and thus we could not evaluate 

these differences.  

 

In conclusion, we conducted a retrospective cohort study for external validation of Ali-M3. Our 

results indicated that AI-based CT diagnosis could be useful for a diagnosis of exclusion of COVID-19 in 

symptomatic patients, particularly those requiring oxygen and with only a few days since symptom onset. 

Using Ali-M3 support can reduce PPE consumption and prevent hospital infections through the admission 

of covertly infected patients. Moreover, Ali-M3 also has the potential to support the diagnosis of RT-PCR 

for suspected COVID-19 patients. However, as Ali-M3 had some limitations in terms of development, 

further studies and learning are warranted for updating the system. 
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Figure legends 

Figure 1. Patient flow. 

Abbreviations: CT, computed tomography; RT-PCR, reverse transcription polymerase chain reaction; DICOM, 

digital imaging and communications in medicine 

 

 

Figure 2. Differential performance of Ali-M3 for coronavirus disease in symptomatic patients. 

(A) A plot of test sensitivity (y-coordinate) versus its false-positive rate (x-coordinate) obtained at each cutoff 

level confidence score. The area under the receiver operating characteristic curve is 0.797 and the Youden index 

is 0.50. (B) A plot of test sensitivity, specificity, positive predictive value (PV+), and negative predictive value 

(PV-) in y-coordinate versus confidence score obtained from Ali-M3 in x-coordinate. The PV+ is dark gray and 

the PV- is light gray. The maximum PV+ is 46.8% and the maximum PV- is 53.2%. (C) This graph shows the 

goodness-of-fit. The dashed line is an ideal line that predicts the probability obtained from the confidence score 

of Ali-M3 equal to the actual probability. The pointed line is the fitted line that is estimated with non-linear 

assumption alone. The dashed line is the fitted line that is estimated with non-linear assumption and considering 

the bias in nonparametric estimation using the le Cessie-van Houwelingen method. 

 

 

Figure 3. Relationship between test performance and the number of days after the onset of symptoms.  

(A) The graph shows the relationship between test performance and the number of days after the onset of 

symptoms when the confidence score from Ali-M3 is at 0.20. (B) The graph shows the relationship between test 

performance and the number of days after onset of symptoms when the confidence score from Ali-M3 is at 0.50. 

Light gray bar shows the number of patients included in the strata of days after the onset of symptoms, following 

the right axis. One stratum includes 2 days from day 0 to day 13. The stratum to the extreme right includes 14 

days or more. Following the left axis, solid lines are sensitivity in strata and dash lines are specificity in strata. 
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Figure 4. Receiver operating characteristic (ROC) curves in ignoring imperfect reference and considering 

imperfect reference. 

(A) A plot of test sensitivity (y-coordinate) versus its false-positive rate (x-coordinate) obtained at each cutoff 

level confidence score ignoring imperfect reference. The area under the ROC curve is 0.797. (B) A plot of test 

sensitivity (y-coordinate) versus its false-positive rate (x-coordinate) obtained at each cutoff level confidence 

score considering imperfect reference. The area under the ROC curve is 0.865. 

 

 

Figure 5. Differential performance of Ali-M3 for coronavirus disease in asymptomatic patients and patients using 

oxygen support. 

(A) A plot of test sensitivity (y-coordinate) versus its false-positive rate (x-coordinate) obtained at each cutoff 

level confidence score in asymptomatic patients. The area under the receiver operating characteristic (ROC) 

curve is 0.623 and the Youden index is 0.25. (B) A plot of test sensitivity, specificity, positive predictive value 

(PV+), and negative predictive value (PV-) in y-coordinate versus confidence score obtained from Ali-M3 in x 

coordinate among asymptomatic patients. The PV+ is dark gray and PV- is light gray. The maximum PV+ is 

43.0% and maximum PV- is 57.0%. (C) A plot of test sensitivity (y-coordinate) versus its false-positive rate (x-

coordinate) obtained at each cutoff level confidence score in patients using oxygen support. The area under the 

ROC curve is 0.623 and the Youden index is 0.25. (D) A plot of test sensitivity, specificity, PV+, and PV- in y-

coordinate versus confidence score obtained from Ali-M3 in x-coordinate in patients using oxygen support. The 

PV+ is dark gray and the PV- is light gray. The maximum PV+ is 43.5% and the maximum PV- is 56.5%. 
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Table 1. Demographics of patients’ characteristics. 

 

Variable Symptomatic patients 

Patients using oxygen 

support 

Asymptomatic patients 

N 617 (223) (86) 

Age (years old) + 59.6 (19.2) 68.3 (16.4) 54.5 (22.4) 

Sex (Male) 377 (61.2) 158 (70.9) 40 (46.5) 

Real-time PCR test (Positive) 289 (46.8) 97 (43.5) 37 (43.0) 

Body temperature (≥ 37°) 391 (66.5) 143 (69.8)  

Systolic Blood Pressure (≤ 90 mmHg) 18 (3.2) 11 (5.2)  

Pulse (≥ 120 bpm) 48 (8.2) 22 (10.2)  

Respiratory rate (≥ 25 /minute) 92 (20.5) 64 (38.3)  

Saturation of percutaneous oxygen (≤ 92 %) 105 (17.7) 62 (28.7)  

Oxygen use 223 (36.1) 223 (100.0)  

Vasopressor use 14 (2.3) 14 (6.3)  

Distribution of symptoms reported    

Dry cough 232 (37.6) 67 (30.0)  

Chills 91 (14.7) 40 (17.9)  

Table
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Sore throat 159 (25.8) 38 (17.0)  

Diarrhea 66 (10.7) 17 (7.6)  

Joint or muscle pain 46 (7.5) 12 (5.4)  

Conjunctivitis 30 (4.9) 9 (4.0)  

Loss of smell or taste 55 (8.9) 21 (9.4)  

Exposure history    

No 484 (78.4) 191 (85.7) 62 (72.1) 

Within family 39 (6.3) 11 (4.9) 6 (7.0) 

Other persons 94 (15.2) 21 (9.4) 18 (20.9) 

Any international travel 44 (7.1) 6 (2.7) 9 (10.5) 

Current Smoking 99 (16.0) 41 (18.4) 11 (12.8) 

Past medical history    

Cardiac artery disease 46 (7.5) 24 (10.8) 4 (4.7) 

Stroke 60 (9.7) 34 (15.2) 2 (2.3) 

Chronic heart failure 69 (11.2) 43 (19.3) 4 (4.7) 

Chronic kidney disease 58 (9.4) 33 (14.8) 7 (8.1) 

Chronic obstructive pulmonary disease 69 (11.2) 34 (15.2) 7 (8.1) 

Malignancy 105 (17.0) 62 (27.8) 8 (9.3) 
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Immune deficiency 32 (5.2) 17 (7.6) 1 (1.2) 

Hypertension 119 (19.3) 71 (31.8) 11 (12.8) 

Diabetes 116 (18.8) 64 (28.7) 13 (15.1) 

Any other disease 188 (30.5) 73 (32.7) 29 (33.7) 

PCR, polymerase chain reaction; bpm, beats per minute 

*Patients using oxygen support were included in symptomatic patients 

+ is continuous data and the others are count data. Continuous variables are expressed as mean (SD) and count data as number (percentage).  
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 Table 2. Moving cut-off confidence score and test performance. 

Confide

nce 

score 

0.50 0.40 0.30 0.20 0.10 

Sensitivi

ty 

0.8

06 
( 

0.7

55 
- 

0.8

50 
) 

0.8

37 
( 

0.7

89 
- 

0.8

77 
) 

0.8

54 
( 

0.8

08 
- 

0.8

93 
) 

0.89

2 
( 

0.8

51 
- 

0.9

25 
) 

0.91

0 
( 

0.8

70 
- 

0.9

40 
) 

Specific

ity 

0.6

82 
( 

0.6

29 
- 

0.7

32 
) 

0.6

12 
( 

0.5

57 
- 

0.6

65 
) 

0.5

45 
( 

0.4

90 
- 

0.6

00 
) 

0.43

2 
( 

0.3

78 
- 

0.4

88 
) 

0.37

5 
( 

0.3

22 
- 

0.4

29 
) 

AUC (95% confidence interval). 
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