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 10 

Abstract 11 

Hyper-induction of pro-inflammatory cytokines, also known as a cytokine storm or cytokine 12 
release syndrome (CRS) is one of the key aspects of the currently ongoing SARS-CoV-2 13 
pandemic. This process occurs when a large number of innate and adaptive immune cells are 14 
activated, and start producing pro-inflammatory cytokines, establishing an exacerbated 15 
feedback loop of inflammation. It is one of the factors contributing to the mortality observed 16 
with COVID-19 for a subgroup of patients. CRS is not unique to SARS-CoV-2 infection; it was 17 
prevalent in most of the major human coronavirus and influenza A subtype outbreaks of the 18 
past two decades (H5N1, SARS-CoV, MERS-CoV, H7N9). Here, we collected changing 19 
cytokine levels upon infection with the aforementioned viral pathogens through a 20 
comprehensive literature search. We analysed published patient data to highlight the conserved 21 
and unique cytokine responses caused by these viruses. A map of such responses could help 22 
specialists identify interventions that successfully alleviated CRS in different diseases and 23 
evaluate whether they could be used in COVID-19 cases. 24 

 25 

1 Introduction 26 

The current coronavirus (COVID-19) pandemic has very much focused attention upon this and other 27 
viral infectious diseases that the host antiviral immune response is unable to resolve (1–5). Indeed, 28 
major efforts are now concentrating on how severe acute respiratory syndrome β-coronavirus 2 29 
(SARS-CoV-2) alters normal antiviral immune responses (6–15). SARS-CoV-2 causes a wide range 30 
of clinical symptoms from asymptomatic, through mild (fever, persistent cough, loss of taste and 31 
smell), to severe inflammation-driven pneumonia resulting in multiple organ failure and ultimately 32 
death (9–20).  SARS-CoV2 induces an anti-inflammatory response attacking both the upper and 33 
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lower respiratory tract as well as the gut. The upper respiratory tract infection could cause its high 34 
infectivity, while the lower respiratory tract and extrapulmonary symptoms are responsible for its 35 
severity. Although SARS-CoV-2 appears to modify host inflammatory defences, similar 36 
modifications are also observed in other severe respiratory infections caused by viruses such as 37 
influenza A, β-coronaviruses SARS-CoV and MERS-CoV. These agents all constitute a global health 38 
threat with colossal economic consequences (21,22). 39 

Although these different viruses cause similar clinical symptoms, the pathogenesis may be driven by 40 
different triggers, depending upon the virus. Multiple studies have described an exacerbation of the 41 
pro-inflammatory host immune response associated with severe forms of the diseases, including 42 
cytokine storms, or cytokine release syndrome (CRS) (1–5,9–16). Although CRS usually resolves 43 
following completion of the antiviral response, it persists in severe cases leading to tissue damage, 44 
multiple organ failure and death in critically-ill patients if the clinical intervention is not rapid. In 45 
such cases, concentrations of both pro- and anti-inflammatory cytokines are significantly increased in 46 
blood and other tissues, including the type-I interferons (IFN) (IFN-�, -β, -κ, -ε, -τ, -ω and -ζ) (23–47 
26). Type I IFN signalling cascades also attenuate inflammation to avoid tissue damage during viral 48 
infection (27). The main effectors of the type-I IFN signalling are IFN-� and IFN-β, which activate 49 
other cytokines such as IL-12 and the type II interferon cytokine, IFN-γ (28,29). However, cytokines 50 
such as IL-10 block the type-I IFN response. Certain pathogens, including SARS-CoV and MERS-51 
CoV encode proteins that can influence and delay the type-I IFN response leading to various 52 
pathologies (30–32). In the case of SARS-CoV, the build-up of activated macrophages in the lungs 53 
can cause tissue damage, while MERS-CoV can intensify engagement by neutrophils, leading to an 54 
increase in the production of pro-inflammatory cytokines (33,34). Furthermore, Influenza A and 55 
coronaviruses infections can trigger increased levels of the type-I interferons IFN-� and IFN-β, 56 
reflecting the normal initiation of this signalling pathway in response to viral infections (9–20,26,34–57 
38). However, in severe infections with SARS-CoV-2, the type-I IFN signalling is impaired, 58 
culminating in an altered development of adaptive immunity (9–15,35,39,40) 59 

The broadly similar clinical symptoms and the range of disease severity of different respiratory viral 60 
infections tend to blur the accuracy of initial diagnosis (41,42), and explain why systemic non-61 
prescription medications are given to patients to initially treat broad symptoms rather than acting on 62 
virus-specific parameters (41). Capturing a picture of the immune response triggered in each patient, 63 
early enough in infection remains challenging, impairing the adequate prevention of developing the 64 
severe form of the disease, consequently to unpredictable CRS. Defining the overlap and/or 65 
specificity in the patient immune cytokine signalling across CRS-causing viruses would help 66 
clinicians to develop a more tailored treatment strategy for future cases. Recent reviews have 67 
attempted to compare diseases caused by influenza A and β-coronaviruses (37,43–47). However, 68 
most of these studies have focused on clinical or phylogenetic parameters (virus genome, patient age, 69 
transmissibility, fatality rate, creatinine and coagulation amongst others), whilst overlooking 70 
mechanistic details relating to host immune responses. To provide mechanistic insight into the role of 71 
pro- and anti-inflammatory cytokines into the development of severe disease caused by SARS-CoV, 72 
SARS-CoV-2, MERS-CoV and influenza viruses, we need to understand the differences in cytokine 73 
responses between the different viruses.  74 

To identify the similarities and differences in the cytokine response, we collected and analysed the 75 
patterns of cytokine changes caused by these CRS-causing respiratory viruses. By comparing 76 
available patient data from the literature, we were able to show i) where similarities lie between the 77 
immune responses mounted against these pathogens, ii) what discriminates between influenza A 78 
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subtypes and coronaviruses, and iii) what are the unique aspects of the currently circulating SARS-79 
CoV-2 virus. 80 

 81 

3 Methods 82 

3.1 Literature search 83 

A mass literature search of 98 cytokines (48) was performed in PubMed using PubTator, and in 84 
bioRxiv1 and medRxiv2 non-peer reviewed pre-publication repositories (49). This included the 85 
commonly studied interleukins, interferons, tumor growth factors and chemokines involved in pro-86 
inflammatory and anti-inflammatory responses - in particular those associated with disease-87 
associated CRS manifestations. Only studies indicating increase or no change in cytokine levels were 88 
included. The amplitude of change was not measured, only the presence or absence of it. We focused 89 
our study on five important CRS-causing viruses: the two influenza A virus subtypes H5N1 and 90 
H7N9 and the three β-coronaviruses SARS-CoV, MERS-CoV and SARS-CoV-2 (Figure 1). We used 91 
the names of each virus and the cytokines and chemokines as search terms, e.g. “SARS-CoV-2 + 92 
CXCL10” (Figure 1). The collected studies were then screened to retain the studies using only 93 
patient-derived data, measured in at least 10 patients. A second pass was done adding “patient” to the 94 
search terms, e.g. “SARS-CoV-2 + CXCL10 + patient” in cases where the original search term 95 
yielded more than 50 hits. We only considered articles valid if they contained patient-derived data 96 
directly; cell line or model organism-based results (and reviews) were excluded. From the main text 97 
of the resulting articles, we generated a table containing the presence of the queried cytokines and 98 
their direction of change in each disease. We closed the curation on 03/06/2020 (See Supplementary 99 
Table S2 for the full list of queried cytokines). The number of discarded articles was estimated using 100 
custom python and shell scripts, available in the publication repository. 101 

3.2 Hierarchical clustering 102 

We clustered our data using the clustermap function from the python package seaborn with Jaccard 103 
distance and complete linkage method (50). We used all cytokine categories as input. The code is 104 
available at our GitHub repository3. 105 

 106 

4 Results 107 

In order to capture as many studies as possible on which to apply the defined inclusion filtering for 108 
our work, we started from a list of relevant cytokines found in a textbook source (48) (Figure 1). We 109 
only used studies that reported the directional change of measured cytokines. Our curation approach 110 
allowed us to highlight shared and differing cytokine responses between influenza A and β-111 
coronaviruses, contributing to further understanding of why SARS-CoV-2 in particular differs so 112 
much from influenza A CRS-causing viruses but also from other β-coronaviruses, also capable to 113 
inducing a cytokine storm in severe cases.   114 

                                                 
1 https://www.biorxiv.org/ 
2 https://www.medrxiv.org/ 
3 https://github.com/NetBiol/Covid19/tree/master/CRS 
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 115 

Figure 1: The literature curation workflow applied in this study. Publications were considered 116 
valid for inclusion into our data collection i) only if they contained patient-derived data (model 117 
organisms and cell lines were excluded) and ii) if the study data were collected from cohorts of at 118 
least 10 participants per group, iii) and if it included a change in cytokine levels. Total hits to queries 119 
in bioRxiv, medRxiv and PubTator shown separately in the second box from the top. 55 publications 120 
were selected that matched our curation criteria listed above. 121 

 122 

4.1 β-coronaviruses and influenza A viruses show marked differences in some cytokine 123 
responses 124 

Out of the nearly 100 cytokines measured across all initially-collected studies only 38 were retained 125 
as matching our criteria (See Methods section; Supplementary Table S1). Only a small group of 126 
cytokines was commonly measured for all viruses (CXCL8, IL-6, CXCL10, IL-2, IL-10, IFN-γ, 127 
TNF-α). Across the 55 literature references used here (Figure 1), we first assessed how comparable 128 
the number of different cytokines measured in these studies was across the five CRS-causing viruses. 129 
Figure 2 shows how variable this number is between virus-specific studies (e.g. 15 for H5N1 and 26 130 
for SARS-CoV-2). This variation probably reflects i) the increasing interest developed for CRS-131 
causing pathologies over recent years (26 recent studies reported cytokine measurement for SARS-132 
CoV-2 against only 10 H5N1-related studies), and ii) the increased availability and sensitivity of 133 
multiplex detection method. 134 

Figure 2: Number of cytokines measured in the studies retained for each considered CRS-135 
causing virus. Each stacked bar indicates how many cytokines were found at increased levels 136 
(yellow) in the patients’ blood/solid tissue, not changed (blue) or both increased and not changed 137 
across different studies of the same virus (green). The n number shown on the bottom of the bar 138 
charts corresponds to the number of articles citing cytokine changes during infection. 139 

The influenza A viruses trigger an increase in all cytokine levels measured (Figure 2, red). In 140 
contrast, during infection with each of the β-coronaviruses, some cytokines were detected at levels 141 
normally found in control groups (blue). This indicates that β-coronaviruses can subvert the immune 142 
response, reflecting different kinetics and pathogenesis between the influenza- and coronavirus-143 
associated diseases. Of note, studies of H5N1 infections showed that a few cytokines were increased 144 
compared with control groups, no change was observed in other studies (17,51), illustrating the 145 
greater complexity of these diseases, probably due to the multifactorial nature of the mechanisms 146 
involved. 147 

  148 
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 Cytokines elevated at least in one study 

(elevated & mixed) 

Virus-specific 16 

Shared between 2 viruses 5 

Shared between 3 viruses 8 

Shared between 4 viruses 2 

Common to all 5 viruses 5 

Table 1: Number of cytokines which were elevated in at least one study. Cytokines measured in 150 
one or more of the virus-induced infections. Mixed observations occur when one or more studies 151 
show no change in a cytokine level upon infection, whereas others show an increase. 152 

Table 1 shows the number of cytokines whose levels are increasing in one, or two, three, four or all 153 
five virus-related infections from the interrogated literature. Only 5 cytokines were modulated 154 
regardless of the virus-associated disease concerned, with 20 other cytokines being shared to some 155 
degree. Increased levels observed in 16 cytokines were unique to a single virus at a time. It is 156 
important to keep in mind the cytokines’ amplitude of change is not considered, which can be 157 
different between the different diseases, adding to the heterogeneity of those severe respiratory 158 
infectious diseases. This backs up the highly complex nature of the associated diseases as well as the 159 
past and current struggles to develop efficient vaccines and treatments. 160 

To examine the presence of the measured cytokines and directionality of their change, we constructed 161 
a heatmap of the included viruses and cytokine responses.  162 

 163 

4.2 The cytokine response to SARS-CoV-2 sits in between the ones given to other β-164 
coronaviruses and influenza A viruses 165 

The cluster analysis of the viruses forms three clusters. SARS-CoV and MERS-CoV comprise the 166 
coronavirus cluster, H5N1 and H7N9 form the influenza cluster, while SARS-CoV2 sits in an 167 
individual cluster (Figure 3), slightly closer to the two influenza A viruses than to the two β-168 
coronaviruses. 169 

Figure 3. Influenza viruses, SARS-CoV and MERS-CoV, and SARS-CoV2 form separated 170 
clusters (I-VIII) based on their cytokine response. Hierarchical clustering is based on Jaccard 171 
distance complete linkage.  172 

The cluster analysis of cytokines defines eight clusters, based on the direction of their modulation 173 
upon infection with each virus. It is important to note that the results of this cluster analysis are 174 
biased by the missing information for some cytokines. Bearing this in mind, it is nonetheless worth 175 
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looking into the detailed patterns of cytokine responses of the various CRS-inducing viruses. The 176 
cytokine cluster I includes the pro-inflammatory TNF-� and two anti-inflammatory cytokines IL-2 177 
and IL-10. All of them had mixed results in SARS-CoV-2, while encompassing all three categories 178 
of results for the other two coronavirus infections, and predominantly increased during influenza 179 
infections. Unfortunately, cluster II seems to be restricted to cytokines measured only in H7N9-180 
mediated infections, preventing us from comparing influenza A viruses versus with β-coronaviruses. 181 
Clusters III and VI carry the generally increased pro-inflammatory cytokines, which are elevated for 182 
almost all of the viruses, but not measured in all of the cases of cluster VI. Among those cytokines 183 
are IFN-� and IFN-γ, typical representatives of the general antiviral response (type I and type II 184 
interferons), as well as IL-6, one of the most prominent pro-inflammatory cytokines, along various 185 
chemokines. Cytokines from Cluster IV measured during coronavirus infections do not fluctuate, 186 
while most of them are elevated during influenza infection, e.g. IL-4 and IL-5 upon H7N9 infections. 187 
IL-4 is involved in Th2 differentiation, and the Th2 cells can produce IL-5 to mitigate eosinophil 188 
infiltration (52). Such differences observed between virus-specific pathologies reflect the strong 189 
alterations observed in coronavirus infections, particularly SARS-CoV-2 (53). The cytokines in 190 
Cluster VII and VIII do not always respond to SARS-CoV-2: IL-15 and CCL5 (RANTES) are not 191 
elevated after SARS-CoV2 infection. IL-15 is involved in natural killer cell differentiation as part of 192 
antiviral response (54). Meanwhile, CCL5 mediates eosinophil infiltration which is considered to be 193 
involved in the recovery after SARS-CoV infection (55). Clusters II and V contain cytokines 194 
measured only in H7N9 and SARS-CoV2, respectively, whereas TGF-b1 was measured only in 195 
SARS-CoV studies in cluster IV.  196 

For a subset of pro-inflammatory cytokines, the clustering analysis shows that SARS-CoV-2 induces 197 
a similar response to all other viruses (See Cluster III and VI; Figure 3). Its uniqueness lies in the fact 198 
that not all of the expected cytokines are elevated, e.g. the ones following an influenza infection such 199 
as IL-2, IL-10, TNF-�, IL-4 or IL-5. 200 

 201 

4.3 Type I interferon signalling is more strongly altered upon infection with SARS-CoV-2 202 
than in SARS-CoV- or MERS-CoV-infections. 203 

Both type-I and type-II IFNs play an instrumental role in the immune response to viral infection. 204 

Our analysis shows early induction of type-I interferons occurs upon H5N1 and H7N9 influenza A 205 
infection as well as for the β-coronavirus SARS-CoV and MERS-CoV (26,37,56). However,  type-I 206 
IFN response is only weakly elicited following a SARS-CoV-2 infection, if at all (39,57, Figure 4).  207 

 208 

Figure 4: Type I interferon response upon infection with the different CRS-causing viruses. The 209 
measured cytokines in the influenza viruses are increased. In the case of the coronaviruses the 210 
response is mixed, not all of the anti-inflammatory cytokines are elevated. Only a fraction of 211 
cytokines is depicted for clarity. Yellow for increase in that virus, green for mixed results and blue 212 
for no-change.  213 

 214 
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Infection with either of the two influenza subtypes seems to increase the levels of measured type-I 215 
IFN-relevant cytokines, resulting in an antiviral immune response, with the appropriate cytokines 216 
showing elevated levels in all influenza A studies (Figure 4, Supplementary Table S1). 217 

The β-coronavirus-mediated responses show a much more variable IFN response: with SARS-CoV, 218 
we see that the type-I IFN response is active, including the downstream-activated IL-12 that reflects 219 
the involvement of mature dendritic cells. IL-12 also indirectly activates IFN-γ further downstream. 220 
IL-10 is not elevated, which potentially prevents the downregulation of the type-I interferon 221 
response. 222 

In MERS-CoV infections, the type-I IFN response is induced, but not in all cases (58). In some 223 
studies, the levels of IL-12 do not increase, in agreement with IFN-γ also staying at low levels. Yet 224 
we see the involvement of the (mostly) anti-inflammatory IL-10. However, caution needs to be 225 
applied when looking at IL-10 in an inflammation context, as more and more clinical evidence 226 
suggests this cytokine displays pro-inflammatory characteristics in vivo (59,60).  227 

We showed here that SARS-CoV-2-mediated infections are characterized by a clear dysregulation of 228 
type-I IFN response, and consequently the downstream cytokine signature such as IL-4, IL-12, IL-2, 229 
IL-10 and the downstream type II IFN response (Figure 4).  230 

 231 

5 Discussion 232 

In this study, we analysed relevant cytokine levels measured in patients infected each with one of five 233 
major viral pathogens through a comprehensive literature curation of published patient data. We 234 
generated a map of such responses to help specialists identify routes of interventions to successfully 235 
alleviate CRS in different diseases, and evaluate whether they could be used in COVID-19 cases. 236 
Based on our literature curation, the five investigated viruses cause atypical cytokine responses in 237 
severely-ill patients, reported here in Figure 3.  238 

The cytokine response during viral infection is a dynamic process, with multiple changes in cytokine 239 
levels during the course of the infection. During SARS and MERS infection, a slow initial innate 240 
immune response accompanied by the infection of alveolar macrophages leads to increased severity 241 
of these lower respiratory tract diseases (61–65). Furthermore, a long-lasting pro-inflammatory 242 
cytokine production results in high mortality due to the development of severe conditions such as  243 
acute respiratory distress syndrome (ARDS) or acute lung injury (9.5% fatality rate for SARS and 244 
34.4% for MERS compared to 2.3% for COVID-19 (44)).  245 

Severe SARS patients show particularly low levels of the anti-inflammatory cytokine IL-10 (Figures 246 
3, 4) (66). During MERS infection patients develop an expected increased production of IL-10, yet 247 
the low levels of IFN-γ-inhibiting IL-4 and IL-2, lead to elevated IFN-γ and the induction of type-II 248 
IFN response (Figure 3) (58,67,68). In contrast, during influenza A infection, the antiviral response 249 
activates without much delay with the presence of an intact negative feedback loop. Both viruses 250 
considered in our curation induce most of the pro- and anti-inflammatory cytokines downstream of 251 
type-I interferon response (Figure 3). Although influenza A viruses have effectors that dysregulate 252 
IFN-I (e.g. NS1, PB1-F2, polymerase proteins), the IFN-I response is nonetheless sustained, and its 253 
excessive activation during severe illness can lead to increased mortality. Furthermore, during H7N9 254 
and H5N1 severe infections, TGF-β fails to be activated, contributing to increased pathogenicity (69–255 
71). SARS-CoV-2 stands out from the other β-coronaviruses and influenza A viruses, with a highly 256 
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perturbed response downstream of Type I IFN signalling, as reflected in the poor balance of 257 
measured pro-and anti-inflammatory cytokines (Figures 3 and 4).  Of note, IFN-� was found to be 258 
increased (similar to the other viruses) only in one small (n=4) patient study, which did not match our 259 
inclusion criteria. Type-II IFN-γ was also only increased in patients placed in intensive care units 260 
(ICUs) , while it was within normal ranges in other studies (10,72,73).   261 

Although the cytokine signalling enabling the reduction of the inflammatory environment is active 262 
(Figures 3 and 4), both influenza viruses H5N1 and H7N9 can cause CRS. In severe cases of 263 
infection, CRS could result from insufficient production of important cytokines such as TGF-β (71). 264 
Furthermore, the presence of impaired and less abundant effector CD4+ and CD8+ T cells was found 265 
to be a characteristic feature accompanying CRS in those diseases. Finally, monocytes, that normally 266 
would differentiate from a pro- to anti-inflammatory state with enhanced antigen presentation activity 267 
as the infection progresses, remain in a chronic pro-inflammatory activation state, preventing the 268 
normal resolution of the host response (16,74,75). In future studies, patient-derived data including the 269 
size and activation status of innate and adaptive immune cell populations would help increase the 270 
understanding of CRS mechanisms in influenza-mediated diseases. 271 

In our study, we found resolution of the pro-inflammatory immune response to be a key difference 272 
between coronaviruses (MERS-CoV and SARS-CoV) and influenza viruses (H5N1 and H7N9). Both 273 
MERS-CoV and SARS-CoV induce CRS, yet they also appear to impair the normal resolution of the 274 
antiviral immune response. In contrast, H5N1 and H7N9 induce high levels of pro- and anti-275 
inflammatory cytokine levels in severe cases leading to an inflammatory cytokines storm, yet leaving 276 
the immune system unimpeded to move towards a general a resolution of the antiviral response 277 
appears (Figures 3 and 4) (17). However, SARS-CoV-2 induction of the CRS is eventually followed 278 
by a resolution of the pro-inflammatory responses in 80% of the cases.  279 

One limitation of this study is the lack of anatomical and dynamic dimensions of the cytokine 280 
response. Firstly, the set of cytokines measured in the peripheral blood of each patient across the 281 
entire disease course or following recovery varied across the studies analysed. Patients were sampled 282 
at different stages of the disease, which further adds to the noise observed in the data.  Finally, 283 
systematic patient-based studies matching our strict curation criteria could not be collected, leaving 284 
many gaps in our comparisons (Figure 3, white cells).  285 

While confirming many already reported disease traits, our analysis has highlighted several new 286 
features that are shared or different between the viral diseases analysed, contributing to filling the gap 287 
in the understanding of SARS-CoV2 and other CRS-causing viruses. Blockage of the cytokine 288 
response in SARS-CoV2 infection through IL-6 specific antibody has failed during Phase 3 289 
randomised clinical trial (NCT04320615), even with promising results in earlier stages (76), 290 
suggesting that further mechanistic investigation of the cytokine storms during SARS-CoV-2 291 
infection will be needed. 292 

The ongoing accumulation of patient-derived large data sets will inform the research community and 293 
clinicians of the intricacy of host/virus interactions (77). Here we provided a literature curation of 294 
patient-derived data and a comparative map across CRS-causing β-coronaviruses and influenza A 295 
viruses, linking shared or specific changing cytokines and interferon signalling alterations to those 296 
pathogens. 297 
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