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Abstract

Multiple randomized controlled trials, each comparing a subset of competing interventions, can be

synthesized by means of a network meta-analysis to estimate relative treatment effects between all

interventions in the evidence base. Often there is an interest in estimating the relative treatment

effects regarding time-to-event outcomes. Cancer treatment effectiveness is frequently quantified by

analyzing overall survival (OS) and progression-free survival (PFS). In this paper we introduce a

method for the joint network meta-analysis of PFS and OS that is based on a time-inhomogeneous

tri-state (stable, progression, and death) Markov model where time-varying transition rates and

relative treatment effects are modeled with known parametric survival functions or fractional poly-

nomials. The data needed to run these analyses can be extracted directly from published survival

curves. We demonstrate use by applying the methodology to a network of trials for the treatment

of non-small-cell lung cancer. The proposed approach allows the joint synthesis of OS and PFS,

relaxes the proportional hazards assumption, extends to a network of more than two treatments,

and simplifies the parameterization of decision and cost-effectiveness analyses.
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1 Introduction

Randomized controlled trials (RCTs) are considered the most appropriate study design to obtain

evidence regarding the relative treatment effects of an intervention. However, an individual RCT

rarely includes all alternative interventions of interest, and as such does not provide all the infor-

mation needed to select the best option among alternatives. Typically, the evidence base consists of

multiple RCTs where each of the available studies compares a subset of the alternative interventions

of interest. If each of these trials has at least one intervention in common with another trial such

that the evidence base is represented by a single connected network, a network meta-analysis (NMA)

can provide relative treatment effects between all the competing interventions in the evidence base1.

Often there is an interest in estimating the relative treatment effects of alternative interventions

regarding time-to-event outcomes. For example in oncology, treatment efficacy is often quantified

by analyzing time from treatment initiation to the occurrence of a particular event. Very commonly

studies report data on overall survival (OS), where the event is death from any cause, and on

progression-free survival (PFS), where the event is death from any cause or disease progression,

whichever occurred first.

NMA of time-to-event outcomes with a single effect measure per study are based on the proportion

of patients alive at a specific time point, median survival, or reported hazard ratio (HR)2. The

limitation of a NMA of survival at a specific time point is that we only focus on the cumulative

effect of treatment at that time point and ignore the variation in effects over time up to, as well

as beyond, that time point. NMAs of median survival times have similar limitations. The HR

summarizes the treatment effect for the complete follow-up period of the trials, but only represents

the treatment effect for each time point if the proportional hazards (PH) assumption holds. If the

PH assumption is violated, trial specific HRs represent an average effect over the follow-up period,

which can cause biased estimates in a NMA if trials have different lengths of follow-up.

As an alternative to a NMA with a univariate treatment effect measure, we can also use a multivari-

ate treatment effect measure that describes how the relative treatment effects change over time2.

Ouwens et al., Jansen, and Cope et al presented methods for NMA of time-to-event outcomes

where the hazard functions of the interventions in a trial are modeled using known parametric

survival functions or fractional polynomials and the difference in the parameters are considered

the multi-dimensional treatment effects, which are synthesized across studies3–6. By incorporating

time-related parameters, these NMA models can be fitted more closely to the available data.

Both PFS and OS of an intervention determine its value and can inform decision-making. In

combination with a baseline survival function for a reference treatment, the multivariate NMA

models embedded in parametric survival functions can form the basis for partitioned-survival cost-

effectiveness models. Frequently, the pooled PFS and OS curves need to be extrapolated over
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time in order to obtain estimates of the expected quality adjusted life-years before and after disease

progression. Since the separate meta-analyses of PFS and of OS data ignore the correlation between

the outcomes, any required extrapolation may result in possible crossing of PFS and OS curves. A

state-transition model with three health states – stable (pre-progression), progression, and death

– with parametric hazard functions for the three corresponding transisitions avoids this issue. If

we have individual patient data (IPD) regarding time to progression, time to death, and censoring

for all trials included in the NMA then we can estimate these hazard functions using a statistical

model with the same tri-state structure and avoid any inconsistency between the clinical evidence

synthesis and the economic evaluation7. Reality though is that for most, if not all, trials there

is no access to IPD and the synthesis has to be based on reported summary findings. Although

reported Kaplan-Meier curves for PFS and OS can be digitized and a dataset of "virtual" IPD

event-times can be created with the algorithm by Guyot et al., it does not provide the information

needed to determine which time-to-progression data point corresponds to which to time-to-death

data point8. Markov-state-transition NMA models have been presented for disease progression9,10

and competing risks11 based on aggregate level data, but these models assumed constant hazards

for transitions between states.

In this paper we introduce a method for the joint NMA of PFS and OS that is based on a tri-

state (stable, progression, and death) transition model where time-varying hazard rates and relative

treatment effects are modeled with known parametric survival functions or fractional polynomials.

We illustrate parameter estimation based on aggregate level data.

2 Multi-state network meta-analysis framework

At any time u, patients in study i randomized to treatment arm k can be in one of three health

states: alive with stable disease (i.e. not progressed), alive and progressed, and dead expressed with

Sik(u), Pik(u) and Dik(u) respectively and illustrated in Figure 1. hSPik (u), hPDik (u), and hSDik (u) are

the hazard rates for disease progression, dying post-progression, and dying pre-progression.

A multi-state NMA that explicitly estimates each possible transition in a tri-state model and mod-

eling time-varying hazard rates and relative treatment effects with known parametric survival func-

tions or fractional polynomials can be expressed as follows:
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Figure 1: Relationship between stable disease (S), progression (P) and death (D) as
used in the multi-state network meta-analysis model

.
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(
hSPik (u)

)
= α1,ik + α2,iku

(p1) + ...+ αa,iku
(pa−1)
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(
hSDik (u)

)
= αa+1,ik + αa+2,iku
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ln
(
hPDik (u)

)
= αb+1,ik + αb+2,iku

(pb) + ...+ αB,iku
(pB−1)

α1,ik
...

αB,ik

 =

µ1,ik...
µB,ik

+

δ1,ik...
δB,ik


δ1,ik...
δB,ik

 ∼MVN


 d1,1tik − d1,1ti1

...
dB,1tik − dB,1ti1

 ,Σ



Σ =

 σ2d1 . . . σd1σdBρd1dB
...

. . .
...

σd1σdBρd1dB . . . σ2dB


with d1,11 = d2,11 =, ...,= dB,11 = 0

(1)

where p1, ..., pB are fractional powers and the round bracket notation denotes the Box-Tidwell

transformation: u(p) = up if p 6= 0 and u(p) = ln(u) if p = 0. Equation 1 also includes the

situation of repeated powers, where px = py for at least 1 pair of indices (x, y), 1 ≤ x < y ≤ B.

In this situation, u(py) = ln(u) is used instead of u(py) itself. A complete set of flexible fractional
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polynomials can be created with {(p1, ..., pB−1) = (−2,−1,−0.5, 0, 0.5, 1, 2).

α1,ik, α2,ik, ..., αa,ik are regression coefficients that represent the scale and shape parameters of the

log hazard function describing the stable-to-progression transition in study i for treatment arm k.

αa+1,ik, αa+2,ik, ..., αb,ik are the regression coefficients that represent the log-hazard function for the

stable-to-death transition. αb+1,ik, αb+2,ik, ..., αB,ik are the regression coefficients that represent

the scale and shape parameters of the log hazard function describing the progression-to-death in

study i for treatment arm k.

The µ·i reflect the study effects regarding the scale and shape parameters in each study i. The δ·,ik
are the study specific true underlying relative treatment effects for the treatment in arm k relative

to the treatment in arm 1 of that trial (with δ·,i1 = 0) regarding the scale and shape of the log

hazard function for the different transitions, which are drawn from a normal distribution with the

mean effect for treatment t expressed in terms of the overall reference treatment 1, d·,1tik − d·,1ti1 ,
and with a between-study-heterogeneity covariance matrix Σ. A fixed effects model is obtained by

replacing δ·,ik ∼ N(d·,1tik − d·,1ti1 ,Σ) with δ·,ik = d·,1tik − d·,1ti1 .

3 Illustrative example

3.1 Evidence base

An example of the multi-state models is presented for a NMA of first line treatment of adult

patients with metastatic EGFR+ non-squamous non-small-cell lung cancer (NSCLC) with gefitinib,

erlotinib, afatinib, dacomitinib, or platinum-based doublet chemotherapy regimens. Thirteen RCTs

were obtained with a systematic literature review ( ARCHER105012,13; LUX-LUNG 714,15; LUX-

LUNG 316,17; LUX-LUNG 617,18; EURTAC19–21; ENSURE22; OPTIMAL23,24; First-SIGNAL25;

WJTOG340526; IPASS27,28; NEJ00229,30; Han201731; Yang201432,33). The evidence network is

presented in Figure 2 and the trial-specific PFS and OS curves are provided as supplementary

information in Section C.1.

A NMA provides estimates of relative treatment effects between the competing interventions (i.e.

hazard ratios). In order to obtain estimates for the transition rates over time between health states

for each treatment, we first need to obtain these estimates for an overall reference treatment, defined

as treatment 1. Next, the hazard ratios of each treatment relative to treatment 1 obtained with

the NMA are applied to these transition rates for treatment 1. As a final step, these time-varying

transition rates can be transformed into the distribution S, P, and D over time, and PFS and OS

curves. In this example gefitinib is defined as treatment 1, and a meta-analysis of gefitinib arms was

performed as well. In the following sections we present the NMA model as well as the meta-analysis

model used for this example.
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Figure 2: Evidence network of RCTs
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3.2 Network meta-analysis

3.2.1 Model

The following model was used for the NMAs, which is a simplification of Equation 1 to faciliate

parameter estimation:

ln
(
hSPik (u)

)
=

{
α1,ik + α2,iku

p1 + α3,iku
p2 if p1 6= p2

α1,ik + α2,iku
p + α3,iku

p ln(u) if p1 = p2 = p

ln
(
hSDik (u)

)
= α4,ik

ln
(
hPDik (u)

)
= α5,ik + α6,iku

p3



α1,ik

α2,ik

α3,ik

α4,ik

α5,ik

α6,ik

 =



µ1,ik
µ2,ik
µ3,ik
µ4,ik
µ5,ik
µ6,ik

+



δ1,ik
d2,1tik − d2,1ti1
d3,1tik − d3,1ti1

0
d4,1tik − d4,1ti1

0



δ1,ik ∼ N(d1,1tik − d1,1ti1 , σ
2
d1)

(2)

where u0 = ln(u) and d1,11 = 0, d2,11 = 0, d3,11 = 0, and d4,11 = 0

When p1 = 0 and α3,ik = 0, the log-hazard functions follow a Weibull distribution. When p1 = 1 and

α3,ik = 0 these log-hazard functions follow a Gompertz distribution. When {(p1, p2) = (0, 0), (0, 1)}
and α3,ik 6= 0, the log-hazard functions follow a second order polynomial that are extensions of the

Weibull and Gompertz model to allow for arc- and bathtub shaped log-hazard functions. When

α6,ik = 0 this transition follows an exponential distribution. When α6,ik 6= 0 the transition rates

over time are modeled with a first order fractional polynomial of which Weibull and Gompertz are

special cases.

With this model we assume there is one between-study heterogeneity parameter related to the

relative treatment effects for d1,tik .The δ1,ik are drawn from a normal distribution with the mean

effect for treatment t expressed in terms of the overall reference treatment 1, d1,1tik − d1,1ti1 , and
between study heterogeneity σ2d1 . The treatment specific relative effects regarding the first shape

parameter of the log hazard function for the stable-to-progression transition was assumed to be

fixed. Incorporating the treatment specific relative effects regarding the second shape parameter

frequently results in unstable parameter estimates and was removed from the model. The same

can be argued for the treatment effect regarding the shape parameter of the log hazard function
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for the progression-to-death transition. If it is assumed that treatment has only a direct effect on

the transitions from stable to progression, which can reasonably be defended when a particular

treatment upon disease progression is discontinued, the model can be further simplified by setting

d4,ti1 = 0.

The random effects model presented with Equation 1 does not account for correlation between

trial-specific δ1,iks in multiple-arm trials (>2 treatments). A random effects model with only a

heterogeneity parameter for d1,tik can be easily extended to fit trials with three or more treatment

arms by decomposition of a multivariate normal distribution as a series of conditional univariate

distributions34:

 δi,12
...

δi,1ai

 ∼ Normalai−1

 dti1,ti2

...
dti1,tiai

 ,

σ
2 σ2/2 . . . σ2/2
...

...
. . .

...
σ2 σ2/2 . . . σ2/2


 (3)

The vector of random effects follows a multivariate normal distribution, ai represents the number

of arms in trial i (ai = 2, 3, ) and dti1,tik = d1,1tik − d1,1ti1 . The conditional univariate distribution

for the random effect of arm k > 2, given all arms from 2 to k â1, is

δi,1k |

 δi,12
...

δi,1(k−1)

 ∼ Normal ((d1,1tik − d1,1ti1) + 1
k−1

∑k−1
j=1(δi,1j − (d1,1tik − d1,1ti1)), k

2(k−1)σ
2
)

(4)

3.2.2 Likelihood

The model parameters were estimated based on the conditional survival probabilities regarding PFS

and OS obtained from the published KM curves. The total follow-up time can be partitioned into

M successive non-overlapping intervals indexed by m = 1, ...,M . We refer to interval m as Um and

write u ∈ Um to denote um ≤ u < um+1. The length of Um is ∆um = um+1−um. For each interval

m, a binomial likelihood for the conditional survival probabilities regarding PFS and OS at time

point u relative to the time point at the beginning of the interval um can be described according to:

rcPFSiku ∼ binomial(pcPFSik (u), ncPFSiku ) and rcOSiku ∼ binomial(pcOSik (u), ncOSiku ) (5)

8

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 16, 2020. ; https://doi.org/10.1101/2020.11.13.20231332doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.13.20231332


where rcPFSiku are the observed number of patients who have not yet experienced progression or death

at time u in the mth interval in study i for treatment arm k and rcOSiku are the observed number

of patients who have not died at time u in that interval. pcPFSik (u) is the underlying conditional

survival probability regarding PFS and pcOSik (u) is the underlying conditional survival probability

regarding OS, ncPFSiku and ncOSiku are the corresponding sample sizes at the beginning of the interval.

A description how to create interval data based on KM curves is provided in Appendix A).

For themth interval, the conditional probabilities pcPFSik (u) and pcOSik (u) are related to the proportion

of patients who are progression free (stable disease) Sik(u) and the proportion of patients with

progressed disease Pik(u) according to:

pcPFSik (u) =
Sik(u)

Sik(um)
and pcOSik (u) =

Sik(u) + Pik(u)

Sik(um) + Pik(um)
(6)

Arbitrary hazard functions can be approximated with a set of discontinuous constant hazard rates

over relative short successive time intervals. For each interval m, Sik(u), Pik(u), and death Dik(u)

are related to the hazards hSPikm, h
SD
ikm, h

PD
ikm according to the following set of differential equations

(See Appendix B):

Sik(u) = Sik(um)e−(h
SP
ikm+hSD

ikm)(u−um)

Pik(u) = Pik(um)e−h
PD
ikm(u−um) +

S(um)hSPikm(e−(h
SP
ikm+hSD

ikm)(u−um) − e−hPD
ikm(u−um))

hPDikm − hSPik − hSDikm
Dik(u) = 1− Sik(u)− Pik(u)

(7)

In order to estimate the three parameters hSPikm, h
SD
ikm, and hPDikm for each interval m, we need to

define Equation 5, Equation 6 and Equation 7 for at least two time points per interval. We use

the mid point um + 1
2∆um, which we define as um+ 1

2
, and the time point at the end of the interval

um+1. The obtained estimates of the hazards for interval m were assigned to the time point um+ 1
2

for Equation 2.

3.2.3 Prior distributions

The following prior distributions for the parameters of the model expressed with Equation 1 were

used:
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

µ1i
µ2i
µ3i
µ4i
µ5i
µ6i

 ∼MVN





0
0
0
0
0
0

 , Tµ

 Tµ =



1000 0 0 0 0 0
0 100 0 0 0 0
0 0 10 0 0 0
0 0 0 10 0 0
0 0 0 0 1000 0
0 0 0 0 0 100



d1,1t
d2,1t
d3,1t
d4,1t

 ∼MVN




0
0
0
0

 , Td

 Td =


100 0 0 0
0 10 0 0
0 0 10 0
0 0 0 100


σd1 ∼ uniform(0, 2)

(8)

3.3 Meta-analysis of absolute effects with overall reference treatment

The following fixed effects model was used to estimate transition rates for gefitinib:

ln
(
hSPi (u)

)
=

{
M1 +M2u

p1 +M3u
p2 if p1 6= p2

M1 +M2u
p +M3u

p ln(u) if p1 = p2 = p

ln
(
hSDi (u)

)
= M4

ln
(
hPDi (u)

)
= M5 +M6u

p3

(9)

We used the same data structure, likelihood, and link functions as used for the NMA. (See Equa-

tion 5,Equation 6, and Equation 7). The prior distribution for this model was:



M1

M2

M3

M4

M5

M6

 ∼MVN





0
0
0
0
0
0

 , TM

 TM =



1000 0 0 0 0 0
0 100 0 0 0 0
0 0 100 0 0 0
0 0 0 100 0 0
0 0 0 0 1000 0
0 0 0 0 0 100

 (10)
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3.4 Parameter estimation

The parameters of the different models were estimated using a Markov Chain Monte Carlo (MCMC)

method implemented in the JAGS software package35. All JAGS analyses were run using R statis-

tical software36. See Section C.2 for the JAGS code for one of the models used to estimate relative

treatment effects.

The residual deviance and the deviance information criterion (DIC) were used to compare the

goodness-of-fit of the competing models. The DIC provides a measure of model fit that penalizes

model complexity. In general, a more complex model results in a better fit to the data, demonstrating

a smaller residual deviance. The model with the better trade-off between fit and parsimony has a

lower DIC. A difference in the DIC of about 10 points can be considered meaningful.

3.5 Results

For this example we used the following competing models for the analysis of treatment 1 (gefitinib):

- SP 2nd order FP(01); SD exponential; PD Weibull. This is a fixed effects 2nd order fractional

polynomial with time transformations according to p1 = 0 and p2 = 1 for the stable-to-progression

(SP) transition; an exponential distribution for the stable-to-death (SD) transition; and a Weibull

distribution for the progression-to-death (PD) transition. (See Equation 9)

- SP 2nd order FP(01); SD exponential; PD exponential

- SP 2nd order FP(00); SD exponential; PD Weibull (See Equation 9 with p1 = p2 = 0)

- SP Weibull; SD exponential; PD Weibull

- SP Weibull; SD exponential; PD exponential

- SP Gompertz; SD exponential; PD Weibull

The model fit statistics are presented in Table 1. With the exception of the model where a Gompertz

distribution was used, the models for the meta-analysis have a similar deviance and DIC. The

parameter estimates of four competing models that show the greatest variation in time-varying

hazards between the three health states are presented in Table 2. The actual time-varying hazard

rates and corresponding PFS and OS curves are plotted in Figure 3.
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Table 1: Model fit criteria for alternative meta-analysis and network meta-analysis
models

Model Deviance pD DIC
MA treatment 1
SP 2nd order FP(01); SD exponential; PD Weibull 1871 6.2 1877
SP 2nd order FP(01); SD exponential; PD exponential 1870 5 1875
SP 2nd order FP(00); SD exponential; PD Weibull 1879 6.8 1885
SP Weibull; SD exponential; PD Weibull 1879 6.6 1885
SP Weibull; SD exponential; PD exponential 1877 4.3 1881
SP Gompertz; SD exponential; PD Weibull 1932 4.8 1937

NMA
SP 2nd order FP(01) FE3; SD exponential; PD Weibull FE1(scale) 5669 107 5776
SP 2nd order FP(01) FE3; SD exponential; PD Weibull 5683 103 5786
SP 2nd order FP(00) FE3; SD exponential; PD exponential 5695 87 5782
SP Weibull FE2; SD exponential; PD Weibull FE1(scale) 5707 72 5780
SP Weibull FE2; SD exponential; PD Weibull 5720 70 5791
SP Weibull FE2; SD exponential; PD exponential 5735 55 5790
SP 2nd order FP(01) RE3; SD exponential; PD Weibull FE1(scale) 5638 112 5750
SP Weibull RE2; SD exponential; PD Weibull FE1(scale) 5673 83 5756
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Table 2: Absolute treatment effect parameters regarding time-varying transition rates with treatment 1 for a
selection of alternative meta-analysis models

Model 1 Model 2 Model 3 Model 4
Parameter estimate low high estimate low high estimate low high estimate low high

M1 -3.746 -4.055 -3.487 -3.516 -3.726 -3.325 -3.526 -3.728 -3.322 -3.03 -3.153 -2.918
M2 0.772 0.557 1.013 0.483 0.4 0.568 0.488 0.401 0.57 0.051 0.042 0.06
M3 -0.038 -0.066 -0.011
M4 -5.326 -6.118 -4.87 -5.63 -11.279 -5.065 -5.545 -6.264 -5.071 -7.445 -22.033 -5.324
M5 -3.198 -3.859 -2.503 -2.92 -3.598 -2.101 -3.036 -3.131 -2.942 -2.618 -3.469 -2.096
M6 0.053 -0.172 0.272 -0.036 -0.288 0.177 -0.128 -0.293 0.146

Model 1: SP 2nd order FP(01); SD exponential; PD Weibull

Model 2: SP Weibull; SD exponential; PD Weibull

Model 3: SP Weibull; SD exponential; PD exponential

Model 4: SP Gompertz; SD exponential; PD Weibull
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Figure 3: Pooled estimates of transition rates between stable and progression (SP),
stable and death (SD), and progression and death (PD), and PFS and OS curves
with treatment 1 from a selection of alternative multi-state fixed effects meta-analysis
models

14

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 16, 2020. ; https://doi.org/10.1101/2020.11.13.20231332doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.13.20231332


For the NMA the following models were evaluated:

- SP 2nd order FP(01) FE3; SD exponential; PD Weibull FE1(scale). This is a 2nd order fractional

polynomial with time transformations according to p1 = 0 and p2 = 1 for the stable-to-progression

transition with fixed effects relative treatment effects on all 3 parameters (α1, α2, α3); an exponen-

tial distribution for the stable-to-death transition without relative treatment effects; and a Weibull

distribution for the progression-to-death transition with fixed effects relative treatment effects only

on the scale parameter (α5).

- SP 2nd order FP(01) FE3; SD exponential; PD Weibull. This model only has relative treatment

effects applied to the stable-to-progression transition

- SP 2nd order FP(00) FE3; SD exponential; PD exponential

- SP Weibull FE2; SD exponential; PD Weibull FE1(scale)

- SP Weibull FE2; SD exponential; PD Weibull

- SP Weibull FE2; SD exponential; PD exponential

- SP 2nd order FP(01) RE3; SD exponential; PD Weibull FE1(scale). This is the random effects

model according to Equation 2 with p1 = 0 and p2 = 1.

- SP Weibull RE2; SD exponential; PD Weibull FE1(scale)

The NMA models that assumed a 2nd order fractional polynomial for the stable-to-progression

transitions had a lower deviance than the simpler models assuming a Weibull function, but cannot be

considered a meaninful improvement when factoring in model complexity, as indicated by the DIC.

Comparing models that assumed a relative treatment effect for the progression-to-death transition

with the corresponding models without indicates that a relative effect is an important component to

include for this transition. The 2nd order fractional polynomial and Weibull random effects models

performed better than their fixed effects equivalents, indicating that incorporating between-study

heterogeneity is important.

Parameter estimates for the random effects 2nd order fractional polynomial model (SP 2nd order

FP(01) RE3; SD exponential; PD Weibull FE1(scale)), the random effects Weibull model (SP

Weibull RE2; SD exponential; PD Weibull FE1(scale), the corresponding fixed effects model (SP

Weibull FE2; SD exponential; PD Weibull FE1(scale)), and the simplest model (SP Weibull FE2;

SD exponential; PD exponential) are presented in Table 3. The corresponding time-varying HRs

with treatment relative to treatment 1 for the stable to progression transitions are presented in

Figure 4 and the constant HRs for the progression-to-death transition in Figure 5. (Please note

that we did not assume a relative treatment effect for the stable-to-death transition). Applying the

relative treatment effect parameters describing the HRs over time obtained with these NMA models

to the corresponding models for the analysis of treatment 1 we obtain the PFS and OS curves by
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treatment, as presented in Figure 6. In order to illustrate the width of the 95 credible intervals of

these survival curves due to the uncertainty in the time-varying HRs, we ignored the uncertainty for

the reference treatment 1. (If the uncertainty of the meta-analysis would have been incorporated

as well, the 95 credible intervals would have been a bit wider.)
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Table 3: Relative treatment effect parameters regarding time-varying transition rates for a selection of
alternative network meta-analysis models

Model 1 Model 2 Model 3 Model 4
Parameter estimate low high estimate low high estimate low high estimate low high
d1,11 0 0 0 0 0 0 0 0 0 0 0 0
d1,12 -0.765 -1.953 0.253 -0.48 -1.358 0.394 -0.42 -1.058 0.187 -0.497 -1.116 0.143
d1,13 -0.198 -0.968 0.509 -0.118 -0.772 0.592 0.004 -0.385 0.41 -0.033 -0.441 0.377
d1,14 0.083 -1.078 1.241 0.048 -1.013 1.119 0.027 -0.605 0.626 0.053 -0.578 0.66
d1,15 0.462 -0.085 0.962 0.411 -0.041 0.878 0.472 0.172 0.79 0.422 0.138 0.726
d2,11 0 0 0 0 0 0 0 0 0 0 0 0
d2,12 0.082 -1.357 1.283 -0.051 -0.394 0.289 -0.096 -0.427 0.24 -0.01 -0.352 0.32
d2,13 0.028 -0.41 0.471 -0.067 -0.28 0.134 -0.107 -0.306 0.082 -0.113 -0.315 0.087
d2,14 -0.392 -1.155 0.324 -0.328 -0.613 -0.037 -0.316 -0.599 -0.027 -0.33 -0.6 -0.046
d2,15 0.397 -0.046 0.83 0.268 0.103 0.426 0.242 0.083 0.405 0.248 0.091 0.399
d3,11 0 0 0
d3,12 -0.017 -0.258 0.333
d3,13 -0.015 -0.076 0.044
d3,14 0.008 -0.08 0.098
d3,15 -0.051 -0.126 0.029
d4,11 0 0 0 0 0 0 0 0 0
d4,12 0.279 -0.085 0.712 0.112 -0.183 0.419 0.094 -0.208 0.417
d4,13 0.012 -0.208 0.223 0.013 -0.186 0.225 -0.011 -0.217 0.197
d4,14 -0.002 -0.38 0.407 -0.029 -0.394 0.351 -0.022 -0.394 0.353
d4,15 -0.216 -0.376 -0.062 -0.227 -0.389 -0.071 -0.244 -0.409 -0.087
σd1 0.383 0.199 0.772 0.353 0.183 0.778

Model 1: SP 2nd order FP(01) RE3; SD exponential; PD Weibull FE1(scale)

Model 2: SP Weibull RE2; SD exponential; PD Weibull FE1(scale)

Model 3: SP Weibull FE2; SD exponential; PD Weibull FE1(scale)

Model 4: SP Weibull FE2; SD exponential; PD exponential
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Figure 4: Estimates of hazard ratios from stable to progression with treatments 2-5
relative to treatment 1 from a selection of alternative multi-state network meta-analysis
models
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Figure 5: Estimates of hazard ratios from progression to death with treatments 2-5
relative to treatment 1 from a selection of alternative multi-state network meta-analysis
models
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Figure 6: Estimates of progression-free survival and overall survival for treatment 1-5
obtained with a selection of alternative multi-state network meta-analysis models
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4 Discussion

With this paper we present a method for the joint NMA of PFS and OS that is based on a tri-state

transition model. This method extends existing parametric NMA methods for time-to-event data3–6

by defining the structural relationship between PFS and OS according to the stable, progression,

and death states that define the course of disease over time. Instead of modeling the time-varying

hazard rates for PFS and OS separately, we model the time-varying transition rates between the

three health states simultaneously. The primary advantage of this evidence synthesis framework is

that estimates for PFS and OS remain consistent over time.

For the illustrative example we used a subset of the theoretically possible competing models available

within the proposed framework by making simplifying structural assumptions to facilitate parameter

estimation. First, we used an exponential distribution for the stable-to-death transition, informed

by the notion that this rate is representative of general mortality which is low relative to disease

progression related mortality and constant over time given the life-expectancy of this population.

Second, we assumed that a relative treatment effect for this transition was not needed reflecting

the belief that differences in survival between treatments are only due to differences in delayed

or avoided tumor progression, and differences in adverse event rates do not influence mortality.

Third, we assumed that a function more complex than a first order fractional polynomial with a

constant relative treatment effect was not required for the progression-to-death transition given

that this transition is conditional upon experiencing progression and modeled in relation to follow-

up time. One could argue that a relative treatment effect for this transition is not needed when

treatment is discontinued upon progression. However, the DIC indicated that adding this parameter

to the models resulted in a meaningful improvement for the example analyses, which is primarily

related to the PBDC trials. A reason to include a treatment effect parameter for the progression-to-

death transition is treatment cross-over upon progression in a subset of trials or if post-progression

treatment between trial arms differ. Fourth, out of the possible fractional polynomials, we only

evaluated exponential, Weibull and Gompertz models and their extensions where the additional

parameter related the log hazard to time or log-time. We did not consider any of the negative

power transformations of time, primarily because these functions do not link to known survival

distributions and the 2nd order models we did use have already the flexibility to capture arc-shaped

hazard functions.

This brings us to the point of model selection. Evaluating the fit of all possible competing models

available within the proposed framework to the data is not feasible. Future research is needed to

inform a model selection strategy or algorithm that results in a set of models that is likely to cover

the distribution of transition rates between the health states, results in realistic extrapolations over

time, and, given the computational burden of the more complex models for large datasets, can be
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evaluated in a reasonable amount of time.

The primary reason to propose the method described in this paper is to facilitate parameterization

of multi-state cost-effectiveness models. More specifically, the proposed evidence synthesis frame-

work relates directly to clock forward time-inhomogeneous Markov models where treatment specific

transition rates between health states are only a function of time in the model. A frequently used

approach for cost-effectiveness analysis of cancer treatments are partitioned survival models. How-

ever, the main limitation is that extrapolated parametric PFS and OS curves for a given treatment

may cross. This will not be case with Markov models and, as such, are preferred as long as time-

varying transition rates between health states can be estimated that reflect the actual PFS and OS

of the treatments compared. As far as we know, the method presented in this paper is the first to

facilitate this based on reported aggregate level data. In order to obtain the parameter estimates

for a cost-effectiveness analysis we need to define a baseline model and a NMA model. The baseline

model provides estimates for the absolute effect with the reference treatment, which in this case are

the time-varying log-hazard rates between each of the three health states. The NMA model provides

estimates of the relative treatment effects of each intervention in the network relative to the refer-

ence treatment, which in this case are the time-varying log hazards ratios. The absolute effect with

each treatment is obtained by adding the relative treatment effects from the NMA to the absolute

effect with the reference treatment from the baseline model, and subsequently transforming these

to the natural scale by inverting the log-link function37. In the current example we used the RCT

evidence base to estimate the baseline meta-analysis model as well as the NMA model. However,

for an actual cost-effectiveness analysis it may be more appropriate to use a different evidence base

that better reflects expected outcomes with the reference treatment for the baseline model, such as

a long-term routine practice observational studies.

The estimates obtained with the proposed evidence synthesis models can also be used in semi-

Markov individual simulation models (i.e. models where some transitions are affected by time

in an intermediate state). However, for each of the transitions for which the "clock is reset" a

separate multi-state (network) meta-analysis needs to be performed. For example, imagine a cost-

effectiveness model of sequential cancer treatment consisting of four health states: 1) stable disease

with first line treatment, 2) progression with first line treatment/stable disease with second line

treatment, 3) progression with second line treatment, and 4) death. First-line treatment transitions

from stable-to-progression and stable-to-death are estimated with one multi-state NMA model based

on first line trials, and the second-line treatment transitions from stable-to-progression and stable-

to-death are estimated with another multi-state NMA model based on second line trials.

All studies provided PFS and OS Kaplan-Meier data in the example analyses. In principle, the NMA

model can be extended to create a shared-parameter model to incorporate studies that only provide

information for PFS or only for OS. Studies with only PFS data provide evidence regarding the
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stable-to-progression and stable-to-death transitions and contribute to estimating the correspond-

ing treatment specific hazard ratios if these are assumed fixed or exchangeable across all studies

providing direct or indirect evidence for that particular intervention. (When a meta-analysis of ab-

solute effects with the overall reference treatment is performed, the fixed effects or exchangeability

assumption applies to the transition rates.) Incorporating studies that only provide OS data for a

particular intervention in the NMA will require the additional assumption of fixed or exchangeable

rates for one of the transitions across all studies for that intervention, if treatment is assumed to

impact more than just the stable-to-progression transition in order to facilitate parameter estima-

tion. A related topic for future research is whether and how this framework can be used to validate

PFS as a surrogate for OS and to predict OS for novel interventions for which only mature PFS is

available. This will be of great benefit for cost-effectiveness analyses.

5 Conclusion

We introduced a method for the joint meta-analysis of PFS and OS that is based on a non-

homogenous Markovian tri-state transition model. Arbitrary hazard rate functions can be approx-

imated by piecewise constant hazard rates at successive time intervals, and are flexibly modeled as

(fractional) polynomial functions of time. The proposed approach relaxes the proportional hazards

assumption, extends to a network of more than two treatments, and simplifies the parameterization

of decision and cost-effectiveness analyses. The data needed to run these analyses can be extracted

directly from published survival curves.
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Appendices

A Constructing dataset for analyses

Data inputs required are the coordinates extracted from digitally scanned PFS and OS Kaplan-Meier

curves: time points (u),corresponding survival probabilities (S(u)), and corresponding population

size at risk (nu). These points must capture all steps in the curve, and may require adjustments

to the extracted coordinates to ensure the survival probabilities are decreasing with time. For both

curves it should include the times at which numbers at risk are reported below the curve.

The total follow-up time can be partitioned into M successive non-overlapping intervals indexed by

m = 1, ...,M . We refer to interval m as Um and write u ∈ Um to denote um ≤ u < um+1. The

length of Um is ∆um = um+1− um. For each time interval m, we want to obtain three data points:

At the beginning of the interval, um; at the mid point, um + 1
2∆um, which we define as um+ 1

2
; and

at the end of the interval, um+1. It is desirable to have the time intervals defined in such a way

that (some) of these time points are aligned with the time point for which the size of the at-risk

population is reported below the published Kaplan-Meier curves, and are the same for PFS and OS

where available. For the current study, we used intervals with a length of 2 months.
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If no PFS or OS proportion have been recorded for a specific time point of interest (i.e. whole

months), a corresponding value for S(u) can be obtained by linear interpolation of the first available

extracted scanned survival proportions before and after this time point.

When the population nu is not reported below the PFS and OS Kaplan-Meier curve for certain time

points u, it can be imputed. First, based on the reported size of the at-risk population at subsequent

time points (nu+1), nu will be estimated according to nbcu = nbcu+1/(
S(u+1)
S(u) ). With this ’backward

calculation’ approach we implicitly assume that censoring occurs before the events happen within a

time interval. However, this approach is not feasible if there is no information regarding the at-risk

population for time intervals beyond the at-risk population reported at a certain time point. In other

words, this approach is only feasibly for intervals up to the latest time point for which population

is reported. Next, nu will be estimated according to nfcu = nfcu−1/(
S(u)
S(u−1)) . The disadvantage of

this ’forward calculation’ approach is that censoring is ignored and the sample size potentially too

large for those timepoints. For intervals where both nbcu and nfcu was calculated, the actual estimate

for the population at-risk is calculated as: nu = min(nbcu , n
fc
u ) to ensure the sample size is not

overestimated. For time points where nbcu could not be calculated, nu = nbcu .

Based on the subsequent S(u) for the three points at each interval (i.e. S(um), S(um+ 1
2
), and

S(um+1)), two conditional survival proportions are obtained:
S(u

m+1
2
)

S(um) and S(um+1)
S(um) . The corre-

sponding sample sizes are defined as ncu = num . The corresponding observed number of patients

who have not yet experienced progression or death are calculated according to rcu = ncu ∗ ( S(u)
S(um)).

Applying this algorithm to PFS and OS of each arm i of each trial k, we get a data set with ncPFSiku ,

rcPFSiku , ncOSiku and rcOSiku .

We set-up the event dataset such that every row represents one time interval with ncPFSiku , rcPFSiku ,

ncOSiku and rcOSiku corresponding to um+ 1
2
and um+1. In addition, each row has a variable related to

follow-up time um+ 1
2
, two variables related to um+ 1

2
− um and um+1 − um, the study number, and

study-arm number within that study.

In additon to the event dataset, we create a study dataset indicating the compared interventions in

each study along with the number of study arms.

B States and between-state transition rates

B.1 Dynamic transitions - Problem specification

Figure 1 represents a closed dynamic system (Sik(u) + Pik(u) + Dik(u) = 1) whose evolution is

determined by a known initial condition at time u = 0 and three differential equations:
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(Sik(0), Pik(0), Dik(0)) = (1, 0, 0)

∂Sik(u)

∂u
= −Sik(u)hSPik (u)− Sik(u)hSDik (u)

∂Pik(u)

∂u
= Sik(u)hSPik (u)− Pik(u)hPDik (u)

∂Dik(u)

∂u
= Sik(u)hSDik (u) + Pik(u)hPDik (u)

(A1)

with hSPik (u), hSDik (u), and hPDik (u) the time-varying hazard rates for the transitions in the figure.

B.2 Aproximating arbitrary hSPik , h
SD
ik , and hPDik

We can approximate arbitrary hazard rate functions with a set of discontinuous constant hazard

rates over successive time intervals. We prefer this approximation because the system Equation A1

can be solved analytically when the transition rates are constant using the the eigenvalue method

for first-order differential equations. For u ∈ Um Equation A1 become:

(Sik(um), Pik(um), Dik(um)) = [known]
∂Sik(u)

∂u
= −Sik(u)hSPikm − Sik(u)hSDikm

∂Pik(u)

∂u
= Sik(u)hSPikm − Pik(u)hPDikm

∂Dik(u)

∂u
= Sik(u)hSDikm + Pik(u)hPDikm

(A2)

B.3 Analytic solutions for Sik(u), Pik(u), and Dik(u) where u ∈ Um

Write the system in Equation A2 in matrix form:


∂Sik(u)
∂u

∂Pik(u)
∂u

∂Dik(u)
∂u

 =

−hSPikm − hSDikm 0 0
hSPikm −hPDikm 0
hSDikm hPDikm 0

Sik(u)
Pik(u)
Dik(u)

 , or

∂Sik(u)

∂u
= AikSik(u)

(A3)

with the obvious notational correspondence between the two equations. For u ∈ Um the system is

homogenous and its general solution is the superposition:
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Sik(u) = c1,ikv1ike
λ1,ik(u−um) + c2,ikv2ike

λ2,ik(u−um) + c3,ikv3ike
λ3,ik(u−um) (A4)

where λ1,ik, λ2,ik, and λ3,ik are the eigenvalues of the coefficient matrix Aik.v1ik, v2ik and v3ik are

the corresponding eigenvectors, and c1,ik, c2,ik, c3,ik scalar constants to be identified from the initial

condition in Equation A2. In our case:

λ1,ik = −hSPikm − hSDikm
λ2,ik = hPDikm

λ3,ik = 0

(A5)

The eigenvectors are:

v1ik = (
hPDikm − hSPikm − hSDikm

hSDikm − hPDikm
,

hSPikm
hSDikm − hPDikm

, 1)′

v2ik = (0,−1, 1)′

v3ik = (0, 0, 1)′

(A6)

B.3.1 Identification of constants in the general solution

The constants c1,ik, c2,ik, c3,ik are identied from the proportions at the beginning of Um. Setting

u = um in the general solution, and using the initial condition in Equation A1 and Equation A2 we

obtain:

c1,ik =
Sik(um)

v11,ik

c2,ik = Sik(um)
v12,ik
v11,ik

− Pik(um)

c3,ik = 1− Sik(um)− Sik(um)

v11,ik
− Sik(um)

v12,ik
v11,ik

(A7)

where vxy,ik is element x of eigenvector y.

B.3.2 Solution for Sik(u), u ∈ Um

Substituting c1,ik, c2,ik, c3,ik from Equation A7 in Equation A4 we obtain for Sik(u) :
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Sik(u) = c1,ikv11,ike
λ1,ik(u−um) + c2,ikv21,ike

λ2,ik(u−um) + c3,ikv31,ike
λ3,ik(u−um)

which becomes:

Sik(u) = Sik(um)e−(h
SP
ikm+hSD

ikm)(u−um)

(A8)

B.3.3 Solution for Pik(u), u ∈ Um

Substituting c1,ik, c2,ik, c3,ik from Equation A7 in Equation A4 we obtain for Pik(u) :

Pik(u) = c1,ikv12,ike
λ1,ik(u−um) + c2,ikv22,ike

λ2,ik(u−um) + c3,ikv32,ike
λ3,ik(u−um)

which becomes:

Pik(u) = Pik(um)e−h
PD
ikm(u−um) +

S(um)hSPikm(e−(h
SP
ikm+hSD

ikm)(u−um) − e−hPD
ikm(u−um))

hPDikm − hSPik − hSDikm

(A9)

B.3.4 Solution for Dik(u), u ∈ Um

Using Equation A1, Equation A8, and Equation A9 we obtain:

Dik(u) = 1− Sik(u)− Pik(u) (A10)

C Online supplement

C.1 Kaplan-Meier curves
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Figure A1: ARCHER-1050, progression-free survival and overall survival
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Figure A2: LUX-LUNG 7, progression-free survival and overall survival
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Figure A3: LUX-LUNG 3, progression-free survival and overall survival
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Figure A4: LUX-LUNG 6, progression-free survival and overall survival
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Figure A5: EURTAC, progression-free survival and overall survival
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Figure A6: ENSURE, progression-free survival and overall survival

37

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 16, 2020. ; https://doi.org/10.1101/2020.11.13.20231332doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.13.20231332


Figure A7: OPTIMAL, progression-free survival and overall survival
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Figure A8: FirstSIGNAL, progression-free survival and overall survival
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Figure A9: WJTOG3405, progression-free survival and overall survival
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Figure A10: IPASS, progression-free survival and overall survival
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Figure A11: NEJ002, progression-free survival and overall survival
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Figure A12: Han 2017, progression-free survival and overall survival
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Figure A13: Yang 2014 and Yang 2016, progression-free survival and overall survival

44

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 16, 2020. ; https://doi.org/10.1101/2020.11.13.20231332doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.13.20231332


C.2 JAGS code random effects NMA model

Example JAGS code corresponding to model SP Weibull RE2; SD exponential; PD Weibull FE1(scale)

has been presented here.

model{

# Likelihood for conditional survival probabilities

for (i in 1:Nd){

r_cond_pfs1[i]~dbinom(cond_pfs[i,1], n_cond_pfs1[i])

r_cond_pfs2[i]~dbinom(cond_pfs[i,2], n_cond_pfs2[i])

r_cond_os1[i]~dbinom(cond_os[i,1], n_cond_os1[i])

r_cond_os2[i]~dbinom(cond_os[i,2], n_cond_os2[i])

}

# transformation of conditional survival probabilities to survival probabilities

p4[1]<-1

p5[1]<-0

for (i in 2:Nd){

p4[i]<-equals(a[i]-a[i-1],0)*p[(i-1),4] + (1-equals(a[i]-a[i-1],0))*1

p5[i]<-equals(a[i]-a[i-1],0)*p[(i-1),5] + (1-equals(a[i]-a[i-1],0))*0

}

for (i in 1:Nd){

cond_pfs[i,1]<-p[i,1]/p4[i]

cond_pfs[i,2]<-p[i,4]/p4[i]

cond_os[i,1]<-(p[i,1]+p[i,2])/(p4[i]+p5[i])

cond_os[i,2]<-(p[i,4]+p[i,5])/(p4[i]+p5[i])

# transformation of survival probabilities in time-varying hazards

# for transitions between health states

p[i,1]<- p4[i]*exp(-(h.sd[i]+h.sp[i])*dt[i,1])

p[i,2]<- p5[i]*exp(-h.pd[i]*dt[i,1])+p4[i]*h.sp[i]*(exp(-(h.sd[i]+h.sp[i])*dt[i,1])

-exp(-h.pd[i]*dt[i,1]))/(h.pd[i]-h.sp[i]-h.sd[i])
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p[i,3]<-1-(p[i,1]+p[i,2])

p[i,4]<- p4[i]*exp(-(h.sd[i]+h.sp[i])*dt[i,2])

p[i,5]<- p5[i]*exp(-h.pd[i]*dt[i,2])+p4[i]*h.sp[i]*(exp(-(h.sd[i]+h.sp[i])*dt[i,2])

-exp(-h.pd[i]*dt[i,2]))/(h.pd[i]-h.sp[i]-h.sd[i])

p[i,6]<-1-(p[i,4]+p[i,5])

# decribe hazards as a function of time

log(h.sp[i])<- Beta[s[i],a[i],1]+Beta[s[i],a[i],2]*timetrans1[i]

log(h.sd[i])<- Beta[s[i],a[i],3]

log(h.pd[i])<- Beta[s[i],a[i],4]+Beta[s[i],a[i],5]*timetrans1[i]

}

# random effects model

for (l in 1:Ns){

for (ll in 1:na[l]){

Beta[l,ll,1]<-mu[l,1]+delta[l,ll]

Beta[l,ll,2]<-mu[l,2]+d[t[l,ll],2]-d[t[l,1],2]

Beta[l,ll,3]<-mu[l,3]

Beta[l,ll,4]<-mu[l,4]+d[t[l,ll],3]-d[t[l,1],3]

Beta[l,ll,5]<-mu[l,5]

}

w[l,1]<-0

delta[l,1]<-0

for (ll in 2:na[l]){

delta[l,ll]~dnorm(md[l,ll],taud[l,ll])

md[l,ll]<-d[t[l,ll],1]-d[t[l,1],1] +sw[l,ll]

w[l,ll] <- (delta[l,ll] - d[t[l,ll],1] + d[t[l,1],1])

sw[l,ll] <- sum(w[l,1:(ll-1)])/(ll-1)

taud[l,ll] <- tau *2*(ll-1)/ll

}

}

# priors

for (j in 1:Ns){
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mu[j,1:5] ~ dmnorm(prior_mean_mu[1:5],prior_varcov_mu[,])

}

d[1,1]<-0

d[1,2]<-0

d[1,3]<-0

for (k in 2:Nt){

d[k,1:3] ~ dmnorm(prior_mean_d[1:3],prior_varcov_d[,])

}

sd~dunif(0,2)

tau<-1/(sd*sd)

# output

for (k in 2:Nt){

for (u in 1:48){

log(HR.SP[1,k,u])<-(d[k,1]-d[1,1])+(d[k,2]-d[1,2])*log(u)

log(HR.SD[1,k,u])<-0

log(HR.PD[1,k,u])<-(d[k,3]-d[1,3])

}

}

mu_mean[1]<--3.515819945

mu_mean[2]<-0.483167097

mu_mean[3]<--5.629762593

mu_mean[4]<--2.920038722

mu_mean[5]<--0.036010675

for (k in 1:Nt){

beta1[k]<-mu_mean[1]+d[k,1]

beta2[k]<-mu_mean[2]+d[k,2]

beta3[k]<-mu_mean[3]

beta4[k]<-mu_mean[4]+d[k,3]

beta5[k]<-mu_mean[5]

}
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for (k in 1:Nt){

for (u in 1:48){

log(HAZARD.SP[k,u])<-(beta1[k])+(beta2[k])*log(u)

log(HAZARD.SD[k,u])<-(beta3[k])

log(HAZARD.PD[k,u])<-(beta4[k])+(beta5[k])*log(u)

}}

for (k in 1:Nt){

P.S[k,1]<-1*exp(-(HAZARD.SD[k,1]+HAZARD.SP[k,1]))

P.P[k,1]<-0*exp(-HAZARD.PD[k,1])+1*HAZARD.SP[k,1]*(exp(-(HAZARD.SD[k,1]+HAZARD.SP[k,1]))

-exp(-HAZARD.PD[k,1]))/(HAZARD.PD[k,1]-HAZARD.SP[k,1]-HAZARD.SD[k,1])

PFS[k,1]<-P.S[k,1]

OS[k,1]<-P.S[k,1]+P.P[k,1]

for (u in 2:48){

P.S[k,u]<-P.S[k,(u-1)]*exp(-(HAZARD.SD[k,u]+HAZARD.SP[k,u]))

P.P[k,u]<-P.P[k,(u-1)]*exp(-HAZARD.PD[k,u])+P.S[k,(u-1)]*HAZARD.SP[k,u]

*(exp(-(HAZARD.SD[k,u]+HAZARD.SP[k,u]))

-exp(-HAZARD.PD[k,u]))/(HAZARD.PD[k,u]-HAZARD.SP[k,u]-HAZARD.SD[k,u])

PFS[k,u]<-P.S[k,u]

OS[k,u]<-P.S[k,u]+P.P[k,u]

}

}

}
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