
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 00.0000/XXXX.0000.DOI

Quantitative Assessment of Chest CT
Patterns in COVID-19 and Bacterial
Pneumonia patients: A Deep Learning
Perspective
MYEONGKYUN KANG1, PHILIP CHIKONTWE1, MIGUEL LUNA1, KYUNG SOO HONG2, JONG
GEOL JANG2, JONGSOO PARK3, KYEONG-CHEOL SHIN2, JUNE HONG AHN2, AND SANG
HYUN PARK1.
1Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
2Division of Pulmonology and Allergy, Department of Internal Medicine, Regional Center for Respiratory Diseases, Yeungnam University Medical Center,
College of Medicine, Yeungnam University, Daegu, Korea
3Department of Radiology, Seoul National University Hospital, Seoul, Korea

Corresponding author: Sang Hyun Park (e-mail: shpark13135@dgist.ac.kr) and June Hong Ahn (e-mail: fireajh@gmail.com).

This work was supported by the Yeungnam University Research Fund (2020) and the National Research Foundation of Korea (NRF) grant
funded by the Korean Government (MSIT) (No.2019R1C1C1008727).

ABSTRACT As the number of COVID-19 patients has increased worldwide, many efforts have been
made to find common patterns in CT images of COVID-19 patients and to confirm the relevance of
these patterns against other clinical information. The aim of this paper is to propose a new method that
allowed us to find patterns which observed on CTs of patients, and further we use these patterns for
disease and severity diagnosis. For the experiment, we performed a retrospective cohort study of 170
confirmed patients with COVID-19 and bacterial pneumonia acquired at Yeungnam University hospital
in Daegu, Korea. We extracted lesions inside the lungs from the CT images and classified whether these
lesions were from COVID-19 patients or bacterial pneumonia patients by applying a deep learning model.
From our experiments, we found 20 patterns that have a major effect on the classification performance
of the deep learning model. Crazy-paving was extracted as a major pattern of bacterial pneumonia, while
Ground-glass opacities (GGOs) in the peripheral lungs as that of COVID-19. Diffuse GGOs in the central
and peripheral lungs was considered to be a key factor for severity classification. The proposed method
achieved an accuracy of 91.2% for classifying COVID-19 and bacterial pneumonia with 95% reported for
severity classification. Chest CT analysis with constructed lesion clusters revealed well-known COVID-19
CT manifestations comparable to manual CT analysis. Moreover, the constructed patient level histogram
with/without radiomics features showed feasibility and improved accuracy for both disease and severity
classification with key clinical implications.

INDEX TERMS Bacterial Pneumonia, COVID-19, Cluster Analysis, Computed Tomography, Deep
Learning.

I. INTRODUCTION

The SARS-CoV-2 pandemic virus originated in Wuhan,
China in 2019, has spread rapidly to several countries [1].
RT-PCR of viral nucleic acid is regarded as the reference
standard for the diagnosis of COVID-19, but chest CT ex-
amination is mostly recommended for evaluating severity
and treatment efficacy given the primary involvement of the
respiratory system. Also, CT imaging can be effective for

early screening compared to RT-PCR that has shown low
sensitivity for early detection [2]–[4]. Therefore, there is an
urgent need for fast and accurate diagnostic tests other than
RT-PCR.

There are well-known features of COVID-19 often ob-
served in CT imaging such as GGOs distributed in the
peripheral or posterior lungs [5]–[7]. However, these pat-
terns are often limited and contribute to the challenge of
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FIGURE 1. Flow chart.

distinguishing COVID-19 from other pneumonia types [8],
[9]. Furthermore, since COVID-19 CT manifestations are
often observed with mixed or subtle radiological differences,
accurate description is challenging even when referencing
Fleischner Society listed terms [10].

Recent advances in artificial intelligence with deep learn-
ing have shown success in the medical imaging commu-
nity given the robust feature extraction capability of deep
networks [11]. Herein, we analyzed chest CT scans from
73 COVID-19 and 97 bacterial pneumonia patients from
Daegu, Korea. We propose a deep learning-based framework
to create accurate descriptions of CT manifestations related
to COVID-19. Specifically, we segmented lung and lesion
regions via a segmentation model and then trained a clas-
sification model using all lesion patches and assigned them
to one of two categories i.e. COVID-19 or bacterial pneu-
monia. The features extracted by the classification model
were clustered into 20 groups via a K-means clustering
algorithm [12]. Three experts confirmed that the patterns
displayed in each cluster were clinically related to the typical
findings of COVID-19.

For each patient, we further constructed a histogram of
lesion patches given information of the 20 clusters to ob-
tain a single representative feature vector per 3D CT image
alongside radiomics features via concatenation. Finally, the
features were employed to train classifiers for (i) distinguish-
ing COVID-19 from bacterial pneumonia patients, and (ii) to
assess disease severity (non-severe/severe) cases to confirm
the generalization ability of the features. For the first task,
the proposed method showed a 3.7% improvement over con-
ventional majority based classification with deep learning,
whereas 12.5% was reported for the severity classification

task further highlighting the benefit of the proposed feature
extraction strategy with significant margins observed across
several metrics.

II. MATERIALS AND METHODS
A. STUDY DESIGN AND SUBJECT

We performed a retrospective cohort study of CT scans of 73
patients with COVID-19 infection obtained between Febru-
ary 2020 to March 2020, and 97 patients with bacterial pneu-
monia between March 2012 to February 2014 at Yeungnam
University Medical Center, in Daegu, Korea. This study was
conducted in accordance with the tenets of the Declaration of
Helsinki and was reviewed and approved by the Institutional
Review Board of Yeungnam University Hospital (YUH IRB
2020-05-030). The requirement for informed consent was
waived due to the retrospective study design. During the
study period, all consecutive adult patients (age > 18 years)
with SARS-CoV-2 infection admitted to the hospital were
eligible for inclusion. SARS-CoV-2 infection was confirmed
by real-time RT-PCR assay of nasal and pharyngeal swab
samples. Severity was defined as a composite outcome of
acute respiratory distress syndrome (ARDS), intensive care
unit admission, or death. ARDS was diagnosed according
to the Berlin definition [13]. Figure 1 shows the flow chart
of data collection, exclusion and splitting ratios applied for
training and evaluation.

B. IMAGING PATTERN ANALYSIS USING DEEP
LEARNING

To analyze the COVID-19 manifestations using deep learn-
ing, the proposed framework consists of three key modules
i.e. (a) lung and lesion segmentation, (b) deep feature ex-
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FIGURE 2. Diagram of the modeling framework. For analyzing the imaging patterns, the segmentation models were employed to extract regions of interest of the
lung and lesions in the chest CT scans. Then, the ResNet50 model takes lesion cropped patches as input and returns a label prediction and a 2048-dimensional
feature vector. Next, the K-means clustering algorithm was used to cluster 2D lesion features into 20 groups. To verify the usability of these patterns, (i) majority
voting; (ii) constructed histogram with SVM; and (iii) Radiomics features (with/without constructed histogram) with SVM were employed. Disease and severity
classification tasks were performed.

traction, and (c) K-means clustering modules, respectively.
Figure 2(a) shows a diagram of the framework.

A Mask-cascade-RCNN-ResNeSt-200 with deformable
convolution neural network (DCN) architecture was em-
ployed in module (a) to extract the lung and lesion regions
in the chest CT scans [14], [15]. The lung segmentation
model was trained and evaluated on a total 51,978 manually
segmented slices (train: 50,756, test: 1,222) from two public
datasets (NSCLC, 20cases) [16], [17]. For the lesion segmen-
tation task, 6,971 manually segmented slices (train: 5,854,
test: 1,117) from three publicly available datasets were used
i.e. (20cases, MosMed, MSD) [17]–[19]. Then, for the data
from Yeungnam University Medical Center, lesions were

extracted using the trained models. The patches smaller than
13mm were not used to avoid misclassification caused by
wrong segmentation or noise such as motion artifacts, as this
may have a negative effect on subsequent analysis.

The deep neural network in module (b) employed a
ResNet50 model trained to differentiate lesion patches of
COVID-19 from those of bacterial pneumonia patients [20].
The model took a lesion cropped patch as input and returned
a label prediction. A total of 12,235 lesion patches (train:
6,181, test: 6,054) from 170 patients were employed. A 2048-
dimensional feature vector extracted from the intermediate
layer of the ResNet50 model used in the clustering phase,
i.e., module (c).
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FIGURE 3. Visualization of the lesion patches from 170 patients into two-dimensions. (a) K-means clusters (20 groups) were used for distinction. Different color
edge represents different groups. (b) True diagnosis was used for distinction. Purple color represents non-severe COVID-19, magenta represents severe COVID-19,
and green for bacterial pneumonia.

FIGURE 4. (a) Typical COVID-19 CT manifestations - GGOs with interlobular septal thickening in the peripheral lungs - were observed in cluster 4 and 17. (b)
bacterial pneumonia CT manifestation – crazy-paving appearance in the posterior lungs – observed in cluster 5 and 10. (c) Cluster 8 showed the lowest t-test
P-value <0.001 for diseased and severe groups which is the typical pattern for severe COVID-19 patients i.e. diffuse GGOs in the central and peripheral lungs. (d)
Bacterial pneumonia CT manifestation – extensive consolidation with air-bronchogram – was observed in cluster 14. These clusters showed a t-test P-value <0.001.
Lesions were colored based on K-means clustering result.

In module (c), the K-means algorithm was applied to clus-
ter the lesion features into 20 groups. To profile the typical or
relatively atypical imaging features of COVID-19, a total of
12,235 lesion patches from 170 patients were represented in
two-dimensional space via a t-distributed Stochastic Neigh-
bor Embedding based reduction of the 2048-dimensional
feature vectors [21]. The lesion images in each cluster ini-
tially grouped by K-means were later manually described by
one radiologist (Jongsoo Park) using imaging terms, wherein
three pulmonologists (Kyung Soo Hong, Jong Geol Jang, and

June Hong Ahn) evaluated the descriptions and reached a
consensus.

C. VERIFICATION OF SELECTED IMAGING PATTERNS

Patient-level diagnosis can be achieved by aggregating the
lesion-level predictions using majority voting. However, in
this way, it is difficult to analyze what patterns the patient has
and which combination of patterns are highly correlated with
the disease or severity. To further quantify the diagnostic per-
formance of the extracted imaging patterns, we constructed
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FIGURE 5. Mean histograms i.e. (a) mean histogram of COVID-19; (b) mean histogram of bacterial pneumonia; (c) mean histogram of severe COVID-19 patients;
(d) mean histogram of non-severe COVID-19 patients.

a histogram of lesion types using the clusters obtained via
module (c) for each CT. Figure 2(b) shows a diagram of
the evaluation framework. In addition, the constructed his-
tograms were analyzed using an independent two-sample t-
test to evaluate the significance of each cluster regarding:
(i) COVID-19 and bacterial pneumonia patients, (ii) severe
and non-severe cases. A two-tailed P <0.05 was taken to
indicate statistical significance. All statistical analyses were
performed using Scipy (1.5.0, https://www.scipy.org/). Fur-
thermore, we compared the mean histograms to confirm
cluster relevance using the mean of each histogram in each
group i.e. COVID-19, bacterial pneumonia, severe, and non-
severe. The cluster which showed high statistical significance
(P <0.001) indicated a significant value differences when
performing mean histogram comparison.

Furthermore, we compared the classification accuracy be-
tween majority voting of the lesion-level predictions and
SVM based inference which was trained on a combination
of the proposed histogram with radiomics features. A total of
107 features were extracted using radiomics from each CT
volume, including first-order statistics, shape-based features,
etc. Finally, 20 features from our proposed histogram and
107 features from radiomics features were combined. We
compared the performance with/without the combination of
the radiomic features to verify effectiveness.

III. RESULTS
A. DEMOGRAPHIC AND CLINICAL CHARACTERISTICS
Hospitalized patients with confirmed COVID-19 (73 pa-
tients) and bacterial pneumonia (97 patients) were included
in this study (Fig. 1). Baseline characteristics of all patients
are summarized in Table 1. The patients in the COVID-19
group were older than the patients in the bacterial pneumonia
group (58.70 ± 16.49 vs. 39.86 ± 8.69, p <0.001). 36 patients
(49.3%) of COVID-19 and 55 patients (56.7%) of bacterial
pneumonia were male. Body temperature (37.21 ± 0.67 vs.
37.76 ± 0.92, p <0.001), and heart rate (86.70 ± 13.94
vs. 94.37 ± 16.91, p =0.020) were significantly lower in
patients with COVID-19. Systolic blood pressure (128.55 ±
19.44 vs. 115.71 ± 19.42, p <0.001), and diastolic blood
pressure (80.74 ± 12.15 vs. 71.42 ± 13.52, p <0.001) were
significantly higher for COVID-19 patients.

FIGURE 6. Representative slices which showed an average dice coefficient
score (78.06%) for lesion segmentation i.e. (a) slice showed a dice coefficient
score of 77.08%; (b) slice showed a dice coefficient score of 78.31%. Red
color represents a manual segmentation by human and green color represents
an automated segmentation by the trained segmentation model. Due to the
ambiguity of lesion boundaries, an average dice score of 78.06% showed
satisfactory lesion segmentation results for the deep feature extractor.

B. DEEP CHEST CT MANIFESTATIONS

We summarize the deep chest CT manifestations observed in
Table 2, with lesion patches visualized in Figure 3, respec-
tively. Typical COVID-19 CT manifestations such as GGOs
with interlobular septal thickening in the peripheral lungs
were observed in clusters 4 and 17 (See Figure 4(a)). On
the other hand, manifestations typical to bacterial pneumonia
such as crazy-paving appearance in the posterior lungs were
observed in clusters 5 and 10, as presented in Figure 4(b).
These typical clusters showed P-values less than 0.001.

Notably, 15 out of the 20 clusters showed key charac-
teristics for the discrimination of COVID-19 from bacterial
pneumonia with P-values less than 0.001. Among 15 clusters,
three clusters with P-values less than 0.001 were shown to be
key for severity classification. Moreover, two clusters could
classify both COVID-19 and severe patients, with one of
the clusters (#8) showed diffuse GGOs in the central and
peripheral lungs which represents a typical severe COVID-19
CT manifestation. Figure 4(c) presents the severe COVID-19
patient’s CT manifestations.

In principle, the observed relative differences between
lesion clusters are key to better understand the entire lesion
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TABLE 1. Characteristics of the study participants with COVID-19 and bacterial pneumonia.

Variables COVID-19 (n=73) Bacterial pneumonia (n=97) P-value
Age, yr 58.70 (16.49) 39.86 (8.69) 0.0000
Male, sex 36 (49.3) 55 (56.7) 0.3903
Vital signs on admission
Body temperature, °C 37.21 (0.67) 37.76 (0.92) 0.0000
Heart rate, beats/min 86.70 (13.94) 94.37 (16.91) 0.0020
Systolic BP, mm Hg 128.55 (19.44) 115.71 (19.42) 0.0000
Diastolic BP, mm Hg 80.74 (12.15) 71.42 (13.52) 0.0000
Data are presented as the mean ± standard deviation or number (%)

TABLE 2. Summary of lesion cluster with imaging description term and P-value results. The t-test were performed for diseased and severe groups, respectively.

Cluster Color Description Typical Diagnosis
P-value

Severe
P-value

1 Multifocal GGO in the peripheral lung, bilateral. COVID-19 0 0.0007
2 Mixed consolidations and GGOs in the posterior lung, unilateral. Intermediate 0.0066 0.7134
3 Focal consolidation in the posterior lung. Bacterial 0 0.0685
4 GGOs with interlobular septal thickening in the peripheral lungs, bilateral. COVID-19 0 0.0817
5 Crazy-paving appearance with/without consolidation, diffuse. Bacterial 0.0001 0.5564
6 Consolidation or clustered micronodules along the bronchovascular bundle,

bronchopneumonia pattern.
Bacterial 0 0.0027

7 Multifocal GGO with round morphology, bilateral. COVID-19 0 0.0119
8 Diffuse GGOs in the central and peripheral lungs, bilateral. COVID-19 0 0
9 Consolidation and GGO with interlobular septal thickening, unilateral. Bacterial 0 0.0137
10 Crazy-paving appearance in the posterior lungs. Bacterial 0.0003 0.4377
11 Segmental consolidation in the unilateral or bilateral lungs. Bacterial 0 0.81
12 Mixed consolidations and GGOs in the posterior lung, bilateral. COVID-19 0 0.4668
13 Subtle GGO in the lower lung. Bacterial 0 0.0008
14 Extensive consolidation with air-bronchogram in the bilateral lungs. Bacterial 0 0.1286
15 GGO with reticular opacity in both lower lungs. Intermediate 0.0975 0.806
16 Mixed consolidation with GGO in the peripheral lung, unilateral. Intermediate 0.06 0.0688
17 GGOs with interlobular septal thickening in the peripheral lungs, bilateral. COVID-19 0 0.0015
18 Consolidation or clustered nodules along the bronchovascular bundle. Bacterial 0 0.534
19 Consolidation or GGO along the bronchovascular bundle. Intermediate 0.0056 0.0092
20 Multifocal GGO with interlobular septal thickening, bilateral. Intermediate 0.1636 0.7145

distribution. As shown in Figure 4(d), extensive consolida-
tion with air-bronchogram was observed in severe bacterial
pneumonia patients. Compared with the severe COVID-19
patients who mainly showed diffuse GGOs, we could easily
distinguish the difference in patterns observed in the later
stages of disease onset.

To confirm cluster relevance, we compared the mean his-
tograms of different tasks as presented in Figure 5. The
clusters showed high significance (P <0.001) in Table 2 also
showed a significantly different values in mean histogram
comparison. Notably, the mean histogram of COVID-19 can
be discriminated from bacterial pneumonia by comparing the
considerably increased values in cluster 1, 4, 7, 12, and 17.
On the other hand, the mean histogram of bacterial pneu-
monia can be discriminated from COVID-19 by comparing
the significantly increased values of cluster 3, 6, 9, 11, 13,
14, and 18. In addition, the mean histogram of the severe
COVID-19 patient shows consistently increased values in
cluster 8 compared to the mean histogram of the non-severe
COVID-19 patient. This indicates that the diagnosis is highly
relevant to the presence of a lesion in a certain cluster, and
the patient with a lesion in cluster 8 can be considered as
a more severe COVID-19 patient than patients with lesions
in other clusters. In summary, the cluster interpreted by the
radiologist as being highly relevant to typical COVID-19

and bacterial pneumonia patterns showed high correlation
with P-value significance in statistical analyses, with notable
differences observed in mean histogram comparison.

C. DISEASE AND SEVERITY CLASSIFICATION
In Table 3, we present disease classification accuracy across
several metrics under different settings. First, the baseline
method based on majority voting of predictions achieved
87.5% accuracy for COVID-19 patient classification. For the
SVM classifier, we consider two scenarios, (i) with histogram
features only or (ii) with radiomic features only. Notably,
the classifier trained under the first setting achieved 88.7%
accuracy; a minor improvement over the baseline, whereas
in setting (ii) - 81.25% was reported, a considerable decrease
from the other models. However, when the SVM classifier
was trained with both radiomics and histogram features,
accuracy significantly improved to 91.2% from 87.5%. This
further shows that the features learned by deep learning are
highly robust for accurate patient diagnosis. In addition, the
constructed histograms can accurately express the correla-
tion of lesion features observed in each patient and/or can
represent some combination of patterns that could lead to a
severe outcome of a disease diagnosis. In comparison to the
naïve aggregation method baseline i.e. majority voting, often
highly limited in patient-level representations; the proposed

6 VOLUME 0, 0000

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
preprint in perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the(which was not certified by peer review)this preprint 
The copyright holder forthis version posted November 19, 2020. ; https://doi.org/10.1101/2020.11.13.20231118doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.13.20231118
http://creativecommons.org/licenses/by-nc-nd/4.0/


TABLE 3. Test accuracy of COVID-19 diagnosis.

Model Accuracy (%) Sensitivity (%) Specificity (%)
Majority Voting 87.5 (70 of 80) 92.5 (37 of 40) 82.5 (33 of 40)
Radiomics only 81.25 (65 of 80) 87.5 (35 of 40) 75 (30 of 40)
Histogram only 88.7 (71 of 80) 85 (34 of 40) 92.5 (37 of 40)
Histogram with Radiomics 91.2 (73 of 80) 85 (34 of 40) 97.5 (39 of 40)

TABLE 4. Test accuracy of severity COVID-19 classification.

Model Accuracy (%) Sensitivity (%) Specificity (%)
Radiomics only 82.5 (33 of 40) 66.67 (4 of 6) 85.29 (28 of 34)
Histogram only 82.5 (33 of 40) 50 (3 of 6) 88.24 (30 of 34)
Histogram with Radiomics 95 (38 of 40) 83.3 (5 of 6) 97.06 (33 of 34)

deep feature representation highlights several key advan-
tages.

Table 4 shows the severity classification accuracy. In terms
of accuracy alone, SVM classifiers that only use either his-
togram or radiomics only achieved the same performance, i.e.
82.5% for both, with key differences noted in the sensitivity
and specificity of the models. On the other hand, when the
features were combined considerable improvement (+12.5%)
was noted i.e. 95% accuracy, surpassing previous models.
This may be attributed to the fact that the histogram is not
able to represent the absolute size difference of lesions, thus
the combination mitigates the issue. Rather than using a
single feature alone, the combination of features proved to
be invaluable for diagnosis.

D. LUNG AND LESION SEGMENTATION
The lung and lesion segmentation model achieved a dice co-
efficient score of 97.18%, and 78.06%, respectively. Figure 6
shows the lesion segmentation results around the average
dice coefficient score of 78.06%, which helps to qualitatively
understand the accuracy of lesion segmentation.

IV. DISCUSSION
Our deep chest CT analysis is in accordance with various CT
findings of COVID-19 patients reported in literature. Chung
et al. reported that typical CT findings of COVID-19 include
bilateral pulmonary GGO and consolidative opacities which
sometimes have a rounded morphology and are distributed in
the peripheral lung [22]. Song et al. reported that pure GGO
or GGO with reticular and/or interlobular septal thickening
with predominant distribution in the posterior or peripheral
lung involvements were observed in COVID-19 patients [5].
Caruso et al. highlighted the presence of the peripheral GGOs
associated with multilobe and posterior lung involvement
in COVID-19 patients in Italy [23]. Similar patterns were
also observed in our research i.e. GGO distributed in the
peripheral lungs in cluster 4 and 17, with multifocal GGOs
with round morphology in cluster 1 and 7, respectively.
Regarding the common findings of severe COVID-19, Pan et
al. report that an increase in GGO, consolidative opacities,
and interstitial septal thickening was noted, and Song et
al. reported that a significantly more GGOs including pure

GGO and a GGO with reticular and/or interlobular septal
thickening was observed in the later stages of COVID-19 [5],
[24]. An increase in GGOs in the central and peripheral
lung was observed in our study in cluster 8, therefore, the
published CT findings of severe COVID-19 patients show
high consistency with our study.

Radiomic features are considered a useful general purpose
analysis technique, i.e. for distinguishing the lung nodules
(malignant versus benign) or hospital stay (severity) predic-
tion [25], [26]. However, several limitations exist and fea-
tures alone are often insufficient to distinguish between dis-
eases when subtle radiological differences are observed in the
image. Discriminating COVID-19 from bacterial pneumonia
is regarded as one of the exemplars of such challenges. Here,
our method shows the benefit of using deep learning to obtain
more robust representations that are more clinically relevant
to key imaging characteristics for COVID-19 diagnosis. We
quantitatively show that the constructed histogram better
captures the overall statistics of the lesion features. Moreover,
the SVM classifier can diagnose diseases or patient’s severity
more accurately than the radiomics features alone.

Our method has two notable advantages compared to
common deep learning algorithms; interpretability and gen-
eralized representation. Common deep learning methods are
limited in interpretability even though they can visualize the
important regions using heatmaps [27], [28]. Our method can
explain the reasons of diagnosis by checking the presence
of specific patterns represented in the patient’s histogram.
We verified the key patterns with mean histograms for each
disease and severity group and found the important key
diagnostic imaging patterns in accordance with published
literature. This indicates that our method is safer and more
transparent for medical assistance. Moreover, although the
proposed feature learning model was not trained to classify
severity among patients, the obtained features are fairly
generalized for severity classification. The imaging features
were divided into 20 clusters and verified by radiologists
using imaging terms i.e. an independent representation of a
specific diagnosis. The constructed histogram can be used
for general diagnosis regardless of the trained diseases, thus
the constructed histogram showed considerable diagnostic
accuracy for severity classification.
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The proposed framework was trained only on a single in-
stitute cohort, therefore current models may fail to accurately
represent unobserved cohort CT manifestations. Moreover,
the demographic characteristics of the disease group showed
statistical significance. Even though these differences do not
affect the CT imaging features, our method will be evaluated
on multi center data in future for verification. Addition-
ally, the K-means algorithm requires an arbitrary number of
groups, it was set to 20 in this study even though it may not be
the optimal value. Applying better clustering algorithms and
selecting an optimal number of clusters will be the subject of
future research.

V. CONCLUSION
In conclusion, the CT images of COVID-19 in Daegu, Korea
were grouped into 20 clusters. These groups were analyzed
and compared with the patterns described in literature. To
verify the effectiveness of these clusters, we performed two
classification tasks by constructing histograms from the clus-
ters. We confirmed the correlations of the image patterns
extracted by the proposed method are more relevant to the
clinical setting than the common methods which use ra-
diomics or naïve deep features.

.

APPENDIX A

TABLE 5. Zoomed visualization of the lesion patches.

Cluster (a) (b) Description

1 Multifocal GGO in the peripheral lung,
bilateral.

(a) K-means clusters (20 groups) were used for distinction. Different color edges represent the different groups. (b) True diagnosis was used for distinction.
Purple represents non-severe COVID-19, magenta for severe COVID-19, and green represents bacterial pneumonia.
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Cluster (a) (b) Description

2 Mixed consolidations and GGOs in the
posterior lung, unilateral.

3 Focal consolidation in the posterior lung.

4 GGOs with interlobular septal thickening in
the peripheral lungs, bilateral.

5 Crazy-paving appearance with/without
consolidation, diffuse.

(a) K-means clusters (20 groups) were used for distinction. Different color edges represent the different groups. (b) True diagnosis was used for distinction.
Purple represents non-severe COVID-19, magenta for severe COVID-19, and green represents bacterial pneumonia.
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Cluster (a) (b) Description

6
Consolidation or clustered micronodules

along the bronchovascular bundle,
bronchopneumonia pattern.

7 Multifocal GGO with round morphology,
bilateral.

8 Diffuse GGOs in the central and peripheral
lungs, bilateral.

9 Consolidation and GGO with interlobular
septal thickening, unilateral.

(a) K-means clusters (20 groups) were used for distinction. Different color edges represent the different groups. (b) True diagnosis was used for distinction.
Purple represents non-severe COVID-19, magenta for severe COVID-19, and green represents bacterial pneumonia.
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Cluster (a) (b) Description

10 Crazy-paving appearance in the posterior
lungs.

11 Segmental consolidation in the unilateral or
bilateral lungs.

12 Mixed consolidations and GGOs in the
posterior lung, bilateral.

13 Subtle GGO in the lower lung.

(a) K-means clusters (20 groups) were used for distinction. Different color edges represent the different groups. (b) True diagnosis was used for distinction.
Purple represents non-severe COVID-19, magenta for severe COVID-19, and green represents bacterial pneumonia.
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Cluster (a) (b) Description

14 Extensive consolidation with
air-bronchogram in the bilateral lungs.

15 GGO with reticular opacity in both lower
lungs.

16 Mixed consolidation with GGO in the
peripheral lung, unilateral.

17 GGOs with interlobular septal thickening in
the peripheral lungs, bilateral.

(a) K-means clusters (20 groups) were used for distinction. Different color edges represent the different groups. (b) True diagnosis was used for distinction.
Purple represents non-severe COVID-19, magenta for severe COVID-19, and green represents bacterial pneumonia.
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Cluster (a) (b) Description

18 Consolidation or clustered nodules along
the bronchovascular bundle.

19 Consolidation or GGO along the
bronchovascular bundle.

20 Multifocal GGO with interlobular septal
thickening, bilateral.

(a) K-means clusters (20 groups) were used for distinction. Different color edges represent the different groups. (b) True diagnosis was used for distinction.
Purple represents non-severe COVID-19, magenta for severe COVID-19, and green represents bacterial pneumonia.
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