ABSTRACT
As the number of COVID-19 patients has increased worldwide, many efforts have been made to find common patterns in CT images of COVID-19 patients and to confirm the relevance of these patterns against other clinical information. The aim of this paper is to propose a new method that allowed us to find patterns which observed on CTs of patients, and further we use these patterns for disease and severity diagnosis. For the experiment, we performed a retrospective cohort study of 170 confirmed patients with COVID-19 and bacterial pneumonia acquired at Yeungnam University hospital in Daegu, Korea. We extracted lesions inside the lungs from the CT images and classified whether these lesions were from COVID-19 patients or bacterial pneumonia patients by applying a deep learning model. From our experiments, we found 20 patterns that have a major effect on the classification performance of the deep learning model. Crazy-paving was extracted as a major pattern of bacterial pneumonia, while Ground-glass opacities (GGOs) in the peripheral lungs as that of COVID-19. Diffuse GGOs in the central and peripheral lungs was considered to be a key factor for severity classification. The proposed method achieved an accuracy of 91.2% for classifying COVID-19 and bacterial pneumonia with 95% reported for severity classification. Chest CT analysis with constructed lesion clusters revealed well-known COVID-19 CT manifestations comparable to manual CT analysis. Moreover, the constructed patient level histogram with/without radiomics features showed feasibility and improved accuracy for both disease and severity classification with key clinical implications.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work was supported by the Yeungnam University Research Fund (2020) and the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIT) (No.2019R1C1C1008727).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
YUH IRB 2020-05-030
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
This work was supported by the Yeungnam University Research Fund (2020) and the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIT) (No.2019R1C1C1008727).
Data Availability
N/A