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Type 2 diabetes is increasing in all ancestry groups1. Part of its genetic basis may reside 

among the rare (minor allele frequency <0.1%) variants that make up the vast majority of 

human genetic variation2. We analyzed high-coverage (mean depth 38.2x) whole genome 

sequencing from 9,639 individuals with T2D and 34,994 controls in the NHLBI’s Trans-

Omics for Precision Medicine (TOPMed) program2 to show that rare, non-coding variants 

that are poorly captured by genotyping arrays or imputation panels contribute h2=53% 

(P=4.2x10-5) to the genetic component of risk in the largest (European) ancestry subset. We 

coupled sequence variation with islet epigenomic signatures3 to annotate and group rare 

variants with respect to gene expression4, chromatin state5 and three-dimensional 

chromatin architecture6, and show that pancreatic islet regulatory elements contribute to 

T2D genetic risk (h2=8%, P=2.4x10-3). We used islet annotation to create a non-coding 

framework for rare variant aggregation testing. This approach identified five loci 

containing rare alleles in islet regulatory elements that suggest novel biological mechanisms 

readily linked to hypotheses about variant-to-function. Large scale whole genome sequence 

analysis reveals the substantial contribution of rare, non-coding variation to the genetic 

architecture of T2D and highlights the value of tissue-specific regulatory annotation for 

variant-to-function discovery. 
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Type 2 diabetes prevalence has exploded globally in all continental ancestry groups1. Large-scale 

genome-wide association studies (GWAS) have identified hundreds of T2D-associated genetic 

variants, most of which lie in the non-coding genome7,8. Twin studies in Europeans suggest 

genetic contributions to T2D risk (heritability) estimates of up to 72%9, but the discovered 

variants from GWAS in the same ancestry account for just 18% of T2D heritability10 some of 

which localizes to specific classes of pancreatic islet-specific enhancers6. “Missing heritability” 

may reside among the rare variants that make up the vast majority of human genetic variation 

and that are not interrogated by GWAS, despite initial suggestions from small samples of exome 

and low-pass whole genome sequencing11-16 that rare variants make a limited contribution to 

T2D heritability13. Here, we analyzed large-scale, multi-ancestry, high-coverage whole genome 

sequencing (WGS) from the NHLBI’s Trans-Omics for Precision Medicine (TOPMed) program2 

and show that rare, non-coding variation contributes to T2D heritability. The non-coding genome 

provides no obvious framework for aggregating rare variants for association tests, so we used 

islet epigenomic signatures to annotate and group variants with respect to gene expression, 

chromatin state and three-dimensional chromatin architecture4-6,17. With this approach, we 

determined the global contribution of rare variation to T2D heritability, refined heritability 

estimates in the context of islet epigenomic signatures and used islet epigenomic annotation to 

frame genome-wide rare variant testing for novel discovery in the non-coding genome. 

Phenotypes and genotypes in the NHLBI TOPMed Program 

 

The TOPMed program aims to understand genetic risk factors for complex cardio-metabolic 

diseases by combining WGS data with existing studies with deep phenotyping2. For this analysis, 

we included 44,633 individuals from 24 separate studies, representing a broad range of genetic 
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diversity. For most analyses, we used genome-wide principal components (PCs) to assign 

individuals to one of five groups based on shared genetic background and used labels informed 

by the most common self-reported ancestry or population among each groups’ members: 

African, Asian, European, Hispanic/Latinx, and the Samoan Study (Supplementary Table 1). 

Individuals were given a single label to represent their particular genetic ancestry, but each group 

contained a diverse cross-section of race, culture, and admixture. Such labeling does not imply 

homogeneity, as ancestry does not exist on a discrete scale. There were 9,639 individuals with 

T2D and 34,994 controls (See Methods and Supplementary Note for disease definitions). The 

prevalence of T2D varied from 14-29% across the five groups (Supplementary Table 2).  

Whole genome sequencing and joint genotype calling performed by TOPMed identified 373.3M 

variants in this sample that passed quality control (Freeze5b data release, average sequence depth 

38.2x), which represents two to seven times more variants compared with recent GWAS7,8,10, 

exome-wide15, or WGS studies13,14 for T2D. In total, 92.8% of the variants were rare (minor 

allele frequency (MAF)<0.1%), 5.3% were low-frequency (MAF≥0.1% and <5%) and 1.8% 

were common (MAF≥5%; Figure 1, Supplementary Figure 1, Supplementary Tables 3-5). 

The vast majority of variants (95.4%, 360M) were located outside exons. 

We identified 13.3M variants within exons of protein-coding genes, including 1.4M (0.38% of 

all variants) annotated as missense and 135K (0.04%) annotated as loss of function. A higher 

proportion of the loss of function variants were concentrated at the lower end of the frequency 

spectrum with singletons (58%) and variants with minor allele count (MAC) between 2 and 20 

(37%) making up 95% of variants compared to all variants within the genome (46% and 41% for 

singleton variants and variants with MAC between 2 and 20, respectively, for a total of 87%). 

This is consistent with models of purifying selection on loss of function variants18. This 
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difference was more pronounced for variants in the exons of genes expressed in pancreatic islets, 

where 98% of 35K loss of function variants had a MAC below 20 (64% singleton, 34% with 

MAC between 2 and 20). 

Islet-specific functional annotation of the non-coding genome  

To identify potential variant function and to refine our search space for rare variants associated 

with T2D risk, we developed strategies to define functional units of the non-coding genome. 

T2D GWAS show a clear enrichment of common T2D risk variants mapping to genes expressed 

in pancreatic islets19 and to active promoter and enhancer regions in pancreatic islets5,6,10,17. We 

used two distinct strategies, referred to as ‘Islet regulation and expression’ and ‘Islet interaction 

and chromatin structure’, to define regulatory regions in pancreatic islets on the basis of shared 

targets or coordinated function (see Methods). First, we used promoter and enhancer regions 

linked to islet-expressed genes to define the ‘Islet regulation and expression’ annotation sets, 

creating groups of variants with possible coordinated regulatory function influencing the 

expression of a given gene3,5,20. Second, we defined variant sets based on the ‘Islet interaction 

and chromatin structure’ annotations. These annotations describe large stretches of the genome 

that organize into 3-dimensional complexes, referred to as “hubs”6. These complexes form 

through physical interactions among enhancers and promoters, yielding loops of DNA tied 

together by regulatory elements that may contain one or more genes regulated by the “hub”.  

In total, we identified 8.5M variants (2.28% of all variants) within promoters and enhancers 

using the ‘Islet regulation and expression’ annotation set and 5.1M variants (1.36% of all 

variants) in the ‘Islet interaction and chromatin structure’ regions (Figure 1, Supplementary 

Tables 3-5). The overlap set of these two annotation strategies had 4.3M unique variants that 
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were annotated as ‘promoter’ variants in either annotation set, with an overlap of 1.4M (32.7% of 

4.3K) variants. Less overlap existed in the enhancer regions: 6.5M unique variants were 

annotated as ‘enhancer’ variants in either annotation set, with an overlap of 0.6M (9.2% of 6.5M) 

variants. No substantive difference in overlap was observed when variants were partitioned by 

frequency. 

T2D heritability from rare and common variants 

We implemented a variant-based heritability analysis with the GCTA software to partition T2D 

risk into environmental and genetic components using the TOPMed WGS dataset. A major 

advantage of using WGS data to estimate variant-based heritability is that causal variants are 

directly ascertained in the sample. We applied multi-component heritability estimation to a 

subset of 15,109 unrelated individuals of European ancestry (2,215 with T2D; 12,894 controls), 

the largest ancestry subset, restricting to variants with a MAC greater than 5 and adjusting for 

BMI (Supplementary Table 6; See Supplementary Methods for more details). After observing 

differences in LD patterns across allele frequencies (Supplementary Figure 2), we partitioned 

variants by MAF bins and LD score quartiles. We used these variants sets of 16 components 

(defined by four MAF bins and four LD score bins) to obtain heritability estimates which we 

considered statistically significant when P values were less than 0.05/16=0.003. In building our 

final models, we removed components with non-significant heritability estimates. 

We compared T2D heritability estimates for the exons of protein-coding genes, into which 

3.56% of all variants fall, to the ‘non-exonic’ portion of the genome (Figure 2, Supplementary 

Table 7). Estimated heritability of variants with moderate-to-low LD (in the 2nd LD score 

quartile) were the largest. For rare, exonic variants estimated heritability was 24% (95% 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 16, 2020. ; https://doi.org/10.1101/2020.11.13.20221812doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.13.20221812


 12 

confidence interval [CI] 10%-38%, P=2.9x10-4) while for rare, non-exonic variants, the 

heritability estimate was 53% (95% CI 27%-79%, P=4.2x10-5). Interestingly, only the non-

exonic estimate was changed upon BMI adjustment with a 9% decrease in estimated heritability 

from 59% (Supplementary Table 7). For rare non-exonic variants in high LD (4th LD score 

quartile) the heritability estimate was relatively small (5%, 95% CI 2%-9%, P=1.3x10-5). For 

common, non-exonic variants in the 3rd LD score quartile (representing modest LD) heritability 

was 9% (95% CI 4%-14%, P=2.4x10-4), consistent with previous common variant GWAS10. 

We further subset non-exonic variants using the previously described functional annotation sets 

to determine the degree to which these variants that fall into islet regulatory regions contribute to 

T2D risk. We observed significant heritability estimates in variant subsets (defined by MAF and 

LD score quartiles) that differed across annotations. In models with ‘islet regulation and 

expression’ promoter variants, we observed a significant heritability estimate with rare variants 

with moderate-to-low LD (2nd LD score quartile) of 8% (95% CI 2%-14%, P=2.4x10-3); and 

among common variants with moderate-to-high LD (3rd LD quartile) heritability was 3% (95% 

CI 1%-5%, P=2.6x10-4). On the other hand, with ‘islet regulation and expression’ enhancer 

variants, we observed a significant estimate with only one variant set: common variants with 

high LD (4th LD score quartile) with an estimate of 2% (95% CI 1%-4%, P=6.6x10-4). With the 

‘islet interaction and chromatin structure’ promoter variants, two variant sets contained a 

significant estimate: low-frequency variants with moderate-to-low LD (2nd LD quartile) with a 

heritability estimate of 3% (95% CI 1%-6%, P=3x10-3) and common variants with high LD (4th 

LD score quartile) with a heritability estimate of 3% (95% CI 1%-4%, P=3x10-4). The common, 

annotated variant heritability estimates are consistent with previous observations6,21. These 

results suggest that a substantial fraction of T2D risk is explained by the effects of rare variants 
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with moderate-to-low LD and that promoter regions linked to islet gene regulation capture some, 

but not all, of this heritability. 

Rare variant association tests using islet annotation aggregation 

Association tests that aggregate rare variants, like SKAT and Burden tests22, depend on gene 

bodies to frame variant aggregations. To frame variant aggregation in the non-coding genome, 

we used the two functional annotation sets to define three types of aggregation units for rare 

variant tests of associations with T2D: First, for each gene expressed in pancreatic islets, we 

created aggregation units based on the ‘Islet regulation and expression’ annotation set using 

enhancers, promoters, and included predicted loss of function variants within the gene transcript. 

The second and third types of aggregation units, ‘whole hub’ and ‘hub-components’ used the 

‘Islet interaction and chromatin structure’ annotation set. ‘Whole hub’ aggregation units 

included variants within all promoters and enhancers shown to interact to form each hub. ‘Hub-

components’ were aggregation units for each individual promoter and enhancer component of 

each hub. In this strategy, each regulatory region was tested individually, outside of its 3-

dimensional context. We also generated three commonly used coding variant aggregation 

strategies (loss of function, deleterious missense, and all missense) to complement the non-

coding islet-specific aggregation strategies.  

For each aggregation strategy, we used mixed models that accounted for family relationships and 

population structure23-25 to test groups of variants for association with T2D using SKAT and 

Burden tests22. Association analyses were performed within each ancestry group or study 

population; since most rare alleles included in aggregation units were observed in only a subset 

of the ancestry groups or study population (see Methods for statistical significance thresholds 
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for each analysis). Although our primary model used BMI adjustment, several loci showed 

significant associations without BMI adjustment. Such observations guide our biological 

interpretation of these loci and suggest mechanisms related to obesity and insulin resistance.  

Eight ancestry- or study population-specific rare variant aggregation units were significantly 

associated with T2D (Table 1, Supplementary Table 8, Supplementary Figure 3). We defined 

‘driver variants’ as the set of variants contributing substantially to the aggregation unit test 

statistic (see Methods). The significant rare variant aggregation units had between one and four 

variants driving the observed associations, representing 11 total variants, none of which were 

associated with T2D in single variant analyses (Table 2, Supplementary Tables 9-10). No 

variant contributed 100% to the test statistic, though, and for all our tests, the aggregate test P 

value was lower than the P values of individual variants (when allele count was high enough for 

a single variant test; Supplementary Table 9). This demonstrates that these observations were 

only possible through multi-variant testing, pointing to the critical value of tissue-specific 

annotation to frame aggregation tests in the non-coding space. The two missense variants driving 

the chromosome 10 associations linked to FO681492.1, a poorly characterized reverse strand 

transcript, were not present in previous genome builds and were not reported in previous whole 

exome sequence association studies of T2D13,15. Five associations were from the ‘hub-

components’ aggregation units, representing four loci on chromosomes 2, 3 and 15. At the 

chromosome 2 locus spanning NR4A2 and GPD2, four variants were identified: rs530551407, 

rs200945165, rs200622604, and rs559881272. Of these, rs200945165 contributed most to the 

rare variant test statistic (19.24%), was predicted to be a non-coding deleterious variant, and had 

the highest CADD score. All four of these driver variants fall within an active transcriptional 

start site, identified in pancreatic islet tissue, suggesting a regulatory mechanism through which 
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the T2D association occurs. On chromosome 15, three aggregate associations were driven by the 

same three variants which contribute nearly equally to the test statistics: rs145197571, 

rs79569357, and rs28427880. These included two associations from the ‘islet regulation and 

expression’ aggregation units which contained the same enhancers but were linked to two 

different genes and overlapped a ‘whole hub’ signal linked to MRPL46, MRPS11 and other 

genes. Each variant was identified in active transcriptional start site in islets, again suggesting a 

common regulatory mechanism.  

We also tested the coding genome to understand if islet expressed genes were enriched for rare 

variant associations with T2D but only observed enrichment in one set of rare variant tests: loss 

of function aggregation tests within the Hispanic/Latinx ancestry group (P = 0.0054; see 

Supplementary Methods and Supplementary Results; Supplementary Table 11). 

Common variant association tests 

We also conducted single variant association analyses with variants having a minor allele count 

greater than 20 in our TOPMed WGS data. We used mixed models that accounted for family 

relationships and population structure23-25 to test individual common variants for association with 

T2D in ancestry-specific and pooled (i.e. entire sample) analyses. We identified seven variants at 

six loci at WGS-wide level of significance (P<4x10-9, Bonferroni corrected for the effective 

number of independent regions from WGS across chromosomes 1-23, see Methods) or locus-

wide significance (P<1x10-5; Supplementary Table 12, Supplementary Figure 4). These loci 

(labelled by their nearest gene: CDKN2B-AS1, TCF7L2, KCNQ1, CCND2, FTO and DUSP9) 

have been previously reported10. We did identify a novel secondary signal at the CDKN2B-AS1 

locus: rs150046492 (MAF=0.01, odds ratio [OR] = 0.67, conditional P=8.2x10-6; 
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Supplementary Figure 5). We explored different modeling strategies by collating genome-wide 

significant associations (where P values are greater than 5x10-8 but less than our WGS 

significance threshold), examining associations with related cardiometabolic traits (see 

Supplementary Note) and refining the definition of controls with high glycemia and designating 

them as cases (referred to as T2D+). By lowering the significance threshold to GWAS level (P 

value > 5x10-8) we identified 2 known loci (ADCY5 and SLC30A8) and 6 possibly novel loci 

(ODF2L, LMAN2, NKX2-5, KCNV1, VLDLR-AS1 and LINC01052) where alleles are low-

frequency, rare (MAF<2%) or ancestry-specific (Supplementary Table 13, Supplementary 

Note). We found an additional known locus (MTNR1B) and a potentially novel locus (NWD2) 

associated with the T2D+ outcome (Supplementary Table 14, Supplementary Note).  

We generated 95% credible sets to refine the likely causal variants in these regions, and as 

recently reported7 found that the inclusion of diverse ancestries improves upon previously 

reported credible sets for T2D. At five loci, the 95% posterior probability for a single variant 

exceeded 0.9 (Supplementary Table 15). For TCF7L2, the European analysis credible set 

consists of the same three variants as seen in the DIAMANTE European GWAS10; however, our 

pooled and African American credible sets contain only one variant, rs7903146, which had the 

highest posterior probability in the European credible set (0.46)10 and has been characterized as 

the causal variant at the locus26. Comparing our credible sets with credible sets reported in the 

DIAMANTE European GWAS, we observe consistency in the variants within the sets and the 

variant with the highest posterior probability is often the same in both sets (Supplementary 

Figure 6, Supplementary Table 15). The most notable differences between credible sets occurs 

where neither set has high posterior probability for any variant (e.g. SLC30A8 and CDKN2B-

AS1).  
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Power to detect single variant associations in our current study is modest (80% power to detect 

ORs of 1.25 and 3.5 for variants with MAF of 5% and 0.1%, respectively, and 50% power to 

detect an OR of 5.5 for variants with MAF of 0.02%; Supplementary Figure 7); particularly in 

comparison to recent GWAS10. Therefore, we examined the results of 380 of the 403 variants 

from the DIAMANTE consortium analysis of European ancestry10 with imputed GWAS of T2D 

as a metric of utilizing currently available WGS that provides 14-fold (373M vs. 27M) more 

variants but has 20-fold smaller sample size (44,633 vs. 898,130). We found 113 (30%) of the 

index variants were nominally significant in our WGS sample (P<0.05) and at 7 of these loci, the 

previously reported index variant was the most significant variant at the locus (TCF7L2, 

KCNQ1, ADCY5, CCND2, ATP1B2, JAZF1, BCL2A). We examined associations of other 

variants around the 239 loci containing the 380 index variants, and we found for 251 (66%) 

variants, there was at least one variant in the region with a lower P value than the index variant 

(Supplementary Table 16). Notably, 184 (73%) of these “smaller P value” variants had a MAF 

< 1%. However, when we examined QQ plots of variants in these regions stratified by allele 

frequency, we did not observe an inflation in P values in the set of variants with MAF < 1% 

(Supplementary Figure 8).  

Novel variants and whether they were missed by imputation 

We next asked whether newly observed associations identified in this study (by single variant, 

conditional, or aggregation analyses) would have been seen in previous common or rare variant 

studies of T2D. We examined the association and imputation quality of our variants in the 

previous GWAS performed by the DIAMANTE consortium10 which used the human reference 

consortium (HRC) imputation reference panel in a European-ancestry meta-analysis of 74,124 

T2D cases and 824,006 controls (Supplementary Table 17). Of the twenty-eight variants we 
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identified through single variant or conditional analyses (Supplementary Table 17a), fourteen 

were not identified as significant in the previous GWAS and represent potentially novel loci. 

Seven of these fourteen variants were not included in the GWAS because they were not part of 

the HRC reference panel. The remaining seven novel variants were previously analyzed but were 

not significant at P<5x10-8. For these variants, imputation quality was generally high (>0.60) but 

were identified here through different analytical methods or different ancestry groups than those 

utilized in the DIAMANTE GWAS.  Eleven variants were classified as ‘driver’ variants in our 

aggregation analyses (Supplementary Table 17b) and eight of these variants were not included 

in the GWAS because they were not part of the HRC reference panel. The remaining three 

variants had high imputation quality and the P values from our single variant analysis were 

similar to those in the GWAS. Taken together this suggests WGS data generated on diverse 

populations will uncover additional variants associated with T2D susceptibility. 

The contribution of high-coverage WGS to the genetic architecture of T2D 

We characterized the contribution of genome sequence to the genetic architecture of T2D by 

cross-tabulating allele frequency, annotation, and ORs for association among variants that 

achieve a sub-significant association (P<5x10-5; “subthreshold variants”), revealing a few 

qualitative patterns in our data (Supplementary Table 18): an enrichment of subthreshold 

association signals in the non-coding functional annotations, indicating that additional islet 

regulatory signals could be found as our sample size increases; and a difference in the magnitude 

of ORs in these annotations compared to exonic annotations, indicating a genetic architecture for 

these genomic regions that are potentially unique. 
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First, we used a simple hypergeometric test to determine if the number of subthreshold variants 

was enriched across the annotation categories and found an enrichment in the ‘islet interaction 

and chromatin structure’ annotation class (31 variants; Enrichment P=7.1x10-6), which persisted 

when examining variants with allele frequency less than 0.1% (10 variants; Enrichment 

P=0.002). This test ignores pairwise LD, which does exist in the set of subthreshold variants, 

mostly among the common variants. We accounted for LD by clumping the variants with r2>0.2 

and observed that the 22 independent signals represented by the 31 variants still show an 

enrichment signal (P=0.008), indicating that additional T2D risk variation may yet be found in 

the ‘islet interaction and chromatin structure’ regions of the genome as we increase our sample 

sizes. 

We expected that as variant allele frequency decreased, effect size would increase. We compared 

the ORs for association with T2D relative to allele frequency and annotation among variants with 

P<5x10-5 (Supplementary Figure 9, Supplementary Table 19). We observed that coding 

variants, including missense variants and missense variants in genes expressed in islets, and non-

coding variants classified as ‘islet regulation and expression’ or ‘islet interaction and chromatin 

structure,’ were represented across the distribution of observed minor allele frequencies and 

ORs. Among all coding variants tested, the mean OR of ‘islet-expressed missense variants’ was 

higher compared to ‘all missense variants’ or ‘all coding variants’ (mean OR±SD = 6.1±8.8 vs 

3.5±5.1 vs 3.7±6.8, respectively). However, the mean OR was much higher in rare variants 

(allele frequency <0.1%); and in ‘islet-expressed missense variants’ compared to ‘all missense 

variants’ or ‘all coding variants’ (14.3±13.6 vs 12.8±11.5 vs 9.3±10.9, respectively). In contrast, 

variants in the ‘islet regulation and expression’ or ‘islet interaction and chromatin structure’ 

annotation sets had a similar mean OR for association with T2D (3.0±3.6 or 3.6±5.5, 
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respectively) compared to all variants with P<5x10-5 (3.7±6.8). The attenuated effects from the 

pancreatic islet regulatory annotations compared to the exonic variants suggest that these variants 

will require larger sample sizes to have statistically significant effect estimates compared to the 

exonic variants. Finally, we did not observe any rare variants with large protective effects, and in 

general, there were fewer T2D protective than T2D risk alleles across the observed allele 

frequency spectrum.  

Discussion 

WGS interrogates the >97% of the genome that is non-coding, dramatically increasing the 

number of disease or health-related variant associations discoverable in individuals and 

populations. TOPMed high coverage, jointly called WGS data offers many millions of rare, 

common and population-specific variants that allow us to redefine the genetic architecture of 

T2D; even in a sample size smaller than current T2D GWAS. In this large-scale multi-ancestry 

association study within TOPMed, we observed common variant heritability estimates that were 

consistent with common variant GWAS10, but identified a remarkably larger contribution of rare, 

non-coding variation to T2D heritability estimates. These data revise prior T2D heritability 

estimates that used just a few thousand low-pass sequences to model heritability and concluded 

that rare variation contributes relatively little to T2D heritability13,14,16. Although the large 

amount of rare variant heritability for T2D seems outsized, this has now been seen in TOPMed 

WGS for height and BMI27, and may be a genetic architecture characteristic of polygenic traits 

and phenotypes in general.  Notably, this class of variants would not be captured by prior array-

based genetic studies nor be imputable with current reference panels, consistent with similar 

evidence from exome sequencing studies of the additional value of sequencing over array-based 

imputation15. We now identify T2D to be a genetic disorder whose architecture spans the 
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spectrum from common to rare alleles, and from polygenic to monogenic, with rare alleles 

contributing far more than previously thought to the heritability of the common polygenic form 

of T2D. 

Islet-specific annotation provided frames that refined our search space for rare variant tests. By 

integrating annotation from islet regulatory function, we found a higher proportion of loss-of-

function alleles in the sets of genes expressed in islets compared to all genes. Tissue-specific 

annotation data also permit a framework to aggregate rare variants into functional elements and 

variants sets for burden testing WGS-wide. Despite the lower power of our analysis versus 

current T2D GWAS, our approach identified five ancestry-specific rare variant association 

signals for further follow-up. Our revised heritability estimates suggest there are many more T2D 

pathobiology variants to be found in the rare-allele, non-coding genome. As TOPMed and 

annotation resources grow3 these approaches will be valuable to identify T2D causal variants in a 

framework that points directly to specific functional hypotheses for mechanistic follow up of 

T2D pathobiology.  
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TABLES 

Table 1: Rare variant associations with type 2 diabetes in 44,633 TOPMed multi-ancestry whole genome 

sequences 

Rare variant 
aggregation unit Genes / Group ID Position (hg38) N 

var* cMAC 

P values by group  
(AF, AS, EU, HSL and the Samoan 

Study) 
Test  

AF AS EU HSL Samoan  

Islet 
interaction 
and 
chromatin 
structure 

Hub 
components 

PSD4 (Active 
promoters) / 
EHUB_705 

2:113,156,548- 
113,158,309 10 35 0.53 0.55 0.25 0.85 1.8x10-6 SKAT 

Whole hub PSD4, PAX8-AS1 / 
EHUB_705 

2:113,156,548- 
113,241,124 44 93 0.66 0.23 0.81 0.97 1.8x10-6 SKAT 

Whole hub NR4A2, GPD2 / 
EHUB_715 

2:156,333,637- 
156,467,806 661 4,213 0.18 0.89 2.7x10-6 0.70 0.89 Burden 

Hub 
components 

RP11-135A1.2, HES1 
(Active Enhancer) / 
EHUB_926 

3:193,774,359- 
193,775,123 13 60 0.45 3.0x10-7 0.71 0.27 - SKAT 

Hub 
components 

MIR1276, RP11-
158M2.6, KLHL25, 
MRPL46, MRPS11, 
MIR1179, AEN, MIR7-
2 (Active promoters) / 
EHUB_455 

15:88,466,880 - 
88,468,317 82 3,218 4.9x10-7 0.76 0.04 0.88 - SKAT$ 

Islet regulation and 
expression 

MRPL46 / 
ENSG00000259494 

15:88,459,798- 
88,468,366 124 3,368 6.2x10-7 0.80 0.0029 0.89 0.15 SKAT$ 

MRPS11 / 
ENSG00000181991 

15:88,466,370- 
88,477,019 122 3,367 6.2x10-7 0.79 0.0029 0.88 0.15 SKAT$ 

Coding 
variants All missense FO681492.1 / 

ENSG00000277758 
10:47,756,059- 

47,762,998 8 15 0.06 5.4x10-7 0.20 - - Burden 

Each test is denoted by its unique Group ID, defined within the given aggregation class. Bold P values indicate passing the calculated 

significance threshold (0.05/(# tests x 4). Missing P values indicate a test that did not have a cumulative minor allele count of at least 

10 in the given ancestry. *The number of variants displayed refers to the individual, ancestry-specific test performed where the 

significant association was seen. $Indicates that association statistics are derived from a model without BMI adjustment. AF=African, 

AS=Asian, EU=European, HSL=Hispanic/Latinx, cMAC=Cumulative minor allele count. 
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Table 2: Rare variants driving associations with type 2 diabetes in 44,633 TOPMed multi-ancestry whole 

genome sequences 

Aggregation unit Genes / Group 
ID 

Popn Driver variant 
(hg38) 

rsID Ancestry / Population Study CADD 
phred Contribution 

to statistic 
Single 
variant 
P value 

OR MAC 

Islet 
interaction 

and 
chromatin 
structure 

Hub 
components 

PSD4 (Active 
promoters) / 
EHUB_705 Samoan chr2-113157577-C-T rs929186279 

97.16% 

1.1x10-5 24.19 22 10.4 Whole hub PSD4, PAX8-
AS1 / 

EHUB_705 
80.02% 

Whole hub NR4A2, GPD2 
/ EHUB_715 

EU 

chr2-156333828-T-C rs530551407 10.47% 9.8x10-2 1.23 500 12.5 
chr2-156334777-

ACTC-A rs200945165 23.05% 5x10-3 1.97 410 16.3 

chr2-156435356-A-G rs200622604 12.28% 2.3x10-3 2.03 137 0.3 
chr2-156436596-C-T rs559881272 12.27% 7.7x10-2 1.26 474 3.5 

Hub 
components 

RP11-135A1.2, 
HES1 (Active 
Enhancer) / 
EHUB_926 

AS chr3-193774359-T-C rs370134788 93.46% - - 17 3.0 

Islet 
interaction 

and 
chromatin 
structure 

and 
Islet 

regulation 
and 

expression 

Hub 
components 

MRPL46 / 
ENSG0000025
949; MRPS11 / 
ENSG0000018
199; MIR1276, 
RP11-158M2.6, 

KLHL25, 
MIR1179, AEN, 

MIR7-2 2 
(Active 

promoters) / 
EHUB_455 

AF 

chr15-88466880-T-C rs145197571 25% / 25% / 
27%*$ 3.7x10-4 1.65 298 6.3 

chr15-88467094-C-T rs79569357 17% / 17% / 
18%*$ 3.7x10-3 1.45 359 8.7 

chr15-88468259-T-A rs28427880 19% / 19% / 
21%*$ 3.4x10-3 1.34 595 8.8 

Coding 
variants 

All 
missense 

FO681492.1 / 
ENSG0000027

7758 AS 
chr10-47760841-A-G rs120526132

7 59.36 - - 4 7.2 

chr10-47759870-T-C - 19.13 - - 5 8.7 

Single variant summary statistics from ancestry specific analyses are included where applicable. Ancestry specific data are reported as 
% of test statistic. Cells marked with "-" signify unavailable data. Popn=Population, AF=African, AS=Asian, EU=European, 
HSL=Hispanic/Latinx. *contribution to the test statistic is displayed for each of the three groups for which the variant was identified 
as a driver, following the order of the Group ID column. $statistics obtained from a model not adjusting for BMI.  
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Figure 1. Allele frequency spectrum from whole genome sequencing. Variants were 

aggregated by minor allele count (MAC) or frequency (MAF) into six, non-overlapping ranges 

depicted by bar color. Pancreatic islet-specific, non-exonic, functional annotations and protein-

coding annotations were used to further subdivide variant classes. Annotations were broadly 

grouped into three types with potentially overlapping variants. ‘Islet interaction and chromatin 

structure’ annotations relate to active regulatory regions involved in 3D chromatin interactions 

within islet cells. ‘Islet regulation and expression’ annotations capture the regulatory regions of 

genes expressed in pancreatic islets. All genes annotations relate to variants falling within protein 

coding, exonic regions, partitioned by predicted effect on protein function. The variant frequency 

spectrum was dominated by singleton and extremely uncommon variants (darkest blue bars). 

Protein coding variants followed previously observed trends, with average frequency decreasing 

with increasing predicted severity on protein function (All genes), especially in ‘Islet regulation 

and expression’. Annotations used in rare variant aggregation and association testing make up 

between 0.01% and 1.69% of total variation (‘Islet regulation and expression’ and ‘Islet 

interaction and chromatin structure’).  
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Figure 2. Variant-based heritability of type 2 diabetes, genome-wide and within islet-

specific regulatory regions. Within each annotation, we quantified variant-based liability-scale 

heritability for T2D using genetic relationship matrices, with variants subdivided by variant 

frequency (colors), and LD Score quartiles (symbols), which measure the amount of variation 

tagged by a given variant (see Methods). The 95% confidence interval of each estimate is 

provided. Models were adjusted for age, sex, TOPMed project and BMI. We display the variant 

subsets with P value < 0.05 in our final models (Supplementary Table 7). 
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METHODS 

Genome Sequencing 

The National Heart, Lung and Blood Institute’s TOPMed (nhlbiwgs.org) Freeze5b data were 

used in these analyses. The samples were sequenced at an average depth of >30x coverage at the 

Baylor College of Medicine, the Broad Institute, Illumina, Macrogen, the New York Genome 

Center, and the University of Washington2. All samples from a given study were sequenced at 

the same center. Sequencing reads were aligned to human genome build GRCh38. Quality 

control was performed at each stage of the process and is described in detail 

(https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/GetPdf.cgi?id=phd007493.1). Individual 

genetic variations across the genome were identified in a joint variant calling framework, 

utilizing all samples collected and conducted by the TOPMed Informatics Resource Center 

(University of Michigan), which also performed centralized read mapping and genotype calling. 

These analyses produced variant quality metrics which were used in variant filtering and 

reporting of samples that failed to meet quality control (QC) thresholds. Data management and 

QC to ensure correct sample identification, and general study coordination were provided by the 

TOPMed Data Coordinating Center (University of Washington). For duplicate individuals that 

participated in multiple studies (e.g. both ARIC and JHS), the TOPMed Diabetes Working 

Group developed an algorithm to retain only a single set of genotypes and phenotypes for each 

duplicated individual based on sequencing quality, type of study, and availability of phenotype 

data (see Supplementary Note). For all T2D associated variants, genotyping quality was further 

checked by inspecting plots of sequencing depth and genotype quality by carrier distribution; and 

examining alignment of raw sequences on BRAVO (https://bravo.sph.umich.edu/freeze5/hg38/). 

All variants reported passed this final visual examination. 

Cloud Computing Platforms 
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Analyses of WGS data were carried out on cloud platforms28: Analysis Commons, ENCORE and 

Terra. These platforms provide data sharing mechanisms that allows for the pooling of both 

genotypic and phenotypic data across multiple studies. This enables the kinds of analyses that 

WGS data requires, due to the size of the WGS data and pooling of phenotypic data for rare 

variant analyses. 

Trait Harmonization  

A T2D trait and phenotype harmonization protocol was developed that defined T2D status and 

covariates needed for analyses. This protocol was shared with studies willing to harmonize their 

data and study investigators created a file utilizing their in-depth understanding of the study; for 

other studies, we downloaded data and data dictionaries from the database of Genotypes and 

Phenotypes (dbGaP) to create a standardized, harmonized study level dataset (see 

Supplementary Table 1). Study level participant characteristics are provided in Supplementary 

Table 2. Studies that provided measures of fasting glucose (FG) and/or hemoglobin A1C 

(HbA1c) were also used to define an additional T2D phenotype (referred to as T2D+ outcome, 

see Supplementary Note). Previous work has demonstrated that individuals whose FG 

(≥6.1mmol/L) and HbA1c (≥6.0%) levels are in the ‘pre-diabetic’ range have a 68% absolute 

risk of being diagnosed with T2D in the next 20 years21. We used these definitions to refine our 

control group and to identify individuals who are likely to develop T2D. Analyses with T2D+ are 

described in the Supplementary Note. 

Ancestry Definition: Genome-wide principal components (PCs) were derived from common 

genetic variants using PC-Air29 and made available to the TOPMed consortium 

(https://www.nhlbiwgs.org/topmed-whole-genome-sequencing-project-freeze-5b-phases-1-and-

2). We used Ward’s hierarchical agglomerative clustering method (R hclust, Ward.D2 method) 

using the PCs scaled to their Eigen values to derive genetic ancestry group assignments for each 
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individual, resulting in five groups. Each group was labeled by the most common self-reported 

ancestry or population among its members: African, Asian, European and Hispanic/Latinx 

ancestry, and one population-based study, the Samoan Study (Supplementary Table 2). 

Fourteen individuals whose self-reported ancestry or population was not represented by the five 

groups were excluded from analysis. An additional 136 individuals from 12 TOPMed projects 

were excluded because fewer than 5 individuals from their respective projects were assigned to a 

genetic ancestry group. 

Variant annotation 

We partitioned genetic variants across the genome into ten, non-exclusive classes based on 

general and T2D-related, functional annotations (see below). We also partitioned the genome 

into six frequency-based classes: (1) singletons, (2) doubletons to minor allele count (MAC) < 

20, (3) MAC ≥ 20 and minor allele frequency (MAF) < 0.1%, (4) 0.1% ≤ MAF < 1%, (5) 1% ≤ 

MAF < 5%, and (6) MAF≥ 5%. The ten annotation-based classes and the six frequency-based 

classes were using to define 60 possibly overlapping variant classes. Variant annotation and 

partitioning were performed using the Hail software30, a suite of highly parallelizable 

computational methods leveraging distributed cloud computing resources. 

Functional annotation of the non-coding genome: Multiple sources of functional, non-coding 

genomic annotations were used to characterize genetic variants. Annotations were derived from 

assays of pancreatic islet tissue, including gene expression4, chromatin accessibility4, and 3D 

contact maps6. Annotations were grouped into two distinct sets: ‘Islet regulation and expression’ 

and ‘Islet interaction and chromatin structure.’ We used the Whole Genome Sequence 

Annotator (WGSA) to annotate SNPs and indels31. 

Islet regulation and expression: We determined the gene transcripts expressed in pancreatic islets 

from RNA-seq data of 89 individual donors3,4 made available in the Diabetes Epigenome Atlas3. 
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We restricted to transcripts where the average (FPKM) was greater than 2 among all samples. 

Non-exonic regions were annotated by islet chromatin state maps5 with particular focus on 

regions denoted as active enhancers and active transcriptional start sites (active promoters), both 

of which have been implicated previously in T2D predisposition26. Active promoter regions were 

assigned to islet-expressed genes by distance, creating a promoter-gene link if a gene’s first exon 

was within 5KB of the promoter. Promoters with no islet-specific link were removed. Enhancer 

regions were linked to genes using the GeneHancer database20,32, a tissue-agnostic enhancer-gene 

map20. We retained the islet-specific enhancers which overlapped the GeneHancer enhancer 

regions with at least 1 base pair overlap. The remaining regions were then filtered by gene target 

to retain those enhancers linked to islet-expressed genes. 

Islet interaction and chromatin structure: A separate set of annotations6 was also used to 

characterize non-exonic function, termed the Islet interaction and chromatin structure. Here, 

complexes were defined through multiple sequencing-based methods designed to interrogate 

chromatin-chromatin contact, chromatin accessibility, and protein-DNA binding. We obtained 

available data for contact maps that were generated using promoter-capture Hi-C33 and 

accessibility and protein binding that were assayed through ATAC-seq34 and ChIP-seq35. These 

annotations are comprised of two parts (1) predicted regulatory function within a small region 

and (2) long-range, 3-dimentional (3D) interactions. Similar to chromatin states, observed 

pancreatic islet ATAC-seq peaks were classified into discrete categories based on histone 

modification, of which we used regions annotated as active promoters or active enhancers (class 

1). The long-range, 3D interaction annotations were used to define “hubs” and predicted gene 

targets of the active promoters and enhancers within these ‘hubs’. These identified both regions 

with large 3D structures built from looping and interacting chromatin and the enhancers and 

promoters within these physically interacting regions. 
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Exonic annotations: We used common bioinformatics tools31,36-40 to determine coding variant 

impact on protein function and create coding variant aggregation units. Within the exons of 

protein-coding genes, we focused on three classes of variation with differing predicted impact on 

protein function: ‘loss of function,’ ‘deleterious missense,’ and ‘all missense.’ The Variant Effect 

Predictor (VEP) was used to determine the functional consequence of a given variant, 

categorized broadly as high, moderate, or low impact36. ‘Loss of function’ variants were defined 

by high-impact variant effect predictions including the annotations: frame-shift, stop gain, stop 

loss, start loss, and transcript ablation36. Five common bioinformatics tools were used to define 

‘deleterious missense’ variants, predicted to have non-tolerated impact on protein function by all 

methods: LRT37, Mutation Taster38, PolyPhen2-HumDiv39, PolyPhen2-HumVar39, and SIFT40. 

Finally, ‘all missense’ variants include those variants annotated as “missense” per VEP36. We 

also considered a subset of coding variant aggregation units from genes expressed within 

pancreatic islet cells3,4. 

Heritability estimation 

Heritability refers to the proportion of disease risk conferred by genetics. To understand the 

contribution of variant subsets defined by predicted function to the heritability of T2D risk, we 

estimated variant-based heritability (h2) for all exonic variants, all non-exonic variants, variants 

annotated as promoters or enhancers from the ‘Islet regulation and expression’ annotations, and 

variants annotated as promoters or enhancers from the ‘Islet interaction and chromatin structure’ 

annotations. We used plink v1.9 and GCTA v1.91.7-1.93.0 and followed the procedure for 

estimating SNP-based heritability in imputed or whole genome sequence data described in Yang 

et al.41 and Evans et al.42 (See Supplementary Methods for more details). We used an unrelated 

subset of European-ancestry individuals from eight TOPMed projects (N=15,109): AFGen, CFS, 

COPD, FHS, GeneSTAR, GOLDN, MESA, VTE. We partitioned variants by minor allele 

frequency into 4 classes: 0.01% < MAF < 0.1%, 0.1% < MAF < 1%, 1% < MAF < 5%, and 5% 
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< MAF < 50%. We calculated the LD Score43, a measure describing the amount of variation 

tagged by a given variant, for each variant, and further partitioned variants within each MAF 

class using the 25th, 50th and 75th percentiles of the LD Score distribution, resulting in 16 sets 

of variants from which we constructed genetic relationship matrices (GRM) for h2 estimation. 

These variant sets were then restricted to each annotation to estimate the liability scale h2 for 

T2D (with population prevalence = 0.08) using variance components models adjusting for age, 

sex, and TOPMed project. We adjusted for BMI in an additional model. In each analysis, we first 

estimated h2 with each GRM alone. Then, we jointly tested only the GRMs with h2 < 0.05 or 

variance > 0.001 from the single-GRM model; and report the liability-scale h2 estimate, h2 

variance and P value of each GRM from the joint model. Of note, we have used the method 

implemented in the GCTA software to estimate the proportion of variation in disease liability44 

to provide heritability estimates that are more interpretable compared to the 0-1 scale used to 

code binary disease outcomes. By definition, liability of disease is assumed to be the sum of 

environmental and additive genetic components from independent normal distributions. As 

described in Lee et al.44, there are several advantages to working under the liability scale, mainly 

that heritability is independent of prevalence. There is some concern that liability scale estimates 

could be biased by population substructure45 and we performed sensitivity analyses that used 

genetic principle components as covariates.  

Rare variant aggregation and association analyses 

Rare and low-frequency genetic variants were grouped into aggregation units with six 

aggregation strategies that we used in rare-variant test for T2D associations. Our aggregation 

strategy assigns variants to groups based on gene targets or higher order 3-dimensional 

chromatin complexes linked to the co-regulation of sets of genes. Three strategies predominantly 

focused on non-coding variation while the remaining three focus on coding variation. 
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Islet regulation and expression: The ‘Islet regulation and expression’ annotation set was used to 

generate aggregation units with islet-expressed genes as the basic organizing unit. Variants with 

MAF ≤ 1% were mapped to islet-expressed genes by the promoter and enhancer chromatin state 

predictions described above. If present, loss of function variants falling within an islet expressed 

exon of each gene were also included in the aggregation unit.  

Islet interaction and chromatin structure: (1) Hub-components: Variants with MAF ≤ 1% within 

individual regulatory regions, enhancers and promoters, from the ‘Islet interaction and 

chromatin structure’ annotation set were tested for cumulative association with T2D. Each 

regulatory interval served as the organizing unit for this aggregation strategy. (2) Whole hub: We 

used the same genomic regions and variants as in the ‘hub-components’ aggregation units to 

create aggregation units that correspond to individual enhancer hubs shown to spatially interact 

to form 3D chromatin complexes. Each group, organized by physical interaction from islet 

promoter-capture Hi-C, consisted of multiple promoters and enhancers. These aggregation units 

contain the exact same genetic variants as the hub-components, gathered into larger groups of 

interacting promoter and enhancer regions. 

Coding aggregation units: A gene-centric approach was taken for exonic variant aggregation and 

association testing. We followed similar variant annotation class definitions as defined by 

Fuchsberger et al13, creating three annotation classes: loss of function, deleterious missense, and 

all missense, as described above in the Exonic annotations subsection. While the loss of 

function annotation set includes variants across the frequency spectrum, both deleterious 

missense and all missense aggregations limit variants to MAF < 1%.  

Aggregate association analyses. SNP-set associations were evaluated using both SKAT and 

Burden tests per the GMMAT method22 (implemented in the GENESIS R/Bioconductor 

package) assuming an additive genetic model. GMMAT fits a logistic mixed model and performs 
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Score (or Wald for effect estimates) tests under the null hypothesis of no association between a 

binary trait and each genetic variant to control for population structure and relatedness within the 

sample. Analysis of each ancestry group or study population was performed separately, using the 

same set of covariates (age, sex, TOPMed project), adjusted for population structure using a 

genetic relatedness matrix25. Meta-analysis was not performed since many of the rare alleles 

included in an aggregation unit were only observed in a subset of the ancestry groups or study 

population.  Four analyses were performed for each aggregation strategy and ancestry group or 

study population using two statistical tests (SKAT, Burden) and BMI adjustments (BMI 

adjusted, BMI unadjusted). In all cases, association results were filtered to those aggregation 

units with a cumulative minor allele count greater than 10. The workflows utilized in this 

analysis are available in a public github repository (version 1.4.1; 

https://dockstore.org/workflows/github.com/AnalysisCommons/genesis_wdl/genesis_GWAS:v1

_4_1?tab=info) from the Analysis Commons consortium28. 

Aggregation units that passed a Bonferroni corrected significance threshold (between 2.97×10-5 

and 1.94×10-6 accounting for the number of tests and the four analyses performed within each 

aggregation strategy and ancestry group/study population pair; Supplementary Table 19) were 

further explored to understand which variants were driving the observed association. Both SKAT 

and Burden analyses rely on generating a per-group of SNP’s test statistic through an additive 

model of individual variant score statistics, allowing for back-calculation of the contribution of 

each variant to the observed association.  Starting with the variant with the highest contribution 

to the test statistic and proceeding in order of decreasing contribution, the driver variants for a 

particular aggregation unit was defined as the minimal set of variants with a combined 

contribution of at least 50%. Any remaining variants with a contribution greater than 10% were 

also considered ‘driver variants’.  

Single Variant Analysis and Functional Fine-Mapping 
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Association testing. We performed single variant association tests with T2D using the Scalable 

and Accurate Implementation of Generalized mixed model (SAIGE) method assuming an 

additive genetic model. Our single variant association analyses were performed on variants with 

minor allele count > 20. SAIGE implements an accurate generalized mixed model association 

test that computes accurate P values in the presence of extreme case-control imbalance23. An 

empirical kinship matrix was used in SAIGE to control for population structure and relatedness 

within the sample. Both pooled analyses (i.e. entire sample) and ancestry/population-specific 

analyses were performed. In a meta-analysis across ancestries/populations, heterogeneity was 

assessed with Cochran’s Q statistic. Covariates used in ancestry-specific analyses included age, 

sex, TOPMed project (where TOPMed project represents either a subset of individuals from a 

single study selected based on certain criteria identified the study’s investigators or a consortium 

of studies that each contribute to a particular phenotype of interest); and covariates used in 

pooled analyses included age, sex, ancestry/population group, TOPMed project and the first 7 

PCs. We also evaluated BMI as a confounder by performing analyses with and without BMI as a 

covariate. Statistical significance thresholds for single variant associations were determined by 

assessing the effective number of independent regions across chromosomes 1-2346,47 in the entire 

study sample and then performing a Bonferroni correction (Supplementary Table 20), which 

resulted in a threshold of 4×10-9.  

Fine-mapping of potential causal variants within T2D susceptibility loci. We performed 

association tests while conditioning on the variants identified in the pooled and ancestry-specific 

results to determine if additional common or low-frequency variants showed distinct associations 

with T2D. Within a 500 KB region around the index variant, variants were considered to be 

distinct from the index variant if they remained significant in conditional analyses at locus-wide 

significance (p<1×10-5 and MAC>20). To identify potentially causal variants underlying each 

T2D association signal, we created a 95% credible set that had a 95% posterior probability of 
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containing the causal variant. Within each region, we calculated a Bayes factor (BF) for each 

variant48. For genetic loci with multiple distinct association signals, the association P values were 

derived from conditional analyses. We thereafter calculated a posterior probability for each 

variant that drives the association signal through dividing its BF by the sum of BFs in the region. 

The 95% credible set for each association signal was eventually constructed by sorting the 

variants’ posterior probability in descending order and including variants until their cumulative 

posterior probability for association was over 95%10. 

Power calculations. Power was calculated using the genetic association study power 

calculator49. The following assumptions were used in power calculations: disease prevalence of 

8%, significance level of 4x10-9, additive model, case n=9,639 and control n=34,494. Power is 

presented at levels of MAF commensurate with WGS single-variant association analyses 

(MAF=0.02%, 0.04%, 0.1%, 1% and %5); and OR from 1.0 - 6.0 (Supplementary Figure 7). 

Known variants. Known variants (n=403) representing 243 loci and genetic credible set regions 

at these loci were curated from DIAMANTE European, a large genome-wide, genotype and 

imputation-based T2D association study10. Twenty-three TOPMed variants did not pass 

genotyping quality, had MAC<20 or their genomic locations could not be updated to build 38 

and were excluded from analyses. A known region was defined for each of the 380 available 

variants (239 loci) as the published genetic credible sets +/- 500kb around the variant 

(Supplementary Table 16).    
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Supplementary Results 

Enrichment of rare variant signals in islet enriched genes. 

We also tested the coding genome, to understand if islet expressed genes were enriched for 
rare variant associations with T2D. We gathered results from the three coding variant 
aggregation strategies (all missense, deleterious missense, and loss of function) and performed 
two sample Kolmogorov-Smirnov (KS) tests for each analysis. Association P values were 
compared between islet expressed genes (fragments per kilobase of exon per million reads 
mapped, FPKM > 2) and genes not expressed in islets with a single tailed KS-test to determine 
if their distributions differed. Correcting for the four models tested in each ancestry group or 
study population and aggregation strategy pair, the loss of function aggregation tests from islet 
expressed genes were enriched for low P values within the Hispanic/Latinx ancestry group (P = 
0.0054; burden test, unadjusted for BMI; Supplementary Table 11). No other results show 
significant deviation between the two groups of genes. 

GWAS level of significance for T2D outcome 

We tabulated loci passing GWAS level of significance (i.e. p<5x10-8, Supplementary Table 13) 
and identified an additional 8 loci (9 variants) of which six variants have not been previously 
reported. Of the 6 variants not previously identified, 2 were rare or low-frequency (MAF<5%) 
and the other four were identified in historically underrepresented populations (i.e. non-
European). For variants that are in regions not previously identified we explored whether they 
could have been missed by GWAS or imputation. Using LDlink 
(https://ldlink.nci.nih.gov/?tab=home) we found five of the six variants are not on any of the 
arrays; rs78479678 is available on the exome chip and newer arrays. Imputation quality was 
good (>0.90) for only two of the variants (chr1:86325383:T:A and rs78479678) and associations 
were not observed in the DIAMANTE EU study (Supplementary Table 17).  

Pooled analyses yielded more WGS-wide significant results than meta-analyses; and results 
from meta-analyses were all identified by pooled analyses (Supplementary Tables 21-22). 

Associations with related cardiometabolic traits and by carrier status 

We examined whether our novel variants were also associated with related cardiometabolic 
traits – FG, FI, HbA1c and BMI in other TOPMed analysis samples. Several rare T2D risk-
raising alleles showed nominally significant association with these traits: rs145197571 at the 
MRPL46/MRPS11 locus was associated with higher BMI in African-ancestry individuals 
(P=8.1x10-3); rs200622604 at the NR4A2/GPD2 locus was associated with higher FI in 
European ancestry (P=6.1x10-3). The low-frequency allele at the CCND2 locus, rs76895963, 
was protective for T2D risk and was also associated with lower FG (P1x10-7), lower FI (P=4x10-

3), lower HbA1c (2.8x10-4) and higher BMI in the pooled sample (P=4.7x10-4; Supplementary 
Table 23). 

We next compared carriers versus non-carriers of T2D-associated alleles with regard to the last 
available FG, HbA1C and BMI values for non-diabetic individuals and the age and BMI at T2D 
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diagnosis for individuals with T2D, stratified by cohort and ancestry (Supplementary Table 24). 
We observed that European-ancestry carriers of the T2D-risk decreasing allele of rs76895963 
at the CCND2 locus had decreased last-available HbA1c levels (HbA1ccarriers=5.4; HbA1cnon-

carriers=5.5; P=0.3.8x10-4), increased last-available BMI levels in individuals without T2D 
(BMIcarriers = 28.7; BMInon-carrier=28.1; P=0.002) and also in individuals with T2D (BMIcarriers = 33.3; 
BMInoncarrier=31.2; P=0.004). In the Samoan Study, individuals with T2D who were carriers of the 
T2D risk increasing allele of driver variant rs929186279 from the PSD4/PAX8-AS1 locus had 
marginally significant earlier onset of T2D (38±9.6 vs 49±8.2, P=0.06) than non-carriers. 
Interestingly, Hispanic non-diabetic carriers of the T2D risk increasing allele of driver variant 
rs200945165 at the NR4A2/GPD2 locus had lower BMI than non-carriers (Ncarriers=22 BMIcarriers = 
27.3; BMInoncarrier=30.1; P=0.008). Additionally, Hispanic-ancestry, non-diabetic carriers of the 
rs11992463 variant at the KCNV1 locus had higher FG (5.5±0.6 vs 5.2±0.6, p=0.03) than non-
carriers. 

T2D+, an expanded T2D outcome 

Heritability Analysis 

We also conducted heritability analyses with the T2D+ outcome using the same methods 
(assuming a prevalence of 11%, Supplementary Table 6 and Supplementary Figure 2). The 
contribution of rare, non-coding variants in the 2nd LD score quartile had the largest proportional 
heritability, estimated to be 35% (95% confidence interval [CI] 0.11-0.59, P=1.6´10-3), with 
additional contributions from common variants (9%, 95%CI 0.04-0.13, P=1.7x10-4, 
Supplementary Table 7). Furthermore, we found results were similar to T2D, except we 
identified additional contributions to T2D+ heritability from low-frequency variants annotated as 
‘islet interaction and expression promoter’ in the 1st LD quartile (2%, 95%CI 0-0.04, P=7.1x10-3), 
and ultra-rare variants in the 3rd LD quartile annotated as ‘islet interaction and expression 
enhancer’ (11%, 95%CI 0.03-0.18, P=4.2x10-3) and annotated as ‘islet interaction and 
chromatin structure enhancer’ (7%, 95%CI 0.02-0.12, P=1.7x10-3).  

Single Variant Analyses 

In single variant analyses of T2D+, we identified 10 variants at 9 loci in either pooled or 
ancestry-specific analyses at WGS-wide level of significance (P<4x10-9) or locus-wide 
significance (P<1x10-5; Supplementary Table 14, Supplementary Figures 5 and 10). We also 
looked at sub-significant associations, variants passing GWAS level of significance (i.e. P<5x10-

8, Supplementary Table 25) and identified an additional 7 loci (9 variants). Four of these loci 
have been previously reported. The other 4 loci are either from diverse ancestry groups (i.e. AF 
or HSL) or were rare (MAF<.01). Using the T2D+ definition identified the known glycemia loci, 
MTNRB1 and GCK, suggesting a role for glycemia. Furthermore, NWD2 has not previously 
been reported and the variant, rs10028027, is available on commercial SNP arrays.  

Credible set analyses of whole genome sequencing and T2D+ identified one locus, MTNR1B, 
where the 95% posterior probability exceeds 0.9 for only one variant, rs10830963 
(Supplementary Table 26). For the remaining five loci, multiple variants within a locus 
demonstrated moderate 95%PP (posterior probability) (i.e. <0.90). Of note, at the established 
GCK locus, rs2300584 has been reported as the index variant multiple times by previous 
GWAS1 shows low 95%PP=0.03 while other variants in our dataset have higher 95%PP (~0.20). 

We found more associations with the T2D+ outcome, and associations across the 2 outcomes 
were 90% concordant (DUSP9, a known locus, was not significant with T2D+). For those 
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variants uniquely associated with the T2D+ outcome (i.e. not passing WGS level of significance 
for association with the T2D outcome) results with the T2D outcome are summarized in 
Supplementary Table 27; and P values are significant to1x10-3 suggesting these may also be 
T2D or glycemia risk variants. 

 

Supplementary Methods 

Trait Harmonization Algorithm 

We developed an algorithm to remove duplicate samples in the data set based on sequencing 
quality, study type and availability of phenotype data. By using each individual’s phenotype data 
from participating studies, we determined whether they represented monozygotic twins or an 
individual participating in multiple studies. For these individuals we made decisions about which 
phenotype data to keep for analyses by giving preference to studies with longitudinal data 
and/or by availability of type 2 diabetes (T2D) status. Scripts for harmonizing study data and 
creating a final dataset for analysis are available https://github.com/manning-lab/topmed-t2d-
wg-trait-harmonization. 

LD Score Regression from previously published GWAS summary statistics 

Enrichment analyses from previously performed GWAS2-5 were performed using LD score 
regression (LDSC), which can be used to partition heritability by functional annotation and 
identify those annotations explaining an outsized proportion of heritability than expected by 
chance6. LD was estimated using the 1000 Genomes Phase 1 data from the CEU population for 
European ancestry GWAS studies (MAGIC and DIAGRAM) and from the ASW population for 
African ancestry GWAS studies (AAGILE and MEDIA). 

The LDSC authors provided a full baseline model – a set of 53 genomic annotations curated 
from several sources (Table 3 of their publication) which are not specific to any cell types6. 
Redundant annotations contained in the baseline model, generated by extending regional 
boundaries by 500bp, were removed from primary analyses to remove redundant annotations. 
These extended annotations were, however, included in subsequent sensitivity analysis. 

In addition to the baseline model annotations from LDSC, we included 68 tissue-specific 
annotations based on GenoSkyline Plus scores (Supplementary Figure 11)7. GenoSkyline 
Plus scores, interpreted as the posterior probability of a variant being functional in a tissue 
based on publicly available epigenomic data, range between 0 and 1 for all variants. We defined 
variants as belonging to a tissue-specific annotation if the GenoSkyline Plus score was greater 
than 0.5. Our results should not be sensitive to the choice of threshold, as GenoSkyline Plus 
scores generally have a bimodal distribution8. 

Heritability Analysis 

A major advantage of using WGS data to estimate variant-based heritability is that causal 
variants are directly ascertained in the sample. Evans et al. carefully considered heritability 
estimation methods for WGS data and describe a bias in estimates when stratification exists 
within samples and the MAF and linkage disequilibrium (LD) patterns of all variants do not 
match the MAF and LD patterns of the causal variants9,10. Multi-component methods 
implemented in GCTA correct this bias by binning variants by MAF and LD score, a metric of 
the amount of LD between variants, and jointly estimating the heritability of each component. 
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This allows assessment of the contribution of variants that have lower LD scores (the 1st and 2nd 
LD score quartiles) and therefore may not have been captured by prior array based methods 
that depended on imputation from reference panels available at the time1. 

Rare variant aggregation and association analysis 

We developed a rare variant aggregation strategy for association testing built from the 
previously described Gene-centric aggregation. To further restrict aggregated variants to those 
likely functional within regulatory regions, we integrated predicted transcription factor binding 
sites (TFBS)11 and position frequency matrices (PFM)12. We created a set of predicted TFBS 
that fall within ATAC-seq peaks in pancreatic islets and also are within enhancer and promoter 
regions. We considered only TFBS where corresponding transcription factors were likely 
present within pancreatic islet tissue, determined by islet gene expression with average 
fragments per kilobase of exon per million reads mapped (FPKM) greater than 213-15. Within 
each TFBS, base pair positions were filtered by the corresponding PFM12 to sites with 
information content > 1 in order to focus on regions vital in transcription factor binding efficacy12. 
Association analysis was performed in an identical manner to other aggregation strategies. No 
significant associations were observed in any ancestry groups. 

Enrichment of exonic, rare-variant association signal within islet-expressed genes was 
determined by performing Kolmogov-Smirnov (KS) tests, comparing association P values 
between genes expressed in pancreatic islets and all other genes. There were 60 total sets of 
association results after considering coding variant aggregation strategy (all missense, 
deleterious missense, and loss of function), each ancestry or study population, and statistical 
model (SKAT/Burden and BMI adjustment). Within each set of results, genes were grouped by 
islet expression (FPKM > 2 or FPKM < 2). The distribution of association P values were 
compared between the two groups using a two sample, single tailed KS-test with the alternative 
hypothesis of lower P values within islet-expressed genes.  

Association analyses with related cardiometabolic traits 

Novel T2D variants were also considered for association with fasting glucose (FG), fasting 
insulin (FI), hemoglobin A1c (HbA1c) and body mass index (BMI), in collaboration with the 
TOPMed Anthropometric working group (Supplementary Table 23). Analyses of FG and log-
transformed FI were examined in individuals without T2D; and adjusted for age, age-squared, 
BMI, sex, and study-ancestry (study and ancestry combined into a single variable), and 
accounting for relatedness using a genetic relatedness matrix (GRM). Association analysis with 
HbA1c was stratified by ancestry and meta-analyzed for pooled estimates across ancestries, 
adjusting for age, sex, and study, and included a random effect for study and a GRM to account 
for relatedness16. Association analysis with BMI was performed by creating BMI residuals, 
adjusted for age, age squared, study and 10 PCs; and were created within ancestry and sex 
strata, then rank-normal transformed and rescaled by strata variance.  Pooled residuals were 
analyzed with linear mixed models including a variance component associated with the GRM 
plus separate residual variance components for each sex-ancestry group. Analyses were 
performed pooled across ancestries and additionally stratified by ancestry. 
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