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Abstract 
Shock is one of the major killers in ICUs and early interventions can potentially reverse it. In this study,                   

we advance a non-contact thermal imaging modality to continuous monitoring of hemodynamic shock             

working on 406 patient videos of 256 seconds length for 22 patients longitudinally. Deep learning was                

performed upon these videos to extract Center-to-Peripheral Difference (CPD) in temperature values.            

CPD along with heart rate, was finally analysed to predict the shock status up to next 12 hours using                   

Long-Short Term Memory models. Our models achieved best area under the           

receiver-operating-characteristics curve of 0.81 ± 0.06 and area under precision-recall curve of 0.78 ±              

0.05 at 5 hours, providing sufficient time to stabilize the patient. Our approach, thus, provides a reliable                 

prediction using an automated decision pipeline, that can save lives and provide better care. 
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Introduction 

Hemodynamic shock is characterized by inadequate supply of oxygen and nutrients to the cells than what                

is essentially required. Such a condition could cause tissue malfunction leading to a rapid organ failure                

which can eventually result in death. Although reversible in the initial stages, the mortality rate due to                 

delay in detection and treatment of such shocks are as high as 34% in the ICU patients admitted in the                    

developing countries [1]. Moreover, the under-privileged areas have a higher risk of shock ignorance             

mainly due to a lack of technological advancement and a low doctor-to-patient ratio. An early detection                

with effective management can prove to reverse the effects, saving the patient from rapid organ failure[2-4].                

Most of the methods dealing with the shock in today’s date are invasive or require repeated contact,                 

making the patient prone to hospital-acquired infections. The non-invasive ways such as Non-Invasive             

Blood Pressure monitoring and Ultrasonography are non-continuous but require contact with the delicate             

skin of infants which are infection-prone too[5]. Thus, there is a need for having a non-contact and                 

non-invasive modality that can prove to be effective for shock management.  

 

The most recent minimally invasive way to get sufficient data is to work on the thermal images [6]. The                  

studies have found out that the possibility of shock can be determined using the temperature difference                

observed between the abdomen and foot of the patient (Centre-to-Peripheral Difference)[7-8]. The feature             

has been exploited along with some vitals and the use of machine learning methods such as Histogram of                  

Oriented Gradients features with Random Forest classifier for detection and prediction of shock with a               

single snapshot of an image at a time point[9]. But a single instance might not be able to give robust results                     

because of limited information. Plus, using the handcrafted features for machine learning algorithms             

might cost us time. To expand upon the work, we aim to reduce the manual tasks performed to calculate                   

the features using deep learning methods and work on the continuous time series data, improving the                

efficacy of detection and prediction. This will be helpful in increasing the time window of action and                 
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treatment rather than spending the time on diagnosis. The impact this problem creates and the scope of                 

extending the solution makes this study worthwhile in saving the lives of many. 

 

 

Figure 1: Shock Prediction Steps. The summary of the shock pipeline shows the steps from video frame extraction                                   

to shock prediction. Step 1 comprises sampling videos to extract frames. Step 2 classifies frames into covered or                                   

uncovered, while also finding the presence of multiple people in the frame and mask them, so as to avoid confusion.                                       

The masked images are then input to the ResUNet based segmentation model and CPD is hence extracted. The                                   

series of CPDs are then passed through a time series sequence classifier and finally the predictions are made for                                     

shock for the next 12 hrs.  

 

 

Results 

Patient Characteristics. Statistical Inferences of the cohort characteristics between the shock and            

non-shock groups are depicted in Table 1. Shock and Non-shock conditions were decided using Shock               

Index Pediatric Age-adjusted calculation. It can be observed that the most significant difference between              

the two categories is in the heart rate, as expected, along with the respiratory rate.  
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Table 1: Cohort characteristics and statistical significance of control (non-shock) vs affected (shock) classes. The                             

p-values were calculated using either Wilcoxon rank sum test (W) or Student’s t-test (t) after testing for normality by                                     

D'Agostino-Pearson normality test. (n - Number of sequences, IQR - Interquartile Range)  

 

 
 

Segmentation of abdomen and feet achieved a total dice loss of 0.0391 using ResUNet              

Since thermal images lack texture, it is important for the model to recognise the structural shape features.                 

ResUNet was specifically used to make the task possible on relatively less available thermal data, and to                 

capture both the local and global information from the image. A dice loss of 0.0391 (Dice                

coefficient=0.9609) with a Binary Cross Entropy loss of 0.0692 was achieved for segmenting out              

abdomen, feet and the background. The mode intensities of the segmented areas were then used to find                 

out the Central-to-Peripheral Difference and hence build the longitudinal models from continuous            

long-duration videos.  

 

LSTM model was found to be the best performing 

We compared three models to finally arrive at the best performing one. Linear-Mixed Effects [10], Random 

Forest[11] and LSTM[12] were tested at various time points from the observation taken. Based on various 

metric evaluations, LSTM was found out to be best performing on our given time series data, and hence 

4 

Variable 

Non-shock Seq 
n = 274 

Shock Seq 
n = 132 

Statistical Tests  

Median (IQR) Median (IQR) p-value (W/t)  

Age (months) 54.44 (59.43) 75.89 (107.02) 0.6087 (W) 

Arterial Systolic Blood pressure, mm Hg 130.75 (11.95) 128.09 (25.21) 0.0014 (t) 

Systolic Blood pressure, mm Hg 106.00 (12.00) 102.00 (5.00) 0.002 (W) 

Heart rate, per min 111.52 (20.27) 143.17 (63.81) < 0.0001 (t) 

Respiratory rate, per min 25.85 (9.66) 22.87 (13.20) < 0.0001 (W) 

Oxygen saturation (SpO2)% 97.86 (2.62) 98.32 (3.45) 0.9932 (W) 
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was chosen as the primary choice for our study. The F1 score comparison of the three models is shown in 

Figure 2, and the rest of the evaluations are shown in the Supplementary Extended data Figure 4. 

 

(a)                                                         (b)  

Figure 2:  Comparison of Model F1 Scores for CPD and combination. The F1 score comparison for the three 

models (i.e. Linear Mixed-Effects model, Random Forest, and LSTM) tested on (a) CPD+HR and (b) CPD parameter 

only. It can be observed that the LSTM model outperforms the other two models in both the cases, making it the 

primary choice of this research. Rest of the comparison plots are depicted in supplementary material. 

 

Shock detection at 0 hr using LSTM model 

The CPD was extracted from every uncovered window possible using the segmented out abdomen and               

feet regions in a continuous way with videos sampled at 1fps. Keeping in consideration the Unique Health                 

IDs of patients and then performing SMOTE[13] upsampling, the observation windows of 256s (i.e. 4.26               

min) were passed into LSTM networks, along with heart rate as an additional covariate, for sequence                

classification. 10-fold stratified cross-validation gave a mean AUPRC of 0.796 and mean AUROC of              

0.788.  
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Evaluation of LSTM for the prediction of hemodynamic shock up to 12hr reveals that CPD               

increases the model performance 

The SAFE-ICU resources allowed us to match the time sequences with their corresponding states of               

shock/non-shock for the next 12hr since the observation was taken. We tested the LSTM model               

performance for 1 to 12 hour of lead time on heart-rate and CPD combination as shown in Table 2. The                    

evaluations with only heart-rate feature is shown in Supplementary Extended data Table 2. The results               

showed a continuous trend of precedence of using CPD with heart rate over using the heart-rate alone, on                  

multiple metrics such as AUPRC, AUROC etc till 6 hours, which gives a good time window to alert the                   

medical practitioners for the advent of shock.  

 

 

Table 2: Performance of the proposed model predicting the presence of Shock/Non-shock using automated CPD                             

and HR. The Time Pt. column depicts the subsequent hours from the time of taking the observation, at which the                                       

results were recorded. The unequal number of shock and non-shock sequences is due to the absence of patient                                   

data with the increasing number of hours. (S/NS - Number of Shock/Non-Shock sequences present, AUPRC - Area                                 

6 

Time Pt. S/NS AUPRC AUROC Accuracy Sensitivity Specificity PPV NPV Youden 

  Mean (SE) Mean 

0hr (D) 132, 274 0.79 (0.06) 0.78 (0.05) 0.85 (0.03) 0.74 (0.06) 0.92 (0.02) 0.86 (0.05) 0.84 (0.03) 0.50 

1hr (P) 115, 271 0.71 (0.06) 0.76 (0.04) 0.83 (0.04) 0.83 (0.04) 0.82 (0.06) 0.80 (0.06) 0.88 (0.02) 0.42 

2hr (P) 125, 253 0.56 (0.05) 0.69 (0.04) 0.83 (0.02) 0.72 (0.06) 0.90 (0.03) 0.82 (0.05) 0.84 (0.04) 0.56 

3hr (P) 133, 232 0.67 (0.06) 0.74 (0.06) 0.83 (0.04) 0.69 (0.08) 0.93 (0.04) 0.88 (0.06) 0.82 (0.04) 0.57 

4hr (P) 123, 242 0.75 (0.05) 0.75 (0.05) 0.81 (0.04) 0.70 (0.06) 0.94 (0.03) 0.90 (0.05) 0.78 (0.06) 0.64 

5hr (P) 120, 247 0.78 (0.05) 0.81 (0.06) 0.84 (0.04) 0.76 (0.07) 0.94 (0.02) 0.88 (0.05) 0.84 (0.05) 0.62 

6hr (P) 124, 228 0.66 (0.10) 0.73 (0.06) 0.89 (0.03) 0.82 (0.08) 0.92 (0.04) 0.81 (0.09) 0.95 (0.02) 0.62 

7hr (P) 116, 211 0.66 (0.06) 0.78 (0.04) 0.79 (0.04) 0.81 (0.05) 0.77 (0.05) 0.73 (0.06) 0.87 (0.04) 0.58 

8hr (P) 85, 216 0.52 (0.06) 0.72 (0.06) 0.80 (0.05) 0.82 (0.06) 0.80 (0.09) 0.79 (0.06) 0.89 (0.04) 0.69 

9hr (P) 90, 211 0.65 (0.06) 0.77 (0.05) 0.82 (0.03) 0.81 (0.08) 0.84 (0.04) 0.77 (0.06) 0.87 (0.04) 0.51 

10hr (P) 77, 215 0.64 (0.07) 0.79 (0.04) 0.82 (0.04) 0.89 (0.05) 0.78 (0.06) 0.73 (0.07) 0.95 (0.01) 0.49 

11hr (P) 62, 226 0.55 (0.05) 0.79 (0.03) 0.88 (0.03) 0.84 (0.05) 0.88 (0.03) 0.74 (0.05) 0.94 (0.01) 0.58 

12hr (P) 78, 205 0.54 (0.08) 0.73 (0.05) 0.82 (0.04) 0.75 (0.08) 0.83 (0.07) 0.72 (0.06) 0.91 (0.03) 0.50 
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Under Precision Recall Curve, AUROC - Area Under Receiver Operating Characteristics, PPV - Positive predictive                             

value, NPV - Negative predictive value, D - Detection, P - Prediction) 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

Figure 2: Quality Assessment for 5 hr Prediction.  Quality evaluation of the LSTM time series classification models 

by the (a)  AUPRC and (b)  AUROC for 5 hour prediction. The rest of the intermediate time stamps results till 12 hr are 

shown in the supplementary material. The results of all are shown in Table 2. The Standard Error (SE) for each is 

calculated from cross validation, by taking k=10.  

Discussion: 

The study presents a deep learning based continuous and non-contact shock detection and prediction              

model which leverages Center-to-Peripheral Difference (CPD) as one of its main parameters. Since             

hemodynamic shock can lead to organ failure and eventually to death in the ICU, its prediction on time                  

can save lives. Care needs to be taken to evaluate the parameters in a non-invasive way such as not to                    

cause the infections by the contact. Since, the field of thermal image inspection has only started to be                  

explored, it can thus be leveraged, along with some non-invasively monitored vital parameters, for a               

prediction of shock. The use of deep learning methods prove to be really beneficial in reducing the                 

manual preprocessing and increase the accuracy of the methods. 
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In this study, we have extended our previous work on hemodynamic shock prediction with longitudinal               

continuous monitoring of body thermal patterns which are previously found to be predictive for future               

shock prediction[9]. The longitudinal monitoring of temperature gradient opens up a rich source of              

information about patients physiology. The underlying stochastic patterns can have a discriminative value             

for future hemodynamic shock risk. We leveraged these reasonings to extract the center to peripheral               

intensity difference from the thermal images in time-series fashion. We do so by applying our data                

specific trained filters for multiple person detection, cover and uncovered patient detection models which              

is followed by segmenting the body parts into Abdomen and foot using artificial intelligence based               

models called UNet. Percentage difference of segmented body parts, identified as abdomen and foot were               

taken, termed as Centre to Peripheral Difference (CPD). These segmentation models were trained on the               

images collected during May-September 2016 and February-April 2017[6,9]. The extracted CPD           

time-series along with vitals time-series were used to predict the future (1-12 hr) hemodynamic shock               

using sequence models called Long-Short Term Memory (LSTM). This model was also compared with              

Random Forest and Linear Mixed-Effects models, known for working with longitudinal data. It was              

observed that the LSTM model outperformed both the other two. We also trained and checked the                

performance of models which can classify the length of video and images for future risk of hemodynamic                 

shock. The class of algorithms in deep learning called convolutional neural networks (CNNs) which have 

 

8 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 15, 2020. ; https://doi.org/10.1101/2020.11.12.20230441doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.12.20230441
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 4: Shock Prediction Pipeline. Illustration of the pipeline followed for the detection and prediction of shock                                 

and no-shock. Each frame of the video was examined for uncovered/covered. The uncovered frames were then                               

filtered off the presence of people other than the patient present in the frame. The frame was finally passed from the                                         

segmentation and CPD extraction model, further collecting the sequences used for LSTM time series classification.                             

The time sequences had CPD and HR as features and an appropriate window length of 256s was chosen. Since the                                       

data was highly imbalanced, SMOTE upsampling method was used in training the LSTM model. The detection and                                 

prediction of shock was done at 0hr and for the next 12 hours respectively. 

 

shown state-of-the-art performance for image classification were used for the task. However, we found              

the domain features such CPD, performed better than the classification based direct image and video               

classification for future risk of shock. Even after many experiments performed for a direct classification               

of images using the concepts of TV Chambolle[14] denoising, data augmentation and undersampling/             

oversampling, we were able to get the best AUROC of only 0.60 for shock detection using ResNet-50[15].                 

This can be because of the cluttered background with diapers and tubes, and an increased region of                 

interest for the information extraction from a limited variety of images. This also tells the importance of                 

the domain specific features over automated CNN based approaches. We built the models for multiple               

time-points while comparing only Vitals models (as baseline) versus models with CPD and vitals as               

predictors. The CPD and vitals models out-performed the only vitals model upto 6 hours of prediction.                

Later than this, their performance came out to be lower than the vitals based models. This might be                  

because of the less extensive dataset as the time point increases as the number of patients having their                  

vitals for long hours present with the hospital, reduce. This might be because of patient discharge from the                  

ICU or the failure of data procurement by the vital instruments. The metric AUPRC and F1 score are the                   

most significant for an imbalanced dataset such as ours as it doesn’t get biased by the presence of true                   

negatives and thus gives a clearer perspective of a classifier’s utility. The results till 6 hours show a                  
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promising window with a good prediction rate which can prove to be really helpful for the doctors to help                   

find a buffer time prior to the shock event to start the treatment. 

However, a few limitations can come up as monitoring thermal patterns could be hard at times when the                  

patient is being covered or being operated; caregivers can also block the recordings. But, these issues can                 

be resolved by keeping ~4.3 minutes of uncovered slots for the monitoring. Our models only require as                 

minimal as ~4.3 minutes of thermal recordings which does not recognise or identify an individual's               

identity, hence is safe for patient privacy and does not take much time away from the time assigned for                   

care. The results can be made more robust by expanding the dataset by including more number of patients                  

in the study. Also, the dataset can be made varied and generalised by including observations from                

multiple other clinical sites. But the study performed illustrates a great non-invasive and a minimal               

feature architecture which promises to be a life-saver by informing the clinicians about shock well in                

advance. 

 

Methods 

Cohorts and study design: 

● Safe ICU Framework: All the data reported in this research was collected from Paediatric ICU               

of AIIMS, a tertiary care hospital of India. Ethics committee of the medical institute granted a                

consent (Ref. No. IEC/NP-211/08.05.2015, AA-2/09.02.2017), as there was no alteration required           

in patient care nor the patient’s personal details required during the process of data warehousing.               

Segregation was not done during the data analytics and thus no data was discarded in the process.                 

There were 8 beds including neonatal beds in the Paediatric ICU. The four underlying principles               

constitute the Sepsis Advanced Forecasting Engine for the ICUs framework. Principles           

comprising Capture Reliably, Approach Systemically, Phenotype deeply and enable decisions.  
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All the admitted (enrolled) patients’ vital data collection started from February 2016, was limited 

to comprise patients who had Arterial Blood Pressure recordings(analyzed).  

● Vital records from multi-parameter monitoring: For monitoring the patients, Paediatric          

ICUs are equipped with Mindray TM monitors. In-house software was written for Health Level 7               

(HL7) Standards [16] based querying of the Central Monitoring Station (CMS). 1 Terabyte portable             

hard disk embedded with Raspberry Pi was used to store the streaming data. In order to query and                  

to receive vitals data, Client socket programming with respect to the device protocols were used.               

These vital data were received at the resolutions of 15 second for unsolicited data and 1 second                 

for the real time data. To receive streaming data, 64*1024 bytes of character array was used as a                  

buffer. Pipe delimited text file was generated every day at 0000 hr. Software code was written in                 

such a way that it automatically logs the data into a text file on daily base. In order to identify the                     

lossy data, alarm messages were sent to the android mobile phones. That is whenever there is an                 

interruption in data streaming, Pushbullet™ and RPushbullet generate the alarm messages. These            

high-resolution vital data have been warehoused for all the ICU patients starting from February              

2016 to May 2020.  

● Treatment Charts : Proper notes of the treatment were entered by the in-house doctors in word                

documents and the backup of these word files were scheduled at fixed hours every day, say 1700                 

hours and 1900 hours. Docx2txt python module is used to parse these text files and then it is                  

converted to tabular format for text mining. 

● Cohort based on Binary shock index: The SAFE-ICU described earlier has warehoused            

over 3,00,000 patient-hours of monitoring data from the PICU. It is used to extract time-stamped               

vital data for the patient’s at 0-12hr heart rate and blood pressure recordings. Shock index was                

calculated as the ratio of median heart rate and median non-invasive blood pressure or the arterial                

systolic blood pressure. This was calculated over the median of moving sequential windows of 30               
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data points at a resolution of 15s. Shock-index Paediatric Age-Adjusted (SIPA) is used to              

compute shock/no-shock age specific binarized outcome for each patient [17]. 

● Laboratory Investigations: PostgreSQL database (2013) is the AIIMS hospital database, used           

to store all the laboratory investigations. Queries are written to retrieve the required data of the                

children admitted to the ICU.  

 

Thermal Imaging: A standard thermal video capturing and operating procedures were followed, in             

order to ensure that there is less effect by extraneous factor, say, patient positioning, device handling etc                 

(Supplementary Methods S1).  

Thermal cameras only capture infrared radiation, so as to make sure that study does not reveal the                 

patient's identity. Camera was placed properly and at a good distance from the patient, so that there was                  

no direct contact involved nor any change in patient routine care. The thermal videos were captured in a                  

standard color-scale guaranteeing that the full body of infants were visible. 

A total of 130 infants and children (male, female), aged between 0.2-204 months, who were admitted and                 

had the arterial line recordings were considered in this study. Total of 450 thermal videos were recorded                 

using Android Smartphone attachment (Seek Thermal®). 76 (52 patients) out of 450 were considered              

were filtered out from the rest noisy videos with thermal noise and a few other external factors. Out of                   

these, 44 thermal videos from 30 children (male, female) were chosen based on the availability of their                 

abdomen and feet uncovered. 16 out of 44 videos were of a duration 1 min or less. Since the project looks                     

at long windows of longitudinal data, only 26 long videos (2+ hours; 7200s or more), with their vitals                  

present, remain consisting of 22 unique patients. 

Thermal videos of every single patient were collected at different time points on different days. Thus each                 

patient possibly has different values for shock-status, which in turn eliminates bias due to the patient's                

propensity characteristics, say gender, age etc. Vital data with respect to the time-stamp of video were                
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extracted from the data warehouse at 15s intervals (SAFE ICU)[6]. A comparison was made between the                

shock and non-shock groups using either Wilcoxon rank sum test or two-tailed Student’s t-test, after               

testing for normality by D'Agostino-Pearson normality test using GraphPad Prism version 6.00, GraphPad             

Software, La Jolla California USA, www.graphpad.com.  

 

Classification into Covered and Uncovered: The patients in ICU are kept under observation for a               

long duration. Since it is a very critical area, the patients are kept covered by a blanket most of the time.                     

The blankets are removed for a short period of time generally only when a nurse or a doctor comes to                    

examine the patient or to change the vitals and medicines. Since the main hypothesis of this research is to                   

work with the Center-to-Peripheral-Difference parameter, there are only a few short windows in a few               

hours per video which can be useful. To train the data, images were augmented and normalized by their                  

mean and variance especially extracted out to suit the thermal data. A ResNet-152 architecture was               

trained using PyTorch[18] framework in Python3[19] to classify each frame into covered and uncovered, i.e.               

abdomen and feet are visible. The model was finally implemented on videos sampled at 1fps. 

 

Multiple Person Detection: Since the patients are in intensive care, they are barely left alone,               

especially when uncovered, because that is when the caretaker tends to their needs. For the CPD                

extraction task, there is a need to filter out the presence of this additional person, so as not to confuse the                     

algorithm between the person and the patient. A variety of images of the patient alone and along with the                   

person/caretaker was taken and augmented. Instead of forming two separate classes of a child and a per-                 

son, the results were found to be better on using only one class as a person, which could detect multiple                    

instances of the person in an image. This might be because the algorithm was not able to grasp any                   

particular form/structure of the person, as different body parts (e.g. a hand in some, head in another) were                  

present in different images. The frames could just have been discarded but a few videos in the dataset                  

13 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 15, 2020. ; https://doi.org/10.1101/2020.11.12.20230441doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.12.20230441
http://creativecommons.org/licenses/by-nc-nd/4.0/


contained the presence of the caretaker throughout the duration for which they were captured. Thus, to                

avoid the loss of such crucial data, a tradeoff was done. Assuming that in most of the cases, the area                    

covered by the additional person in the frame is comparatively less than the area covered by the patient,                  

the bounding box with the larger area, presumably the patient, was kept and the rest was masked. The                  

now visible area could be further used for CPD extraction. This masking was done using YOLOv3[20] in                 

PyTorch having DarkNet-53 as its base architecture. The thermal images were manually annotated and              

trained to get the best checkpoint weights suitable for multiple person detection. 

 

Segmentation and CPD Extraction from Abdomen and Feet: Nagori A. et al [9] proved that the                

probability of shock depends directly on Center-to-Peripheral Distance (CPD). For this study, the             

abdomen has been taken as the center and peripheral is taken to be the foot. The images were annotated                   

manually and pixelwise using js-annotator-tool. The target maps contained 3 one-hot encoded layers             

corresponding to abdomen, feet and background. The input images were normalized with the mean and               

variance especially extracted from the distribution of the dataset in use. Appropriate image padding was               

done to ensure the aspect ratio of the images remains the same in case of any change in input dimension.                    

To account for a low dataset of pixel wise segmented images for training, a ResUNet with ResNet-18,                 

pretrained on ImageNet, was used as an encoder. UNet[21], being specifically introduced to segment the               

less abundantly found medical data, helps to gather more local and global information even in the dearth                 

of data, and thus efficiently segmenting out the images. The skip connections from the encoder to the                 

decoder helps the model to keep the original pixels at that particular scale in consideration while                

recreating at the decoder and thus learning finer details efficiently. Smaller skip connections in ResNet-18               

encoder helps to deal with the problem of vanishing gradients and thus makes the learning more efficient.                 

A cutoff threshold was set on the predicted outputs to remove any weakly predicted pixels. The area                 

detected was used as a region of interest in the original image and the mode of the detected probabilities                   
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was taken as the point of temperature extraction from the segmented out abdomen and feet. The                

difference was divided by the abdomen value to keep CPD robust from the thermal noise. 

 

Difference percent = 00Abdomen Intensity
(Abdomen Intensity − F oot Intensity) × 1  

 

LSTM Time Series Sequence Classification: The videos were sampled at 1 fps to extract the CPD                

data from every uncovered window possible. Windows of 256 data points corresponding to 256s (4.26               

min, padded, if necessary) were taken as an input to the LSTM based classifier. The windows less than                  

256 are padded with 0s and the windows greater than 256 are split in an overlapping fashion, when                  

necessary. Each CPD, along with the heart rate at its corresponding time point was taken to finally label it                   

with the shock index, and hence the presence of shock/non-shock. The missing heart rate data at certain                 

points was imputed with linear interpolation if the missing data was less than 10% of the time series                  

length. Since the data is highly imbalanced with more non-shock sequences, the training data is               

augmented with the SMOTE oversampling method. The LSTM sequence classifier was followed by a              

series of dense layers with a dropout of 0.2, which then passed through a sigmoid layer to output the                   

binary shock index, and hence, the occurrence of shock/no-shock. 

 

Linear Mixed-Effects and Random Forest sequence classification on tsfresh features: The           

tsfresh[22] features were extracted from 256-length sequences and trained on the same train and validation               

distributions as the previous LSTM model. ‘Boruta’[23] package from R-language was used for this              

purpose. Variation Inflation Factor (VIF) is used to reduce multicollinearity in data. If the VIF value                

exceeds 10, then the collinearity is considered problematic and hence that particular variable causing it               

should be removed. The remaining features were used to train the linear mixed-effects and random forest                

models. 
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Direct Classification of thermal images/videos for future risk of shock: Apart from CPD             

extraction, an attempt was made to classify into shock/no-shock by directly giving the whole              

images/videos as the input. In one direction, we tried to classify each video frame read at a time and                   

conducted experiments with several modern architectures based on convolutional neural networks (CNN).            

The concepts of TV Chambolle denoising, data augmentation and undersampling/oversampling, were           

used to get the best shock detection AUROC of 0.60 using ResNet-50. Also, the information extracted                

from a single image frame can be very limited. So instead, we tried to use direct and continuous video                   

samples of length 256s as an input to a conjunction of various CNN and LSTM models, trained in a time                    

distributed manner. Being a fundamental extension of the direct image classification problem, it suffered              

from similar limitations. 

 

Outcome variable - Binary shock index: The SAFE-ICU initiative has enabled this research to              

gather the PICU data and extract the vitals and the corresponding time stamps at the 0th hour (time of                   

video capturing) and at the next 12 hours. Shock index was taken as the median heart rate and median                   

non-invasive blood pressure or the arterial systolic blood pressure, for moving sequential windows of 30               

data points at a resolution of 15s. Shock-index Paediatric Age-Adjusted (SIPA) was then used to compute                

the age-specific binary outcome for each patient.  

Time Points: The time at which the video was captured was taken as the 0th hour, and the predictions of                    

shock/no-shock were performed for the next 12 hours.  

Model Evaluation: The video data was first partitioned patient-wise such as to keep train, validation               

and test sets unseen from each other. For the 10-fold cross-validation, the data was partitioned with the                 

ratio of 60:20:20 into these three sets in a stratified manner, i.e. keeping the distribution of low-percentage                 

shock class comparable in all three sets. The training data was augmented for the low-found shock class                 
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using SMOTE oversampling method; the validation and test sets remain unchanged of their size in each                

respective fold. The model analysis was mostly done on the Area Under Precision Recall Curve               

(AUPRC) and Area under Receiver Operating Characteristic (AUROC) curve. Other standard metrics like             

F1-score, PPV, NPV, Specificity and Sensitivity, were evaluated at the Youden’s Index (J)[24]. Since, there               

is a high significance of prevalence in the medical domain, calculating the metrics at Youden’s Index                

becomes important.  

J = max ( Sensitivity(c) + Specificity(c) -1 ) 
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