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One Sentence summary 

 

In this study, we explore the physiological significance of the genetic variants associated with 

COVID-19 severity using detailed clinical, immunological and multi-omics data from large 

cohorts. Our findings allow a physiological understanding of genetic susceptibility to severe 

COVID-19, and indicate pathways that could be targeted for prevention and therapy. 
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Abstract 

 

Recent genome-wide association studies (GWASs) of COVID-19 patients of European 

ancestry have identified genetic loci significantly associated with disease severity (1). Here, 

we employed the detailed clinical, immunological and multi-omics dataset of the Human 

Functional Genomics Projects (HFGP) to explore the physiological significance of the host 

genetic variants that influence susceptibility to severe COVID-19. A genomics investigation 

intersected with functional characterization of individuals with high genetic risk for severe 

COVID-19 susceptibility identified several major patterns: i. a large impact of genetically 

determined innate immune responses in COVID-19, with increased susceptibility for severe 

disease in individuals with defective monocyte-derived cytokine production; ii. genetic 

susceptibility related to ABO blood groups is probably mediated through the von Willebrand 

factor (VWF) and endothelial dysfunction. We further validated these identified associations 

at transcript and protein levels by using independent disease cohorts. These insights allow a 

physiological understanding of genetic susceptibility to severe COVID-19, and indicate 

pathways that could be targeted for prevention and therapy. 
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Introduction 

The novel coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2) (2)(3), firstly emerged in late December 2019 and has 

been spreading worldwide very quickly. The COVID-19 pandemic creates a severe disruption 

to the healthcare system and endangers the economy. While much has been learned about the 

pathophysiology of the disease, and immune-based treatment proven to be effective has 

included dexamethasone (4) and anti-IL-6/IL-6R monoclonal antibodies(5)(6), the prognosis 

is still poor in many patients. Therefore, there is an urgent need to better understand the exact 

host-pathogen interactions leading to increased severity and mortality, in order to design 

additional prophylactic and therapeutic strategies in future (7)(8). 

 

The severity of SARS-CoV-2 infection is highly variable, and ranges from asymptomatic to 

mild disease, and even to severe Acute Respiratory Distress Syndrome with a fatal outcome 

(9). However, the causes for this broad variability in disease outcome between individuals are 

largely unknown. A recent study indicates that human host factors rather than viral genetic 

variation affect COVID-19 severity outcome (10). Additionally, clinical and epidemiological 

data have shown that old age, male sex, and chronic comorbidity are associated with higher 

mortality (11)(12). The first genome-wide association study in individuals with genetic 

European ancestry has identified several chemokine receptor genes, including CCR9, CXCR6 

and XCR1 and the locus controlling the ABO blood type to be associated with severe symptoms 

of COVID-19 (1). Nevertheless, little is known about the mechanisms through which these 

genetic variants influence COVID-19 severity. For example, several competing hypotheses 

may be envisaged for the involvement of immune genes in susceptibility to severe COVID-19: 

on the one hand, it may be hypothesized that genetic risk for severe COVID-19 is associated 

with defective innate immune responses that would allow viral multiplication with high viral 
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loads; on the other hand, the opposite hypothesis may also be true, with an exaggerated 

genetically-mediated cytokine production being responsible for the late phase 

hyperinflammation and poor outcome. A purely genetic study cannot respond to this crucial 

question, that would have important consequences for the approach to prophylaxis and therapy. 

 

By making use of resources from the Human Functional Genomics Project (HFGP) (13, 14), 

we assessed the impact of COVID-19 associated genetic polymorphisms on variability of 

immune responses at the population level (Fig. 1), and we validated our findings using single 

cell transcriptomics and proteomics data from two independent COVID-19 cohorts. This study 

will help us to understand how genetic variability is related to disease susceptibility through 

the regulation of immune responses and endothelial function. 

 

Results 

 

COVID-19 loci are enriched for expression in immune organs, chemokine signaling 

pathways and enhancer region 

To explore the functional impact of the identified COVID-19 loci, we firstly investigated if the 

identified independent genetic loci (p value <110-5) from the first COVID-19 GWAS study 

by Severe COVID-19 GWAS Group (1) are associated with any phenotypes available at the 

GWAS catalog (https://www.ebi.ac.uk/gwas/). We found that many of these loci are associated 

with traits such as blood proteins/biomarkers, LDL and VLDL concentrations (Table S1). We 

next performed functional annotation of significant loci and gene-mapping using Functional 

Mapping and Annotation (FUMA) (15). The SNP2GENE function identified 32 independent 

SNPs located in 26 different loci which reached suggestive significance in this study (p-value 

<110-5, Table S2). Using multiple independent expression quantitative trait loci (eQTL) 
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datasets, FUMA mapped 115 genes to these 26 genomic risk loci. Using RNA-seq data of 30 

tissues from GTEx database (v8), we found significant enrichment of candidate genes in 

expression in immune organs such as spleen and blood (Fig. 2A), suggesting that they are 

important tissues contributing to the pathophysiology of COVID-19 (16)(17). Moreover, we 

observed the enrichment of candidate genes to be mainly expressed in small intestine and lung 

(Fig. 2A), suggesting that COVID-19 represents a multisystem illness with involvement of 

different organs, consistent with the respiratory and intestinal symptoms of the disease (18). 

 

Pathway analysis using these 115 genes showed a strong enrichment in chemokine binding and 

chemokine receptors binding (Fig. S1), which is in line with the fact that chemokines can 

recruit immune cells to the site of infection and are critical for the function of the immune 

response (19). In addition, chemokines have been reported as the most significantly elevated 

biomarkers in patients with severe COVID-19 on the intensive care unit (17). 

 

Considering that all SNPs in Linkage Disequilibrium (LD) with the 32 independent loci (p-

value <110-5) identified by the COVID-19 GWAS, were significantly enriched in the non-

coding intronic region (p value = 0.036, Fisher's exact test) (Table S3), we next examined 

whether the COVID-19 associated variants are enriched in regulatory DNA elements. We 

interrogated all significant SNPs (p-value<110-5 and stricter thresholds) with histone marks 

and chromatin states of 24 blood cell-types in the Roadmap Epigenome Project (20). We found 

that the COVID-19 genetic loci were strongly enriched for enhancer markers and weakly 

enriched in promoter marker (Table S4). The strong enrichment of COVID-19 loci in enhancer 

marks indicates that the associated genetic variants are likely to be involved in the regulation 

of immunologically-related functions. This finding also suggests that epigenetic 

mechanisms/regulation may play an important role in the pathogenesis of COVID-19 infection. 
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3p21.31 loci are associated with lower production of monocyte-derived cytokines 

Severe COVID-19 is characterized by complex immune dysregulation, combining immune 

defective features with hyperinflammatory innate immune traits (21)(22). However, these 

analyses in patients could be performed only late during the disease, and whether genetic risk 

for severe COVID-19 is characterized by low or high innate immune responses in a non-

infected person is not known. We therefore used the cytokine QTL data from the 500FG cohort 

(14) of the HFGP to test whether SNPs in 3p21.31 influence cytokine production upon 

stimulation. We checked all SNPs located within a 50 kilobase window of top variant 

rs11385942, and showed all nominal significant associations (p-value < 0.05, Fig. 2A). 

Interestingly, we observed that the risk alleles for a severe course of COVID-19 are 

consistently associated with lower production of monocyte-dependent cytokines (IL-6, IL-1 

and TNF-α) upon various in-vitro stimulations (Fig. 2B). Of note, COVID-19 risk alleles also 

correspond to lower monocyte-derived cytokine production after influenza stimulation, a viral 

stimulus (Fig. 2B and C, Table S5). It is thus tempting to speculate that the people who carry 

risk alleles may not respond properly to an initial virus infection, leading to high viral loads, 

subsequent systemic inflammation and poor outcome. Next, we tested whether the COVID-19 

risk SNPs are associated with the concentrations of circulating cytokines and levels of 

metabolites in blood (Table S6-7). Using the same cohort, we found that IL-18 and IL-18BP 

concentrations show a suggestive positive association with genetic risk of COVID-19 (Fig. S2, 

Table S6). Additionally, one of the 3p21.31 loci , rs2191031 is suggestively negative associated 

with high density lipoprotein cholesterol (HDL) (P value =0.004, Table S7-S8), which is 

consistent with previous findings that HDL levels were significantly lower in the severe 

COVID-19 disease group (23). 
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Von Willebrand Factor (VWF) and lymphocytes are strongly colocalized with ABO loci 

It is known that ABO blood group influences the plasma levels of von Willebrand factor 

(VWF)(24) and elevated VWF levels are associated with severe COVID-19 (25). We therefore 

tested the association of ABO locus with VWF circulating concentrations from the individuals 

in the 500FG cohort. Of note, we found the risk allele rs687621-G is significantly associated 

with elevated levels of VWF (p-value = 9.5810-20) (Fig. 3A and 3B). Recent studies have 

reported that the VWF level is highly related to COVID-19 severity (26, 27). As VWF level in 

plasma is an indicator of inflammation, endothelial activation and damage (28), our results 

suggest that the association of VWF and COVID-19 severity is very likely mediated through 

genetic regulation. 

 

We next tested if this specific locus is associated with immune functions. Interestingly, we 

observed consistent negative correlation of VWF and T-cell derived cytokine production in 

response to various ex-vivo stimulations (Fig. 3C and Fig. S3). In addition, the ABO locus led 

by the variant rs687621 also showed statistically significant co-localization with several 

immune-mediated traits, including cell counts of lymphocytes (Coloc analysis H4: 0.98), 

monocytes (Coloc analysis H4: 1), neutrophils (Coloc analysis H4: 0.8), and whole blood cells 

(Coloc analysis H4: 1) (Fig. 3D). 

 

Association between genetic risk score of COVID-19 severity with gender and BMI 

Polygenic risk scores (PRS) combine multiple risk alleles and capture an individual’s load of 

common genetic variants associated with a disease phenotype (29). Using the summary 

statistics provided in the GWAS study (1), we calculated the PRS for the samples from 500FG 

and 300BCG cohorts. Since higher mortality of COVID-19 has been reported to be associated 
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with male sex and BMI (11, 12), we investigated whether these host factors are associated with 

the PRS, a predictive measure of risk for development of severe COVID-19. 

 

We firstly assessed if males have a higher genetic risk compared to females in 500FG. Hereby, 

we defined people with top 10% PRS as a high-risk group and those with bottom 10% PRS as 

a low-risk group. As shown in Fig. 4A, male tend to have higher severe COVID-19 risk than 

female (odd ratio: 1.47, 95% CI: 0.98-2.22, p-value = 0.045 (Fisher’s exact test)) (Table S9). 

We next used different percentile cut-offs (15%, 20%, 25% and 30%) to re-define low and 

high-risk groups. Interestingly, we observed a consistent pattern that males have higher genetic 

risk (PRS) than females at different percentile cut-offs. These results can be replicated in a 

similar, but independent, cohort (300BCG cohort, Fig. 4B). Meanwhile, the genetic risk 

difference between male and female can be attenuated when a loose cut-off has been defined. 

The meta-analysis of two cohorts showed a significant p-value at various percentile cut-offs 

(10%, 15%, 20%, 25%) and marginal significant p-value of 0.051 at the percentile cut-off of 

30%. Furthermore, this result persisted when PRS was computed using summary statistics from 

the GWAS model after age and sex correction, reported in the original GWAS study (Table 

S10). However, when excluding variants from the X and Y chromosomes in the PRS 

calculation, the enrichment of men in the higher PRS group was not significant anymore (Fig. 

4C and 4D). This suggested that higher genetic severity risk at least partially originates from 

the SNPs in the sex chromosomes. 

 

As obesity or overweight has been reported as a risk factor for serious illness or death 

from COVID-19, we tested if the PRS is associated with BMI (Fig. 4E and 4F). We did not 

observe any significant correlation between PRS and BMI. 
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Association between severity risk factors and cytokine response was replicated in a 

second GWAS study 

To investigate whether our findings are only specific to one cohort, we implemented the same 

functional analyses in the recent published GenOMICC GWAS study(30). We firstly run 

FUMA analyses with the same parameter settings, and the 135 mapped genes show significant 

enrichment in expression in spleen, blood, lung and small intestine (Fig. S4), which is 

consistent with our interpretation of the function of the genetic loci on immune organs. Next, 

we sought to test whether COVID-19 GWAS SNPs identified in GenOMICC studies influence 

cytokine production upon stimulation. We again observed risk alleles from 3p21.31 loci are 

consistently associated with lower production of monocyte-dependent cytokines (IL-6, IL-1 

and TNF-α) upon various in-vitro stimulations (Fig. 5A and Table S11). Table S11 listed 816 

normally significantly stimulation pairs SNP- cytokine (p value <0.05). Notably, 777 out of 

816 SNP- cytokine stimulation pairs are from 3p21.31 loci.  As 3p21.31 loci is the major 

genetic risk factor explaining severity outcome(https://www.covid19hg.org), our result may 

indicate a potential mechanism of major genetic factor impacting the severity of COVID-19 

through an innate immune response.  

 

Validation in single-cell transcriptomes and proteomics data of COVID-19 cohorts 

To investigate in which cells those COVID-19 GWAS genes expressed, we utilized single-cell 

transcriptomics data from a COVID-19 German Berlin cohort(31) to illustrate the cell type-

specific expression of COVID-19 risk genes (Fig. 5B). Among 37 COVID-19 risk genes, 10 

were significantly differential expressed between severe and mild COVID-19. In general, the 

people with mild symptoms show high expression of those risk genes that those with severe 

symptoms (p-value χ2test =6.910-13) (Fig.S5).  Interestingly, OAS1  (2'-5'-Oligoadenylate 

Synthetase 1) shows higher expression in mild symptoms patients, which agrees with the recent 
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findings that higher plasma OAS1 levels were associated with reduced COVID-19 severity(32) . 

We next tested the expression of monocyte-derived and T cell-derived cytokine genes in single-

cell transcriptomics data. We found that monocyte-derived cytokine genes are expressed in 

patients, while T cell-derived cytokine genes are not, which indicates that innate immune 

response is of importance in disease development (Fig.5C). Therefore, we further tested the 

longitudinal expression change of IL-1  and TNF- using the data from the same cohort (Fig. 

S6). Notedly, we found that patients with mild symptoms usually show a decreasing pattern of 

expression in cytokines (IL-1, TNF-) during the disease course (from high to low), while the 

severe symptom patients show an increasing pattern of expression in cytokine genes (IL-1, 

TNF-) with time (from low to high). Such a pattern may suggest that mild patients have a 

sufficiently good response in the first phase of the infection, which inhibits efficiently the viral 

replication, subsequently resulting in decreased inflammation. On the contrary, severe patients 

show defective activation of antiviral innate immunity in the beginning, leading to prolongation 

of the disease process with inefficient and deleterious inflammatory response in the end. This 

observation is in line with the recent findings of immunosuppression in severely affected 

patients(33). 

 

We next validate whether two inflammatory proteins CCL25 and CXCL16, which are ligands 

for Chromosome 3 GWAS gene CCR9 and CXCR6, respectively, are associated with disease 

severity. We measured CCL25 and CXCL16 protein levels in two different patient cohorts by 

using Olink platform technology and ELISA, respectively (Methods). We observed a 

significantly lower expression of CCL25 in ICU patients (P-value = 0.0255) (Fig. 5D), while 

a significantly higher expression of CXCL16 in ICU patient (P-value <0.0001) (Fig. 5E and 

Fig. S7). These results are in line with the reported protective effect of CXCR6 and the risk 

effect of CCR9 in transcriptomic regulation (34). Interestingly, the longitudinal data from 
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COVID-19 patients showed that a clinical improvement is often associated with increased 

CCL25 concentration (Fig. S8).  

 

Additionally, we measured VWF levels in 159 COVID-19 patients (Methods) and found that 

VWF levels were significantly higher in the ICU patients (Fig.5F and Fig.S9). This further 

supported our findings that the ABO genetic risk is associated with VWF levels. 

 

Discussion 

Understanding the pathophysiology of COVID-19 is urgently needed for designing novel 

preventive and therapeutic approaches against the disease. One important tool for identifying 

the most important mechanisms mediating severity of a disease process is genomics: genetic 

variants that influence susceptibility or severity to a disease are usually located in genetic loci 

that impact important mechanisms for that particular disease. Using the information of a 

recently published GWAS assessing the severity of COVID-19 (1), and the rich datasets 

available in the HFGP, we interrogated the mechanisms through which genetic variants 

associated with severe COVID-19 exert their effects. 

 

Among the genetic loci associated with severe COVID-19, the 3p21.31 gene cluster has been 

well replicated by independent studies from the COVID-19 Host Genetics Initiative 

(https://www.covid19hg.org), and it was reported to be inherited by Neanderthals (35). This 

locus is currently regarded as a marker of COVID-19 severity, but crucial information is 

missing: are the risk alleles in this locus (that encode several cytokines and chemokines) 

associated with a lower or higher cytokine production? The answer to this question is crucial 

for understanding COVID-19: a genetic risk associated with low cytokine production would 

imply that severe COVID-19 is the consequence of a relative immunodeficiency, while a high 
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cytokine production associated with genetic risk would mean that severe COVID-19 is a 

genetic hyperinflammatory disease. In our study, the 3p21.31 genetic polymorphisms 

associated with a high risk of severe COVID-19 were associated with lower production of 

monocyte-derived cytokines, especially to viral (influenza) stimuli. This important discovery 

has significant prophylactic and therapeutic consequences. On the one hand, it implies that 

improvement of innate immune responses in healthy individuals would decrease the probability 

that they undergo a severe form of COVID-19: this supports the rationale of clinical trials that 

improve innate immune responses through induction of trained innate immunity (7). On the 

other hand, this also implies that the dysregulated immune responses that have been described 

at late time points in patients with severe COVID-19 (31)(36) are likely the consequence of 

accelerated viral multiplication due to defective innate immune responses, and subsequent 

systemic inflammation due to high viral loads. 

 

Several studies have shown that ABO blood types are associated with COVID-19 severity 

(37)(38) and susceptibility (39)(40)(41). It is still not well-known how the ABO locus regulates 

COVID-19 susceptibility. As ABO blood group are also expressed on endothelial cells and 

platelets, it has been speculated that this effect may manifest itself via elevated plasma VWF 

(42). Our results provide evidence supporting this hypothesis, by showing that the risk alleles 

in the ABO locus are associated with high concentrations of VWF. Moreover, interesting 

associations have been found between polymorphisms in this locus and the number of various 

immune cell populations, especially lymphocytes, since lymphopenia is also consistently 

associated with severe COVID-19 (43). This suggests that genetic factors are relevant to the 

host thrombo-inflammatory response. However, a note of caution should be mentioned, as the 

association between the genetics of ABO group with severity in COVID-19 Host Genetics 
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Initiative data did not reach a genome-wide level of significance (p value <510-8) (Table S12) 

(as of 21st of October 2020), and thus the association might be population specific. 

 

Another observation is that the impact of genetic polymorphisms on the severity of COVID-

19 is likely mediated through sex chromosomes, i.e. chromosome X, which is known to encode 

many genes related to the immune system. Indeed, men in both 500FG and 300BCG cohorts 

had a higher genetic risk than women, and this difference was largely lost when sex 

chromosomes were excluded from the PRS analysis. This finding was not able to be replicated 

in GenOMICC study(30). (Table S13), due to fact that no significant association were reported 

on sex chromosomes in the other GenOMICC study. Therefore, these data suggest that at least 

part of the well-known increase of COVID-19 severity in men is genetically determined. The 

recent description by our group of rare mutations in the RNA receptor TLR7 located on 

chromosome X as a cause of very severe COVID-19 in young men also supports this hypothesis 

(44). 

 

While our study sheds further light on how COVID-19 genetic risk affects the human immune 

system, there are several limitations of this study: firstly, due to different sets of stimuli used 

in measuring cytokine production to stimulations in the two healthy cohorts, we are not able to 

replicate all our findings of genetic associations with cytokine responses from the 500FG 

cohort in the 300BCG cohort. Secondly, young adults (< 30 years) and normal weight BMI are 

overrepresented in both healthy cohorts (500FG and 300BCG), which may lead to a biased 

conclusion which cannot be generalized to the whole population, especially since the severe 

COVID-19 cases often occur in the elderly population. 
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Collectively, our data demonstrate that genetic variability explains an important component of 

the increased susceptibility to severe COVID-19. The genetic risk for severe COVID-19 is 

associated with defective innate immune responses (low cytokine production), dysregulated 

endothelial function. These findings may contribute to the development of novel treatment and 

prevention strategies for severe COVID-19. 

 

Materials and Methods 

Study cohort 

The cohorts involved in this study are from the Human Functional Genomics Project 

(HFGP)(45). 500FG consists of 451 healthy individuals of European ancestry with genotype 

measurement. Within this cohort, immune cell counts, cytokine production upon stimulations, 

platelets, globulins, and gut microbiome were measured (for detailed information see (13, 14, 

46, 47)). 300BCG consists of 313 healthy Europeans that participated in a BCG vaccination 

study (48)(49). The basic characteristics of study populations are shown in Table S14. Within 

this cohort, blood was collected before vaccination and cytokine production was measured 

upon ex-vivo stimulation of PBMCs with microbial stimuli.  

 

Genotype quality control and imputation 

Genotyping on samples from 500FG and 300BCG was performed using Illumina 

humanOmniExpress Exome-8 v1.0 SNP chip Calling by Opticall 0.7.0(50) with default settings. 

All individuals of non-European ancestry, ambiguous sex, call rate ≤ 0.99, excess of autosomal 

heterozygosity (F<mean-3SD), cryptic relatedness (π>0.185) were removed. SNPs with low 

genotyping rate (<95%), with low minor allele frequency (<0.001), deviation from Hardy-

Weinberg equilibrium (p<10-4) were excluded. The detailed QC steps have been published in 

reference(14). Genotype data of 500FG and 300BCG were imputed respectively. The 
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imputation was performed on the Michigan imputation server(51). The cohorts were phased 

using Eagle v2.4 with the European population of HRC 1.1 2016 hg 2019 reference panel. 

After imputation, variants with a MAF < 0.01, an imputation quality score R2 < 0.5, or a Hardy-

Weinberg-Equilibrium P < 10-12 were excluded. All quality control steps were performed using 

Plink v1.9. After imputation and quality control, 451 individuals from 500FG and 313 

individuals from 300BCG were available for downstream analyses. 

 

Immune parameter quantitative trait locus (QTL) profiles 

We acquired summary statistics of cytokine QTLs (14), cell proportion QTLs(46) and 

circulating mediators and  metabolite QTLs(52) from our previous studies performed with 

500FG. Metabolites were measured on the Brainshake Metabolomics/Nightingale Health 

metabolic platform. These samples were processed following the automated standard protocol 

provided by Nightingale's technology (Finland), and blood metabolites were quantified in 

absolute concentrations (e.g. mmol/L) and percentages using nuclear magnetic resonance 

(NMR) spectroscopy.We performed QTL mapping for circulating mediators and platelet traits 

in 500FG using an R package MatrixeQTL(53). The measurement of circulating mediators 

including IL-18BP, resistin, leptin, adiponectin, alpha-1 antitrypsin (AAT), and IL-18 have 

been described previously(13). Platelet traits(54) include Thrombin-Antithrombin Complex 

(TAT), Beta-thromboglobulin total, beta-thromboglobulin, fibrinogen binding, collagen-

related peptide (CRP) P-selectin, CRP fibrinogen, ADP P-selectin, ADP fibrinogen, P-selectin, 

platelet−monocyte complex, total platelet count, and von Willebrand factor (VWF). The 

circulating mediator levels and platelet traits were log2 transformed. A linear model was 

applied to the platelet data and genetic data by taking age and sex as covariates. We considered 

p-value < 5×10-8 to be genome-wide significant. 
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Colocalization analysis. 

We performed co-localization analysis (55) to look at the overlapping profile between 

molecular QTLs, COVID-19 GWAS, and other GWAS profiles using the R package ‘coloc’. 

 

PRS calculation 

Polygenic risk scores (PRS) were calculated by first intersecting the variants from the COVID-

19 summary statistics(1) with the variants present in our samples. Clumping was done starting 

at the most significant variant. All variants within a 250kb window around that variant were 

excluded if they were in greater LD than 0.1 before continuing to the most significant variant 

outside of the previous window. For each sample specifically, we then multiplied the dosage 

of the effect allele with its effect size while substituting missing genotype data with the average 

dosage of that variant in the entire sample set. These values were then summed to form the 

PRS for each specific sample. As the GWAS summary statistics for creating PRS from 

Eillinghaus et.al (1) did not correct age and sex, we also performed a sensitivity analysis with 

the PRS created from the GWAS model corrected for age and sex. 

 

PRS based correlations 

Linear models were constructed using the computed PRS and various phenotype data available 

for each cohort. Samples within the top/bottom 10% PRS were classified as high/low-risk, 

respectively. Using the PRS of the samples in these risk groups, we performed a Student T-test 

to test for significant correlation between gender and PRS. Furthermore, we tested for 

enrichment of any specific gender in these risk groups using a Fisher’s exact test. 

 

Functional analysis of genomic loci 
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We used the FUMA pipeline in order to identify genes linked to COVID-19 with severe 

respiratory failure. FUMA identified significant independent SNPs as variants with P < 1×10-

5 that were independent from each other using an LD threshold of r2 < 0.6. Within these 

independent significant SNPs variants lead SNPs are identified as the most significant variants 

that are independent using an LD threshold of r2 < 0.1. We mapped Genes to these SNPs based 

on their genomic position allowing for a maximum distance of 10kb. In addition to this, genes 

were also mapped based on eQTL effects. Genes were selected based on significant SNP-gene 

pairs at FDR < 0.05 using cis- and trans-eQTLs from eQTLGen (https://www.eqtlgen.org). 

 

As part of the FUMA pipeline we used these mapped genes in order to generate gene expression 

heatmaps using GTEx v8 (54 tissue types and 30 general tissue types). Gene expression values 

with a pseudocount of 1 were normalized across tissue types using winsorization at 50 and log2 

transformed. Using the hypergeometric test, we tested for significant enrichment of our input 

genes in DEG sets for the different tissue types using a Bonferroni corrected P value ≤ 0.05. 

Finally, we tested for overrepresentation of our input genes in predetermined gene-sets using 

hypergeometric tests. Gene-sets were obtained from MsigDB, WikiPathways, and GWAS-

catalog reported gene-sets. We used Benjamini-Hochberg FDR correction for each of the 

categories within these gene-set sources separately using a threshold of 0.05 for our adjusted P 

value. 

 

Roadmap epigenetic state enrichment 

Based on the Roadmap 15-core epigenetic state database(20), we used data obtained from 23 

blood samples spanning 127 epigenomes to map the QTLs in the summary statistics to their 

respective epigenetic states. Epigenetic state information was available for bins of 200bp. we 

aggregated this information into 4 categories; active enhancer states (Enh, EnhG), active 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 14, 2021. ; https://doi.org/10.1101/2020.11.10.20229203doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.10.20229203


 19 

promotor states (TssA, TssAFlnk), all enhancer states (Enh, EnhG, EnhBiv), and all promotor 

states (TssA, TssAFlnk, TssBiv). We tested for enrichment using a Fisher's exact test based on 

the number of unique 200bp bins variants mapped to. This was done after filtering the QTL's 

down based on their p value using different thresholds (1×10-5, 1×10-6 and 1×10-7). Enrichment 

P values were obtained after FDR correction. 

 

Biomarker measurements 

Hospitalized patients with presumed COVID-19 disease were included in a prospective cohort 

between March and April 2020 at the Radboudumc (Nijmegen, the Netherlands). Disease 

severity was defined based on the patient’s need for intensive care at the time of sampling. The 

inclusion and clinical characteristics of this patient cohort has been previously described in 

detail(56). The basic characteristics of the studies samples are shown in Table S15. Plasma 

samples were collected from EDTA blood and stored at -80°C. The plasma concentrations of 

CCL25 were determined using the commercially available Inflammation panel from Olink 

Proteomics AB (Uppsala, Sweden). The procedure of this immunoassay was performed as 

previously described(57). CCL25 levels are expressed on a log2-scale as normalized protein 

expression (NPX) values and were normalized using control samples to correct for batch 

effects. Values under the detection threshold were replaced with the lower limit of detection. 

CCL25 levels were compared between severe COVID-19 patients (ICU ward = 18) and non-

severe COVID-19 patients (non-ICU ward, N = 28) using a linear regression analysis with age 

and sex as covariates. CCL25 levels was measured every 2 days until an endpoint was reached 

(either patients left the hospital, or died of the disease).  

 

Plasma concentrations of CXCL16 were measured using a commercially available enzyme-

linked immunosorbent assays (ELISA, Invitrogen, Thermo Fisher Scientific) according to the 
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manufacturer’s protocol, with a lower and upper detection limits of 0.055 and 40 ng/mL, 

respectively. Plasma concentrations of VWF were measured using a commercially available 

ELISA (Abcam, ab223864) according to the manufacturer’s protocol, with a lower and upper 

detection limits of 0.94 and 60 µg/mL, respectively. Values under or above the range of 

detection were replaced with the lower or upper detection limits, respectively. The basic 

characteristics of the studies samples are shown in Table S16. The student’s t test was used to 

compare protein levels between 57 ICU patient and 102 non-ICU patients. 

 

scRNA-seq analysis  

Samples from patients with COVID-19 were collected during the first wave of the pandemic 

from Berlin between March and July 2020 in Germany. Berlin cohort consists of 25 mild and 

29 severe COVID-19 patients, and 22 controls samples from publicly available scNRA-seq 

data. The detailed clinical characteristics of those samples have been previously described 

(31). Gene expression levels were compared between severe patients and mild or healthy 

controls using FindMarkers functions in Seurat v3.2.2 (Stuart, Cell, 2019) with Wilcoxon 

Rank Sum Test. Genes at least 10% expressed in tested groups and Bonferroni-corrected p-

values < 0.05 were regarded as significant differentially expressed genes. 

 

Visualization. 

R package ggplot2 was used to perform bar charts, box plots and scatter plots. We applied an 

online tool Locus zoom to present genes within candidate loci. We used R package pheatmap 

to generate heat maps.  
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Figure Captions 

 

Fig. 1. Study overview.  Firstly, we performed a functional mapping and annotation (FUMA) 

to link COVID-19 SNPs to gene expression and identified important pathways and tissues 

contributing to the pathophysiology of COVID-19. Secondly, we utilized the cytokine 

quantitative trait loci (QTL), metabolite QTL and plate QTL from Human Functional 

Genomics Projects (HFGP) 500FG data (n=451) to test if specific loci are associated with 

immune functions. Thirdly, we linked PRS score with gender and BMI in 500FG (n=451) 

and 300BCG (n=313) cohorts. Lastly, we validated our findings in disease cohorts in single-

cell transcriptomics data from Berlin (n=76), and proteomics data from Nijmegen (n=46, 

n=159). SNPs, single-nucleotide polymorphisms. 

 

Fig.2. Functional annotation of COVID-19 loci using the FUMA pipeline and association 

3p21.31 loci with immune traits. A) MAGMA Tissue expression results on 30 general tissues 

type (GTEx v8). FUMA analysis was done based on genes identified after using their 

genomic location, eQTL associations, and histone activity. B) The heatmap showing the 

assoication between 3p21.31 loci with cytokine production upon in vitro stimulations. Red 

color in heatmap indicates higher cytokine production leaded by risk allele in COVID-19 

GWAS profiles, Blue color indicates lower cytokine production leaded by risk allele in 

COVID-19 GWAS profiles. C) a boxplot showing COVID-19 risk allele(rs6441930-C) 

associated with reduced IL6 production with influenza stimulation of PBMC for 24 hours (p-

value = 0.026). 
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Fig 3. Functional annotation of ABO loci. A) locus zoom plot showing the significant 

association between ABO loci and VWF level. B) a boxplot showing COVID-19 risk 

allele(rs687621-G) associated with increasing VWF level (p-value = 9.5810-20). C) a barplot 

showing consistent negative correlations between VWF levels and T cell-derived cytokines 

D) scatter plots showing colocalization between ABO loci with VWF, lymphocytes, 

monocytes, neutrophils and white blood cell counts. 

 

Fig. 4. Correlation of COVID-19 PRS with gender and BMI. A) bar plot representing the ratio 

of low risk versus high risk in 500FG. The X-axis shows the range of different quantiles (e.g.,10% 

corresponds to those individuals with PRS between 0th and 10th percentile of the population), 

and the Y-axis shows the odds ratio when comparing low PRS risk and high PRS risk in the 

male and female group from different quantiles. B) bar plot representing the ratio of low risk 

versus high risk in 300BCG. C) Bar plot representing the ratio of low versus high PRS based 

risk between men and women in 500FG calculated without including the sex chromosomes. 

D). Bar plot representing the ratio of low versus high PRS based risk between men and women 

in 300BCG calculated without including the sex chromosomes. E). Scatter plot showing the 

correlation between PRS with BMI  in 500FG F) in Scatter plot showing the correlation 

between PRS with BMI  in 300BCG. 

 

Fig. 5 Replication and validation. A) Heatmap showing the association between 3p21.31 loci 

and immune traits can be replicated in an independent cohort.  The red color corresponds to 

higher cytokine production leaded by risk allele in COVID-19 GWAS profiles, whereas blue 

color indicates lower cytokine production leaded by risk allele in COVID-19 GWAS profiles. 

B) Dot plots of expression of GWAS genes in single-cell transcriptomics of COVID-19 

patients. The GWAS genes were selected from the Severe COVID-19 GWAS(1) and 
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GenOMICC study(30). C) Violin plots of the expression of monocyte-derived cytokine genes 

and T cell derived cytokine genes in COVID-19 Berlin cohort based on single cell RNA-seq 

data. D) A boxplot of the differential protein levels of CCL25 between 18 ICU and 28 non-

ICU COVID-19 patients from another independent cohort. E) A boxplot of the differential 

protein levels of CCL25 between 57 ICU and 102 non-ICU COVID-19 patients. F) A boxplot 

of the differential expression of VWF between 57 ICU and 102 non-ICU COVID-19 patients.  
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Fig. S1 A bar plot showing the top 10 significant enriched gene sets using functional 

annotation of COVID-19 loci by FUMA pipeline.  

 

 

 

 

 

 

 
 

Fig. S2 Heatmap of the genetic associations between 3p21.31 loci and circulating mediator. 
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Fig. S3 A barplot showing associations between VWF levels and cytokine 
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Fig.S4. Functional annotation of COVID-19 loci from GenOMICC study of European 

ancestry group using the FUMA pipeline. This was done based on genes identified after using 

FUMA to map QTLs based on their genomic location, eQTL associations, and histone 

activity. A) MAGMA Tissue expression results on 30 general tissues type (GTEx v8), B) The 

top 10 significant enriched gene sets. 
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Fig.S5. A scatter plot showing the average cell type-specific expression of GWAS genes 

between mild and severe COVID-19 patients. 
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Fig. S6. The longitudinal change of IL-1 and TNF- expression (violin-plots) in monocytes 

of COVID-19 Berlin cohort.  
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Fig. S7) A boxplot of the differential expression of CXCL16 between ICU and non-ICU 

COVID-19 patients after excluding samples which are above upper detection limit 

(UDL).  
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Fig. S8 The expression of CCL25 at different time points in three clinical groups (clinical 

improvement, moved to ICU and patient deceased). 
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Fig. S9 A boxplot of the differential expression of VWF between ICU and non-ICU COVID-

19 patients after excluding samples which are above upper detection limit 

(UDL).  
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