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Abstract 

Retrospective analyses of interventions to epidemics, in which the effectiveness of strategies 

implemented are compared to hypothetical alternatives, are valuable for performing the cost-

benefit calculations necessary to optimize infection countermeasures.  SIR (susceptible-infected-

removed) models are useful in this regard but are limited by the challenge of deciding how and 

when to update the numerous parameters as the epidemic changes in response to population 

behaviors.  Behaviors of particular interest include facemasks adoption (at various levels) and 

social distancing.  We present a method that uses a “dynamic spread function” to systematically 

capture the continuous variation in the population behavior, and the gradual change in infection 

evolution, resulting from interventions.  No parameter updates are made by the user.  We use the 

tool to quantify the reduction in infection rate realizable from the population of New York City 

adopting different facemask strategies during COVID-19.  Assuming a baseline facemask of 67% 

filtration efficiency, calculations show that increasing the efficiency to 80% could have reduced 

the roughly 5000 new infections per day occurring at the peak of the epidemic to around 4000.   

Population behavior that may not be varied as part of the retrospective analysis, such as social 

distancing in a facemask analysis, are automatically captured as part of the calibration of the 

dynamic spread function. 

Key words:  COVID-19, SIR model, Infection-spread model, personal protective equipment, 

facemask 
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1.Introduction 

Retrospective analyses of strategies used to contain epidemics such as COVID-19 are 

valuable for countering successive waves of the infection, selecting countermeasures for future 

epidemics, and educating the population regarding the efficacy of implementing behavioral 

modifications.  In particular, public-health agencies responsible for recommending types of 

personal protective equipment (PPE) to stockpile in anticipation of a future epidemic can benefit 

from the cost-benefit information yielded by retrospective analyses.  Mathematical models, 

including those of the SIR type, can be helpful in providing a quantitative framework for the 

analyses.  SIR models have been applied during the COVID-19 pandemic (Stutt et al. 2020, 

Giordano et al. 2020, Cooper et al. 2020, Bertozzi et al. 2020), primarily in a predictive capacity.  

Some of the studies (Ngonghala et al. 2020, Eikenberry et al. 2020) have predicted the infection 

dynamics for different intervention strategies, using a specific infection scenario (e.g. New York 

State).      

  A formidable challenge in applying SIR models is prescribing the values of the numerous 

parameters, and updating them to simulate evolving infection dynamics, as population behaviors 

(such as facemask adoption and social distancing) change in response to interventions.  Typically, 

behaviors will change in a continuous manner rather than abruptly, for example, the gradual 

adoption of face masks by an affected population.  Such gradual changes are difficult to capture in 

SIR models by periodically adjusting the parameters manually.  The challenge is further 

accentuated by the high sensitivity of the predictions to some of the parameter values (Giordano et 

al. 2020).  Often, parameter choices are based upon best guesses, or closeness of fit (sometimes 

visual) of computed profiles with published curves (Cooper et al. 2020) .   
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In this paper, we introduce a modification of traditional SIR models that incorporates a 

“dynamic spread” function that captures changes in population behavior in a continuous manner.  

There is no need to adjust parameters manually as interventions are implemented during the course 

of the infection.  The dynamic spread function satisfies a differential equation with variable 

coefficients.  These coefficient functions are obtained from a calibration procedure employing the 

published infection profile for the region of interest.  The computed dynamic spread function 

reproduces the infection profile resulting from the baseline intervention strategy implemented over 

the course of the epidemic.  Subsequently, the spread function can be systematically modified to 

analyze the effect of alternate intervention strategies.  We illustrate the process using the COVID-

19 crisis in New York City (CNYC) and New York State.  The reduction in infection rate 

realizable in CNYC from alternative intervention strategies, including increased levels of mask 

usage and deployment of masks with higher levels of filtration, is estimated.  

2. Methods 

We illustrate the technique using a 4-equation SIR model (Stilianakis and Drossinos 2010 

Myers et al. 2016).  The evolution of the susceptible, infected, and removed populations is 

simulated, as is the droplet transmission.  The model assumes that the infection dynamics are 

dominated by one transmission mode (e.g. airborne particulates), and the parameter values are 

appropriate for all particle sizes contributing to that mode (though interpretation of the resulting 

equations as an average for a broad particle distribution is possible (Myers et al. 2016).  More 

complicated SIR models can be useful, particularly if it is desired to model the details of the 

infection dynamics, e.g. quantifying the roles played by symptomatic and asymptomatic 

individuals (Stutt et al. 2020).   Our intention is to use the simplest model that can capture the 
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baseline population behaviors and vary the critical ones retrospectively, with the hope that the 

model can be understood and used by non-experts such as policy makers.  Additionally, as noted 

by Siegenfeld et al. (2020), simpler models can prove more useful than complex ones, in part 

because accurate data is often not available to inform complicated formulations.  Finally, we 

expect that some of the technique we present can be extended to more complex models.   

2.1 Overview of Strategy. 

The dynamic-spread function is the critical element of a systematic procedure for re-

purposing SIR models to perform retrospective studies.  The 5 steps in the procedure are listed 

below and implemented subsequently. 

1)Use the rate of change (measured by the number of new infections per day), dS/dt, of the 

susceptible population S, as the primary dependent variable.  The derivative profile, which we call 

T(t), does not require the number of recovered patients to be tracked. 

2)Normalize variables and identify critical dimensionless parameters.  Formulating the model in 

terms of dimensionless clusters of parameters reduces the number of independent quantities that 

must be prescribed to run the model, and aids in identifying the most critical parameters. 

3. Allow the dimensionless parameter δ, which contains the product of the infection transmission 

rate and the virus production rate, to vary with time, and account for its time dependence in the 

governing differential equation for T(t) .  We denote δ(t) the “dynamic-spread” function, as it 

contains the elements that both vary with time and govern the rate of spread of the infection.   The 

dynamic spread function is the critical element of the proposed strategy. 
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4)Derive the governing equation for δ(t).  Provide the required coefficient functions using 

published T(t) profiles for a baseline infection scenario.  Systematically alter the baseline spread 

function, and solve the governing equations, to simulate alternative strategies for countering the 

infection. 

5)Designate the time origin for the dynamic analysis as the point of the first intervention into the 

epidemic.  For CNYC, we identify this as day 17 (from the first reported infection), when shelter-

in-place was instituted.  Prior to that point, it is assumed that δ is constant in time, and a traditional 

SIR model applies.  The parameters for the traditional SIR model can be estimated from the 

published growth rate and reproduction number.  The resulting values serve as initial conditions 

for the dynamic-spread-function analysis.   

2.2 Development of Governing Equations 

The model is based upon a 4-equation set consisting of 3 standard SIR equations for the 

susceptible, infected, and removed populations, plus an additional relation to describe droplet 

dynamics.  The set was introduced by Stilianakis and Drossinos (2010) and extended by Myers et 

al. (2016) to explicitly account for the influence of protective equipment.  We introduce the 

equations using a notation in which the primes denote dimensional quantities, with units such as 

numbers of persons or 1/day.  The primes will be dropped following nondimensionalization.  The 

basic set is as follows 

𝑇𝑇′ = 𝑑𝑑𝑑𝑑′

𝑑𝑑𝑡𝑡′
= −𝛽𝛽� 𝐷𝐷′   𝑑𝑑′

𝑁𝑁
             (1a)      

𝑑𝑑𝑑𝑑′

𝑑𝑑𝑡𝑡′
= −𝑑𝑑𝑑𝑑′

𝑑𝑑𝑡𝑡′
− 𝜇𝜇𝑑𝑑𝐼𝐼′                        (1b) 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for thisthis version posted September 16, 2021. ; https://doi.org/10.1101/2020.11.09.20228684doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.09.20228684


7 
 

𝑑𝑑𝑑𝑑′

𝑑𝑑𝑡𝑡′
= 𝜅𝜅𝐼𝐼′ − 1

𝜈𝜈
𝐷𝐷′                    (1c) 

𝑑𝑑𝑅𝑅′

𝑑𝑑𝑡𝑡′
= 𝜇𝜇𝑑𝑑𝐼𝐼′          (1d) 

Here 𝑆𝑆′ is the number of susceptible individuals in the total population N,  𝐼𝐼′ is the number of 

infected individuals,  𝑅𝑅′is the number of removed (recovered or died) individuals, 𝐷𝐷′ is the total 

number of droplets contributing to the spread of the disease, 𝛽𝛽� is the transmission rate, μI is the 

infection recovery rate, κ is the droplet production rate, and 𝑣𝑣−1 is the droplet removal rate.  We 

allow the transmission rate 𝛽𝛽�  and the production rate  κ to vary with time.  The removed 

population is not of interest in the model, hence, the equation for 𝑅𝑅′ will not be considered further. 

In the model applications, it is convenient to work with a nondimensional set of equations.  

Nondimensionalization of the dependent and independent variables, followed by arrangement of 

the resulting parameters in each equation in clusters, effectively reduces the total number of 

parameters.   The resulting parameter combinations represent ratios than can lend insight into the 

infection dynamics.  For example, the significance of a droplet production rate κ  given in number 

of droplets per day can be difficult to appreciate, but the ratio κ /𝑣𝑣−1  of the droplet production 

rate to the droplet removal rate can help explain a rapid increase in the number of infection.  In the 

nondimensionalization procedure we attempt to use scalings that represent order-of-magnitude 

estimates for the relevant variable.  In that way, the values of the dimensionless parameters 

represent realistic estimates for the ratio of two competing effects in the infection scenario.  

Retrospective analyses possess the advantage that some of the representative scales can be 

obtained from the known (baseline) infection curves.  Properties of the subsequent retrospective 

simulations can often be anticipated based upon parameter values derived from the baseline 
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computations.  This is not generally possible with forecasting models.  Details of the 

nondimensionalization process are as follows.   

We introduce the maximum number of new infections recorded per day (roughly 5000/day 

for CNYC) α for characterizing the infection quantities.  For the relevant time scale, which we 

label Δ, we choose the time interval between the first intervention (roughly day 17, measured from 

the first reported infection, for CNYC) and the day when the number of new infections per day 

reaches a maximum (day 37 for CNYC).  This time scale was chosen because it is representative 

of the interval over which the number of new infections changes by a significant (e.g. half the 

maximum) amount.   ∆ is 20 days for CNYC.  The parameters α and ∆ together characterize the 

infection scenario and can be used to nondimensionalize the system.  When the population is large 

(e.g. New York City or New York State), it is convenient to work in terms of the difference 

between the susceptible population  𝑆𝑆′ and the total population N, because throughout the 

epidemic the entire susceptible population deviates only slightly from N.  We call this difference 

population 𝑆𝑆1′   and set 𝑆𝑆′ = 𝑁𝑁 − 𝑆𝑆1′  .  The relations used to relate the dimensional (primed) 

variables to the nondimensionalize (unprimed) variables are: 

𝑡𝑡′ =  𝛥𝛥 𝑡𝑡        (2a) 

𝑇𝑇′ =  𝛼𝛼 𝑇𝑇        (2b) 

 𝑆𝑆′ = 𝑁𝑁 − 𝛼𝛼  𝛥𝛥  𝑆𝑆1       (2c) 

𝐼𝐼′ =  𝛼𝛼 𝛥𝛥 𝐼𝐼         (2d) 
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𝐷𝐷′ =  𝜅𝜅 𝛼𝛼 Δ2 𝐷𝐷       (2e) 

Using these relations in Equations (1a – 1c) and combining terms yields:  

𝑇𝑇 =  −𝛿𝛿 𝐷𝐷 ( 1 − 𝛼𝛼  𝛥𝛥 𝑆𝑆1 /𝑁𝑁)                 (3a) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= −𝑇𝑇 − 𝛾𝛾  𝐼𝐼                           (3b) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= 𝐼𝐼 − 𝐷𝐷 (𝜆𝜆 +  1
𝜅𝜅
𝑑𝑑𝜅𝜅
𝑑𝑑𝑡𝑡

 )            (3c) 

where 𝛾𝛾 = 𝛥𝛥𝜇𝜇𝑑𝑑 is the dimensionless infection recovery rate,  𝜆𝜆 = 𝛥𝛥
𝜈𝜈

    is the dimensionless droplet 

removal rate, and    

𝛿𝛿 = 𝛽𝛽� 𝜅𝜅 𝛥𝛥2      .        (3d) 

Since 𝛽𝛽�  and 𝜅𝜅 vary with time, δ  is also a function of time.  As noted above, we designate δ(t)  the 

“spread function”.   

 We apply the model only to large-population scenarios, where (𝛼𝛼  𝛥𝛥 ) << 𝑁𝑁 .  For CNYC, 

this inequality is well satisfied throughout the course of the COVID-19 epidemic.  In that case, the 

last term in Eq. (3a) (𝛼𝛼  𝛥𝛥 𝑆𝑆1 /𝑁𝑁) can be ignored.  Additionally, the last term in Eq. (3c), which 

can be written as 
𝑑𝑑
𝑑𝑑𝑡𝑡

ln(𝜅𝜅) , is considerably smaller than λ .  In dimensional terms (removing the 

time scale ∆ from dt and λ ), 
𝑑𝑑
𝑑𝑑𝑡𝑡′

ln(𝜅𝜅) ≪ 1/𝜈𝜈  , i.e. the rate of change of the logarithm of the 

droplet production is much smaller than the rate of droplet removal from all sources (droplet 

inactivation, inhalation, filtration...)  Results from the computations featured in Section 3 showed 
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that the rate of change of the logarithm of the production rate is on the order of 0.01/day.  A range 

of removal rates was considered in our calculations; all were on the of 1/day.  Ignoring the final 

terms in equations (3a) and (3c) gives 

𝑇𝑇 =  −𝛿𝛿 𝐷𝐷                     (4a) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= −𝑇𝑇 − 𝛾𝛾  𝐼𝐼                           (4b) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= 𝐼𝐼 −  𝜆𝜆 𝐷𝐷            (4c) 

Using Eq. (4a) for T in Eq. (4c), and carrying out the differentiation and multiplying by δ , gives 

the two-equation system: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= − 𝛿𝛿 𝐼𝐼 −  𝜆𝜆 𝑇𝑇 +  𝑑𝑑
𝛿𝛿
𝑑𝑑𝛿𝛿
𝑑𝑑𝑡𝑡

            (5a) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= −𝑇𝑇 − 𝛾𝛾  𝐼𝐼           (5b) 

As noted above, we take the origin to be the time of first intervention.   

To determine the dynamic spread function for the baseline scenario, we reformulate Eq. 

(5a) as an equation for δ(t), assuming T(t) and I(t) to be known.  The T(t) profile is obtained from 

the published number of new infections per day in the locale of interest (e.g. New York City).  We 

label this published profile Tb(t), where the “b” subscript denotes baseline, and the resulting (from 

Eq. (5b)) infection profile Ib(t), and we insert them into the equation for δ(t).  The resulting 

equation for the baseline dynamic spread function is: 
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𝑑𝑑𝛿𝛿𝑏𝑏
𝑑𝑑𝑡𝑡

=  𝑑𝑑𝑏𝑏
𝑑𝑑𝑏𝑏

 𝛿𝛿𝑏𝑏2 + �   𝜆𝜆 +  1
𝑑𝑑𝑏𝑏

 𝑑𝑑𝑑𝑑𝑏𝑏
𝑑𝑑𝑡𝑡
� 𝛿𝛿𝑏𝑏             (5c) 

Because the governing equation for δb(t) is informed by the published Tb(t) profile, solving Eq’s 

(5a,b) using this dynamic spread function will reproduce (within numerical tolerances) the 

published Tb(t) curve.  The utility of δ(t) derives from modifying it to model alternative 

intervention strategies and solving Eq’s (5) to determine the new infection curves (i.e., T(t) and I(t) 

profiles).    Modifications to account for protective strategies were performed in the following 

manner. 

2.3 Accounting for Protective Equipment 

We build upon a previously developed SIR model (Myers et al. 2016, Yan et al. 2018) that 

systematically accounts for the presence of protective equipment.  Assuming both  𝛽𝛽� and  κ vary 

with time, we can write (Eq. (3d)) 

 
𝑑𝑑𝛿𝛿
𝑑𝑑𝑡𝑡

=  𝜕𝜕𝛿𝛿
𝜕𝜕𝛽𝛽�

𝑑𝑑𝛽𝛽�

𝑑𝑑𝑡𝑡
+  𝜕𝜕𝛿𝛿

𝜕𝜕𝜅𝜅
 𝑑𝑑𝜅𝜅
𝑑𝑑𝑡𝑡

  .      (6) 

We apportion a fraction ϵκ (e.g. 1/5) of the change in δ to changes in droplet production, and 

accordingly set  

𝜖𝜖𝜅𝜅
𝑑𝑑𝛿𝛿
𝑑𝑑𝑡𝑡 =  𝜕𝜕𝛿𝛿𝜕𝜕𝜅𝜅 𝑑𝑑𝜅𝜅𝑑𝑑𝑡𝑡          (7) 

Since from Eq. (3d) 

 𝜕𝜕𝛿𝛿
𝜕𝜕𝜅𝜅

= 𝛿𝛿
𝜅𝜅

  ,         (8a) 
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then 

𝜖𝜖𝜅𝜅
𝑑𝑑𝛿𝛿
𝑑𝑑𝑡𝑡 =  𝛿𝛿𝜅𝜅 𝑑𝑑𝜅𝜅𝑑𝑑𝑡𝑡 ,         (8b) 

which can be integrated to 

𝜅𝜅(𝑡𝑡) =   𝜅𝜅(0) [𝛿𝛿(𝑡𝑡)/𝛿𝛿(0)]𝜖𝜖𝜅𝜅    .    (9) 

In Myers et al. (2016), it was shown that the droplet production rate in the presence of protective 

equipment can be written as 

𝜅𝜅(𝑡𝑡) =   𝜅𝜅(0)    �1−𝐹𝐹𝐹𝐹𝑜𝑜𝑜𝑜𝑡𝑡 ∗  𝑓𝑓𝑖𝑖 (𝑡𝑡)�                 .    (10) 

Here FEout is the filtration efficiency (e.g. the FE for an N95 respirator is 95%) of the mask 

against outward-going particles produced by the infected individual wearing the mask (also 

referred to as source control).  If FEout varies with particle size, we assume that a dominant particle 

size exists in the distribution generated by the infected population, and the FE for that size applies.  

The quantity fi is the fraction of the infected population wearing the mask at any given time, also 

known as compliance rate.  We assume that the infected population wearing masks includes both 

symptomatic and asymptomatic persons, and that the masks have an equal effect on reducing the 

droplet production rate of symptomatic and asymptomatic persons. Eqs. (9) and (10) can be 

combined to give 

[𝛿𝛿(𝑡𝑡)/𝛿𝛿(0)]𝜖𝜖𝜅𝜅 =    1 − 𝐹𝐹𝐹𝐹𝑜𝑜𝑜𝑜𝑡𝑡 ∗ 𝑓𝑓𝑖𝑖(𝑡𝑡)    ,     (11) 

and 
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𝑓𝑓𝑖𝑖(𝑡𝑡) = 1− [𝛿𝛿(𝑡𝑡)/𝛿𝛿(0)]𝜖𝜖𝜅𝜅

𝐹𝐹𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜 
  .       (12) 

For a given scenario with spread function δb(t) (derived from Eq. (5c)) and a given baseline mask 

material (i.e. FEout,b), Eq. (12) allows the population compliance rate fi to be determined as a 

function of time, once the relative importance of change in production (ϵκ) compared to change in 

transmission (1- ϵκ) is estimated.  Thus, to  perform a retrospective analysis in which a barrier 

material of different outgoing-particle-capturing efficiency is investigated, the baseline 

compliance rate  as a function of time would first be determined from Eq. (12), then that 

compliance profile and the new FEout value would be used in Eq. (10) which, with Eq. (9), would 

be used to create a new dynamic-spread function.  The modified spread function would then be 

used (in Eqs (5a,b)) to estimate the change in infection rate.  A detailed example is provided in 

Section 3.1. 

2.4 Solution Technique  

The initial conditions for Equations (5) are obtained by first simulating the dynamics of the 

infection prior to any intervention, e.g. days 1 – 17 for CNYC.  In that case, the derivative of the 

dynamic spread function is zero and Equations (5a,b) revert to a traditional SIR model.  Seeking 

solutions that have an exponential time dependence of the form exp(Mt) for T(t) results in the 

algebraic equation 

     2 ∗ 𝑀𝑀 = −(𝜆𝜆 + 𝛾𝛾) ± [(𝜆𝜆 − 𝛾𝛾)2 + 4𝛿𝛿0]1/2 .      (13) 

The subscript “0” on δ implies that the value applies to the initial period of the infection, before 

intervention occurs.  The growth rate M can be obtained from infection rates published during the 
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beginning of the epidemic, prior to any intervention, e.g. days 1 - 17 in CNYC.  The other 

parameters do not vary during the course of the epidemic and are not subscripted.  An 

exponentially growing solution will occur when 

𝑅𝑅0 =  𝛿𝛿0
𝛾𝛾𝛾𝛾

> 1         (14) 

The symbol R0 represents the reproduction number (Myers et al. 2016)  for the standard SIR 

model.   Estimates of R0 for the early stages of epidemics are also published.  In the simulations 

we perform, a range of recovery times μI  (with corresponding dimensionless recovery times γ ) 

ranging from 2 days to 10 days was considered.  For any given value of γ, λ and δ0 were obtained 

using published values of the reproduction number R0 (Eq. (14) and growth rate M (Eq. (13)) for 

the scenario of interest.  The Tb(t) profile for CNYC was obtained from the Johns Hopkins 

Coronavirus Resource Center, wherein the data beginning at day 17 was used.  Ib(t) was derived 

from Tb(t) using Eq. (3b), rather than using a published infection profile, so that it was not 

necessary to ascertain how well recoveries were tabulated in the published infection curves.   

Uncertainties were determined by performing simulations for an ensemble of (μI ,R0 ) 

combinations, with each parameter selected from the range of published values for a given 

scenario.  Six parameter sets were typically used to determine the uncertainty.  The mean (over the 

six-parameter ensemble) T(t) profile, as well as a standard deviation above and below the mean at 

each instance of time, are reported. 

In the simulations performed to examine different alternate intervention strategies, baseline 

δ(t) profiles using the actual intervention strategy were first obtained, and then modified to reflect 
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alternatives.  The governing equations (5 a,b) containing the modified spread function were solved 

using a Runge-Kutta method (Matlab ode45, Mathworks Inc.).   

3. Results 

We performed a variety of retrospective analyses involving protective equipment.  For 

CNYC, days 17 - 37 were analyzed.  This interval was chosen because day 17 is the day of the 

first intervention (shelter in place), and day 37 is the time of maximum new infections per day, 

based upon a 7-day average (Johns Hopkins Coronavirus Resource Center 2020).  Initial 

reproduction numbers between 2 and 6 were considered, along with recovery times between 2 

days and 10 days.  The fraction ϵκ required to determine the compliance (Eq. (11)) was assumed to 

be 1/5.  The infection scenario involving the entire state of New York was also considered in 

another set of simulations. 

3.1 Effect of Mask Efficiency in CNYC 

Using the procedure described in Section 2.3, we analyzed scenarios where the infected 

population in New York City deployed different types of masks.  It was assumed that only the 

infected population deployed the masks, i.e. we considered a source-control measure.  To illustrate 

the procedure of Section 2.2 for this scenario, we identify the outward filtration efficiency of the 

baseline mask as  FEout,b  , where the “b” subscript denotes baseline, and the outward filtration 

efficiency of the modified mask design as   FEout,mod . Using the 7-day average data (Johns 

Hopkins Coronavirus Resource Center 2020) for CNYC in Eq. (5c) generates the baseline source 

function δb(t).  The baseline mask compliance profile fi,b  (Eq. (12)) is 
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𝑓𝑓𝑖𝑖,𝑏𝑏(𝑡𝑡) = 1− [𝛿𝛿𝑏𝑏(𝑡𝑡)/𝛿𝛿(0)]𝜖𝜖𝜅𝜅

𝐹𝐹𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜,𝑏𝑏 
   .     (15) 

We assume the compliance profile for the modified mask strategy is identical to baseline, i.e. the 

population uses a higher-efficiency mask but with the same adoption rate.  Using the modified 

mask filtration rate FEout,mod , along with the baseline compliance profile (Eq (15)), in Eq. (10) for 

the droplet production gives the modified droplet production rate 

𝜅𝜅𝑚𝑚𝑜𝑜𝑑𝑑(𝑡𝑡) =   𝜅𝜅(0)    �1 − 𝐹𝐹𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜,𝑚𝑚𝑜𝑜𝑚𝑚 
𝐹𝐹𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜,𝑏𝑏 

∗   (1 −  [𝛿𝛿𝑏𝑏(𝑡𝑡)/𝛿𝛿(0)]𝜖𝜖𝜅𝜅)�                 (16) 

Since the transmission rate 𝛽𝛽� does not change in this retrospective simulation, from Eq. (3d) we 

can conclude 

𝛿𝛿𝑚𝑚𝑜𝑜𝑑𝑑 = 𝛿𝛿𝑏𝑏
𝜅𝜅𝑏𝑏
𝜅𝜅𝑚𝑚𝑜𝑜𝑑𝑑         (17) 

Using Eq. (9) to prescribe the baseline production rate and Eq. (16) to prescribe its modification 

gives 

𝛿𝛿𝑚𝑚𝑜𝑜𝑑𝑑(𝑡𝑡) =   
�1−

𝐹𝐹𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜,𝑚𝑚𝑜𝑜𝑚𝑚 
𝐹𝐹𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜,𝑏𝑏 

∗  (1− [𝛿𝛿𝑏𝑏(𝑡𝑡)/𝛿𝛿(0)]𝜖𝜖𝜅𝜅)�

[𝛿𝛿𝑏𝑏(𝑡𝑡)/𝛿𝛿(0)]𝜖𝜖𝜅𝜅
𝛿𝛿𝑏𝑏(𝑡𝑡)     (18) 

This expression used as the spread function in Equations (5 a,b) enables simulation of scenarios 

involving masks of different filtration efficiencies.  For baseline, the filtration efficiency was taken 

to be 67%. This value is representative of homemade masks (Howard et al. 2020), though the 

filtration capability of homemade masks spans a wide range.  For the modified scenarios, higher-

efficiency masks with FE’s of 75%, 80%, and 90% were considered.   
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Figure 1a shows the dynamic spread function as a function of time for CNYC.  A sharp 

decrease is seen initially, owing to the shelter-in-place restriction.  For larger FE, a slightly sharper 

decrease  

 

 Figure 1a. Dynamic spread function for CNYC with infected population deploying masks with 
different filtration efficiencies (FE).   

 

in the dynamic spread function is observed.  A slight decrease in dynamic spread function value is 

associated with a much larger decrease in new infections (Fig. 1b).   Increasing FE from 67% to 

75% , for example, reduces the dynamic spread function value a few percent at day 37, while the 

maximum number of new infections (at day 37) decreases by about 15%.  The turn-around time is 

decreased from about 37 days to 35 days.   
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Figure 1b.  Number of new infections per day for CNYC, with infected population deploying 
masks with different filtration efficiencies (FE).  Shadowed regions denote values within a 
standard deviation of the mean, for an ensemble of simulations using different reproduction 
numbers and recovery rates. 

 

For the same increase of FE from 67% to 75% , the number of infected individuals (Fig. 1c) at day 

37 is reduced by about 30%.  The uncertainty is considerably larger for the infected population 

(Fig. 1c) than the number of new infections per day (Figure 1b), because the  
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Figure 1c.  Infected population as a function of time for CNYC, when infected population deploys 
masks of different filtration efficiencies (FE).  Shadowed regions denote values within a standard 
deviation of the mean, for an ensemble of simulations using different reproduction numbers and 
recovery rates. 

 

infected population is much more strongly influenced by the recovery time than the number of 

new infections.  The recovery time spanned a factor of 5 over all the simulations performed.  The 

uncertainty for the dynamic spread function (Fig 1a) is comparable to that for the infected 

population, though for clarity it is not shown. 

3.2  Effect of Mask Compliance in CNYC 
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To evaluate the effect of mask compliance, we assume that the adoption rate for the mask 

follows a temporal profile identical to baseline, but larger or smaller by a factor of F.  As in the 

previous set of calculations, it is assumed that only the infected population deploys the masks.  

Baseline compliance as a function of time is again given by Eq. (15), and the compliance profile 

for the modified scenarios is F times this expression.  Using this modified compliance in Eq (10) 

gives the modified production rate  

𝜅𝜅𝑚𝑚𝑜𝑜𝑑𝑑(𝑡𝑡) =   𝜅𝜅(0)    [1 − 𝐹𝐹 ∗   (1 −  [𝛿𝛿𝑏𝑏(𝑡𝑡)/𝛿𝛿(0)]𝜖𝜖𝜅𝜅)]                ,  (19) 

analogous to Eq. (16) for the variable filtration-efficiency simulations.  The baseline spread 

function 𝛿𝛿𝑏𝑏(𝑡𝑡) is identical to that for the filtration-efficiency study; it is given by the top curve in 

Fig. 1.  As in the variable-FE case, the transmission term is not altered in the variable-compliance 

simulations.  Thus, the steps used to generate the spread function (Eq. (18)) from the production 

term (Eq. (16)) can be repeated here, with Eq. (19) replacing Eq. (16) as the representation for 

κ(t).  The result is 

 𝛿𝛿𝑚𝑚𝑜𝑜𝑑𝑑(𝑡𝑡) =   [1−𝐹𝐹 ∗  (1− [𝛿𝛿𝑏𝑏(𝑡𝑡)/𝛿𝛿(0)]𝜖𝜖𝜅𝜅)]
[𝛿𝛿𝑏𝑏(𝑡𝑡)/𝛿𝛿(0)]𝜖𝜖𝜅𝜅

𝛿𝛿𝑏𝑏(𝑡𝑡)  .   (20)  

For the mask compliance analysis, a mask of FE of 67% was assumed.  Upon solving for fi(t), (Eq. 

(15)) it was found that the baseline fraction fi(t) of the CNYC population wearing the mask 

increased from 0% at day 17 to about 42% on day 37.  The 42% maximum compliance was 

increased to 50%, 60%, and 70% in a series of computations by adjusting the F value in Eq (20), 

and solving Eqs (5a,b) with this modified spread function.  F was iteratively adjusted to yield the 

target compliance at day 37. 
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Increasing the mask compliance to 50% reduced the maximum number of new infections 

per day from about 5100 to 4000 (Fig. 2).  The turn-around time is reduced from approximately 37 

days to 34 days.  Similarly, increasing the mask compliance from baseline to 60% and 70% 

reduced the number of new infections per day by 42% and 58%, respectively.  The corresponding 

turn-around times reduced to 31 days and 28 days (Fig. 2).    

 

 

Figure 2. Number of new infections per day for scenarios where various fractions of the infected 
population in CNYC deploy masks with a 67% filtration efficiency     .  
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3.3 New York State Scenario 

To compare the model’s determination of population behaviors in New York City versus 

that of the New York State, and to compare with results computed by other investigators, we 

briefly consider the COVID-19 scenario in New York State.  Infection data for the state was 

obtained from New York Times Github Database (2020).   For New York State, days 23 – 38 were 

analyzed.  This interval was chosen because day 23 is the day when the first lockdown order was 

executed (ABC News Report, 2020), and day 38 is the time of maximum new infections per day in 

the first infection wave, based upon a 7-day average (New York Times 2021).  

The baseline dynamic spread function δb(t) for New York State was determined from Eq. 

(5c), in an equivalent manner to the CNYC case.   In this brief comparison of New York City with 

New York State, only one combination of μI (or γ) and R0 values (representing the lower end of 

the range of published values) was considered.  

The baseline dynamic spread functions for New York City and New York State are plotted 

in Figure 3a.  The initial decay in the spread function is steeper for New York State.  This 

translates into considerably fewer new infections (relative to the total population), and a shorter 

turn-around time, as seen in Figure 3b.    
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Figure 3a.  COVID-19 dynamic spread function as a function of time after first intervention, for 

both New York City (solid) and New York State (dashed).   
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Figure 3b.  Numbers of new COVID-19 infections in New York City (solid) and New York State 

(dashed), as a function of time after the first intervention. 

 

We note that the values plotted in Fig. 3b are just baseline infection curves.  No alternative 

interventions were involved.    

The New York State simulation is useful for comparison with the study by Ngonghala et 

al. (2020), who also analyzed alternative COVID-19 intervention strategies involving protective 

equipment and social-distancing measures.  Ngonghala et al. (2020) computed numbers of deaths 

and hospitalizations in New York State as the level of social distancing and type of mask and 
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mask compliance were varied.  For the comparison, we assume that our primary dependent 

variable, numbers of new infections, is proportional to the hospitalization rate throughout the time 

range of interest (days 23 – 38 in New York State).   

To incorporate variable social distancing into the dynamic spread model, modifications to 

the spread function were made in the following manner. The level of social distancing is related to 

the transmission rate 𝛽𝛽�(𝑡𝑡) .  As described in Stilianakis and Drossinos (2010) and Myers et al. 

(2016), the transmission rate is proportional to the number of contacts between a susceptible 

individual and an infected person. Thus, the level of social distancing is proportional to 𝛽𝛽�(𝑡𝑡) .  

This function is similar to the effective contact rate in Ngonghala et al. (2020).  Since the dynamic 

spread function δ(t) is proportional to the transmission rate 𝛽𝛽�(𝑡𝑡) (Eq. (3d)), different levels of 

social distancing could be implemented in a straightforward manner by scaling the baseline spread 

function (dashed curve in Fig. 3a) by the desired amount.  That is, 

𝛿𝛿𝑚𝑚𝑜𝑜𝑑𝑑(𝑡𝑡) = 𝐿𝐿𝑚𝑚𝑜𝑜𝑚𝑚
𝐿𝐿𝑏𝑏

𝛿𝛿𝑏𝑏(𝑡𝑡)  ,   (21)    

where Lb is the baseline level of social distancing and Lmod is the modified level of social 

distancing, and 𝛿𝛿𝑏𝑏(𝑡𝑡) is the baseline spread function for New York State.  Solving Eqs (5 a,b) with 

the scaled spread function yielded the infection curves for the modified level of social distancing.  

Effects of mask efficacy and compliance rate in the New York State scenario were determined by 

the same procedure used to generate the CNYC results in Figs 1 and 2.   

The dynamics for COVID-19 spread in New York State as a function of social distancing 

level, as predicted by Ngonghala et al. (2020) and the dynamic-spread model, are presented in 

Table 1.  For each model, the percent reduction (relative to baseline) in the maximum number of 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for thisthis version posted September 16, 2021. ; https://doi.org/10.1101/2020.11.09.20228684doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.09.20228684


26 
 

new infections or hospitalizations is tabulated for different reductions in social distancing (i.e. 

reductions in β).  For the dynamic-spread model, when the level of social distancing was reduced 

by more than 30% , no maximum was attained after the initial day (exponentially decaying 

number of new infections following intervention), so the comparison was made at day 38, where 

the baseline maximum was attained. 

 

Table 1. COVID-19 Dynamics for New York State for Different Levels of Social Distancing 

Reduction in Level 

of Social 

Distancing (%) 

 

Reduction in Maximum 

Number of New Infections 

(%) 

Reduction in Maximum Number of 

Hospitalizations Predicted by Ngonghala 

et al., 2020 (%) 

10 35 24 

20 48 48 

30 85*  72 

40 92*  92 

*No maximum at this level of social distancing; comparison performed at day 38 

 

A larger reduction in the infection metric (number of new infections or number of hospitalizations) 

is predicted by the dynamic-spread model for the lowest reduction in level of social distancing, but 

otherwise comparable reductions are predicted by the two models. 
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COVID-19 infection metrics in New York State as a function of mask efficiency and 

compliance are presented in Table 2.   As with social distancing, high levels of mask efficiency 

and compliance yield exponentially decaying rates of new infections after the first intervention.  

Hence, comparisons are made at day 38, the time of maximum number of new infections for the 

baseline case.  When the product of the mask efficiency times compliance is low, the dynamic -

spread model predicts a larger decrease (up to a factor of 1.7) in the infection metric (new 

infections or hospitalizations) than the model of Ngonghala et al. (2020).  Otherwise, comparable 

changes in the infection metric are predicted by the two models when different mask strategies are 

implemented. 
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Table 2. COVID-19 Dynamics for New York State for Different Mask Efficiencies and 

Compliance  

Final Compliance fi (%) 
(cm in Ngonghala et al., 2020) 

 

Reduction in Maximum 
Number of New 
Infections (%) 

Reduction in Maximum Number of 
Hospitalizations Predicted by 
Ngonghala et al., 2020 (%) 

FE = 25% 

10 15 8.7 

25 34 22 

50 56 43 

75 72 64 

FE = 50% 

10 28 19 

25 56 44 

50 75 82 

75 93* ~100 

FE = 75% 

10 39 26 

25 69 63 

50 93* ~100 

75 98* ~100 

*Comparison Performed at Day 38 
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4. Discussion 

To the extent that reduction in the spread of infection is due primarily to reductions in 

social distancing compared to lower rates of droplet production, i.e. assuming  ϵκ < < 1, then the 

spread function curve (top line, Fig. 1a) represents the level of social distancing in New York City 

during the COVID-19 crisis.  Within the first 5 days after the stay-at-home order, the level of 

social distancing drops by half.   A slower adoption of the stay-at-home order is observed after 

that, but by the turn-around point (day 37), another factor-of-two reduction in social-distancing is 

achieved.  These trends illustrate the continuous nature by which interventions take place during 

epidemics.  The state of New York adopted the required behavioral changes faster than the city of 

New York (Fig. 3a).  This faster rate of behavior modification resulted in a considerably smaller 

number of new infections (relative to the total population) in New York State.  Besides enabling 

the simulation of alternative intervention strategies, the dynamic function in Fig 3a is useful in 

interpreting the baseline trends in Fig. 3b.   

Another useful interpretation of the dynamic spread function can be acquired by writing 

the function (Eq. (3d)) as  ( 𝛽𝛽� 𝜅𝜅)/(1/ 𝛥𝛥2) .   The top, with dimensions of (1/time)2, i.e. (rate)2, can 

be interpreted as the rate at which quantities promoting the spread of the infection are produced 

and transmitted.  The denominator, also with units of (1/time)2, is inversely proportional to (the 

square of) the time over which the population responds to the infection.  δ1/2, then, can be thought 

of as the ratio of the infection spread rate to the societal response rate.  The relative intensity of 

epidemics at different locations, or in a given population at different times, can be characterized 

by the different values of the square root of the dynamic spread function. 
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The changes in infection metric (number of new cases or number of hospitalizations during 

the COVID-19 epidemic in New York State) due to a variety of interventions involving social 

distancing and mask usage were computed using the dynamic-spread model and the model 

implemented by Ngonghala et al. (2020).   The two models agreed within about 25% on average.  

This was felt to be a relatively small difference, given the large number of assumptions in SIR 

models.  Some caveats are in order, though.  First, it is unclear to what extent relative (to baseline) 

changes in new infections can be compared with relative changes in hospitalizations.  Second, the 

time course for the hypothetical scenarios was quite different between the dynamic-spread model 

and that of Ngonghala et al. (2020).  For example, in Ngonghala et al (2020), application of masks 

with higher FE than baseline resulted in curves that are flatter than baseline, while in the dynamic 

-spread model the curves largely retained the same shape (Fig. 2).  This is due, at least in part, to 

the fact that behavioral changes occurred gradually in the dynamic-spread model, and they did not 

commence until the time of first intervention.  In Ngonghala et al. (2020), and many other 

constant-parameter models, parameter values characterizing hypothesized scenarios with higher 

degrees of protection are implemented at the onset of the epidemic.  This results in a flat infection 

profile.  An additional difference between Ngonghala et al. (2020) and the dynamic-spread model 

is that we assumed only the infected population deployed masks.  Adding mask usage by the 

susceptible population would increase the reduction in new infections. This would enlarge the 

difference between the dynamic spread model and that of Ngonghala et al. (2020) for most 

scenarios, since the dynamic-spread model usually showed a larger reduction.  However, since the 

fraction of the reduction in the dynamic spread function attributed to masks was small (ϵκ  = 1/5), 

incorporating mask usage by the susceptible population would not significantly affect the values in 

Tables 1 and 2.  Mask usage by the susceptible population was not included in the dynamic-spread 
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model, owing to the fact that the FE is often different for inward (susceptible people) and outward 

(infected people) flux of pathogens, and further analysis was thought to be necessary before 

assigning mask efficiencies appropriate for the susceptible population. 

While days 17 to 37 were featured in our simulations of CNYC, the dynamic -spread -

function technique can be applied to any time interval where reliable numbers of new infections 

are available.  The standard SIR model is used prior to the time when either the production rate or 

the transmission rate is altered by an intervention strategy.  At that point the dynamic simulations 

commence, with the results from the standard SIR model serving as initial conditions. 

The parameter  ϵκ , which quantifies the level of change in the dynamic spread function due 

to droplet production compared to that due to transmission, was chosen to be small (1/5) based 

upon the intuition that social distancing is more important than mask usage in altering infection 

dynamics.  Other relatively small values of ϵκ , e.g. 1/3, yielded similar results to those reported 

above.  The  ϵκ parameter is useful for estimating the mask compliance (Eq. (12)), as well as the 

level of social distancing, as a function of time. Alternatively, if information is available on the 

compliance profile for the scenario of interest, it can be used in Eq. (12) to determine ϵκ  more 

rigorously. 

The effects of different protective-equipment strategies in New York City and New York 

State were investigated without having to update the SIR-model parameters due to interventions 

during the epidemics.  The continuous adoption of masks is difficult to simulate by updating 

coefficients at various times in standard SIR models.  With the dynamic-spread approach, the 

gradual adoption of masks is captured in a natural manner. 
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For the conditions of the simulations, a slight increase in facemask efficiency resulted in a 

larger benefit than a commensurate increase in compliance.  At day 37, for example, a fractional 

increase in compliance of 0.1 resulted in a reduction in new infections of about 500 per day (Fig. 

2), while a fractional increase in FE of 0.1 reduced the number of new infections by about 800 

(Fig. 1b).  For a higher baseline FE, increasing the compliance would produce a larger decrease in 

new infections.  This comparison between filtration efficiency and population compliance 

illustrates the utility of the model for determining how resources devoted to countermeasures can 

be optimally spent.  In this case, the model can help inform the choice between 1) producing and 

distributing barriers of higher FE, and 2) educating and incentivizing the population to deploy 

barriers more readily available.   

The model is not intended to be a prediction tool, in the sense of forecasting the future 

course of an ongoing epidemic.  The purpose of the model is to compare different intervention 

strategies for scenarios where the baseline infection profile (number of new infections per day) is 

provided.  Also required are the initial reproduction number and an estimate of the recovery rate.  

Though the model is not a forecasting tool, it can be useful for designing future countermeasures 

(e.g. for successive waves of an epidemic), particularly if elements of the anticipated scenario are 

similar to those of the baseline scenario used to compute the dynamic spread function δ(t).  These 

elements include, most importantly, population behaviors such as face mask adoption (affecting 

both κ and  𝛽𝛽� in Eq. 5) and social distancing (affecting 𝛽𝛽� ) , but also environmental factors such as 

the pathogen inactivation rate.  We refer the reader to Stilianakis and Drossinos (2010) for the 

dependence of infection dynamics on the numerous properties of the pathogen, the population, and 

the environment.  Here we emphasize that the dynamic spread function implicitly captures the 

influence of all these factors, even though no functional dependence of the parameters is 
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introduced.  Only when considering an alternative scenario that varies one of the factors (e.g. the 

production rate κ in this study) does the explicit parametric dependence enter.  An important 

consequence of this property is that social distancing, likely the dominant factor affecting infection 

dynamics, was captured in the CNYC study without having to be explicitly modeled. 

The method by which the dynamic-source model simulates changes in population behavior 

differs from the manner in which it is typically done with SIR models in two important ways.  

With most SIR models, changes in population behavior are addressed by updating parameters at 

discrete times.  However, the original set of parameters and parameter updates is not unique.  

Depending upon the strategy used by an investigator to minimize differences with published 

infection rates, and the “best guesses” made for the parameters that aren’t well informed by data, 

the investigator can derive significantly different parameter values from another investigator using 

the same equations, even when both investigators show good agreement with published infection 

curves.  When the two investigators perform retrospective analyses in which a single parameter is 

varied, the results of the analyses can be sensitive to the baseline parameter values, which can vary 

for the two investigators.   The dynamic-source method bypasses this potential uncertainty.  The 

second important difference between the dynamic-source model and traditional SIR approaches 

regarding modeling behavior dynamics is the dynamic-source method treats the variation in 

population behavior over time as a mechanism affecting the infection dynamics.  This mechanism 

is described by the last term in Eq. (5a).  Even if a traditional SIR model updates the parameters 

periodically, this term is not included.  The mechanism is analogous to transport in physical 

systems (e.g. fluids), where there is temporal or spatial variation in a property (e.g.viscosity).  The 

gradient of the property multiplied by the transported entity (e.g. momentum) is a transport 
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mechanism that should be included to fully capture the effects of property variation, in addition to 

simply updating the variable property at different times or spatial locations. 

As noted above, the lack of forecasting ability is a limitation of the model.  Similarly, 

because of the model’s simplicity, it cannot quantify the effects of the different factors affecting 

the infection dynamics, e.g. the roles played by symptomatic vs. asymptomatic infected persons.  

While, as mentioned above, any complicated mechanism that affects either the droplet generation 

(parameter κ in Eq. (5c)) or the infection transmission (parameter 𝛽𝛽�  in Eq. (5c)) is automatically 

(i.e. as part of the calibration process, with no user input involved) included in the spread function 

during the calibration process, these effects are integrated with all other effects.  If it is desired to 

explore how an intervention involving a particular mechanism would retrospectively alter the 

infection rate, a direct connection between that mechanism and either the droplet generation or the 

infection transmission would need to be specified.  While that may not be possible given the 

model’s level of simplicity, we note that in future generations of the model an enhanced level of 

specificity should be possible.  For example, in our calculations, all of the types of facemasks used 

in New York City were averaged together into a single representative barrier.  If information is 

available to prescribe the levels at which different types of masks were deployed, it is likely that a 

modified spread function containing a sum over different mask designs weighted by their 

popularity could be constructed. 

Like previous studies (Stutt et al. 2020,  Eikenberry et al. 2020), our simulations predict 

that considerable benefit can be obtained from higher FE masks without requiring N95 levels of 

efficiency (Fig 1).   It is important to emphasize that for the benefits to be realized, the FE for the 

barrier material must be attainable for the particle-size range of the dominant transmission mode 
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for the given scenario.  One way of assuring this is for the barrier material to provide the given FE 

across the spectrum of particle sizes.  Otherwise, knowledge of the material FE for the intended 

application (e.g. reducing airborne particulates generated by coughing or sneezing by infected 

persons indoors) is required in order to generate useful estimates.  The complex issues of 

dominant transmission mode for COVID-19, and the FE of different masks designs for the 

different modes, will be addressed in future applications of the model. 
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