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Abstract 31 

Retrospective analyses of interventions to epidemics, in which the effectiveness of strategies 32 

implemented are compared to hypothetical alternatives, are valuable for performing the cost-33 

benefit calculations necessary to optimize infection countermeasures.  SIR (susceptible-infected-34 

removed) models are useful in this regard but are limited by the challenge of deciding how and 35 

when to update the numerous parameters as the epidemic changes in response to population 36 

behaviors.  We present a method that uses a “dynamic spread function” to systematically capture 37 

the continuous variation in the population behavior, and the gradual change in infection dynamics, 38 

resulting from interventions.  No parameter updates are made by the user.  We use the tool to 39 

quantify the reduction in infection rate realizable from the population of New York City adopting 40 

different facemask strategies during COVID-19.  Assuming a baseline facemask of 67% filtration 41 

efficiency, calculations show that increasing the efficiency to 75% could reduce the roughly 5000 42 

new infections per day occurring at the peak of the epidemic to 3000.   Mitigation strategies that 43 

may not be varied as part of the retrospective analysis, such as social distancing, are automatically 44 

captured as part of the calibration of the dynamic spread function. 45 

Key words:  COVID-19, SIR model, Infection-spread model, personal protective equipment, 46 

facemask 47 
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1.Introduction 49 

Retrospective analyses of strategies used to contain epidemics such as COVID-19 are valuable for 50 

countering successive waves of the infection, selecting countermeasures for future epidemics, and 51 

educating the population regarding the efficacy of implementing certain behavioral modifications.  52 

In particular, public-health agencies responsible for recommending types of personal protective 53 

equipment (PPE) to stockpile in anticipation of a future pandemic can benefit greatly from the 54 

cost-benefit information yielded by retrospective analyses.  Mathematical models, including those 55 

of the SIR type, can be helpful in providing a quantitative framework for the analyses.  SIR 56 

models have been applied during the COVID-19 pandemic1,2,3,4, primarily in a predictive capacity.  57 

To our knowledge, no studies have attempted to re-create an actual scenario (e.g. CNYC) with 58 

different interventions, though in Cooper et al.4 the influence of different mask types on the 59 

reproduction number was computed using a generic infection scenario.  A formidable challenge in 60 

applying SIR models is prescribing the values of the numerous parameters, and updating them to 61 

simulate evolving infection dynamics, as population behaviors change in response to 62 

interventions.  Typically, the behaviors change in a continuous manner, as in the gradual adoption 63 

of face masks by an affected population.  Such gradual changes are difficult to capture by 64 

periodically adjusting the parameters characterizing the behaviors.  The challenge is further 65 

accentuated by the high sensitivity of the predictions to some of the parameter values2.  Often, 66 

parameter choices are based upon best guesses, or closeness of fit (sometimes visual) of computed 67 

profiles with published curves4.   68 

In this paper we introduce a modification of traditional SIR models that incorporates a “dynamic 69 

spread” function that captures changes in population behavior in a continuous manner.  There is no 70 

need to adjust parameters as interventions are implemented during the course of the infection.  The 71 
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spread function satisfies a differential equation with variable coefficients obtained from published 72 

infection curves for the epidemic under study.  The computed spread function reproduces the 73 

infection dynamics resulting from a given intervention strategy.  Subsequently, the spread function  74 

can be systematically modified to analyze the effect of alternate intervention strategies.  We 75 

illustrate the process using the COVID-19 crisis in New York City (CNYC).  The reduction in 76 

infection rate realizable in CNYC with an increased level of mask usage, and with deployment of 77 

masks offering higher levels of filtration, is estimated.  78 

2. Methods 79 

We illustrate the technique using a 3-equation SIR model.  It assumes that the infection dynamics 80 

are dominated by one transmission mode (e.g. airborne particulates), and that the parameter values 81 

are appropriate for all particle sizes contributing to that mode (though interpretation of the 82 

resulting equations as an average for a broad particle distribution is possible5).  More complicated 83 

SIR models can be useful, particularly if it is desired to model the details of the infection dynamic, 84 

e.g. symptomatic and asymptomatic individuals1.   Our intention is to use the simplest model that 85 

can capture the known infection dynamics in a general sense, with the hope that the model can be 86 

understood and used by non-experts such as policy makers.  Additionally, as noted by Siegenfeld 87 

et al.6, simpler models can prove more useful than complex ones, in part because accurate data is 88 

often not available to inform complicated formulations.  Finally, we expect that some of the 89 

technique we present can be extended to more complex models.   90 

 91 

 92 
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2.1 Overview of Strategy. 93 

The dynamic-spread function is part of a systematic procedure for calibrating SIR models.  The 5 94 

steps in the procedure are listed below and implemented subsequently. 95 

1)Use the rate of change (measured by the number of new infections per day), dS/dt ,of the 96 

 susceptible population, as the variable for calibrating the model, rather than S.  The derivative 97 

profile, which we call T(t), was felt to be the quantity known most accurately.  Its determination 98 

does not require the number of recovered patients to be tracked. 99 

2)Normalize variables and identify critical dimensionless parameters.  Formulating the model in 100 

terms of dimensionless quantities reduces the number of property values that must be determined, 101 

which can be numerous in SIR models7.   102 

3)Allow the dimensionless parameter δ , which is essentially the product of the infection 103 

transmission rate and the virus production rate, to vary with time, and account for its time 104 

dependence in the governing differential equation for  T(t) .  We denote δ(t)  the “dynamic-spread” 105 

function, as it contains the elements that both vary with time and govern the rate of spread of the 106 

infection. 107 

4)Derive the governing equation for δ(t).  Provide the required coefficient functions using 108 

published T(t) profiles for a given infection scenario. 109 

5)Designate as the time origin for the dynamic analysis the point of the first intervention into the 110 

epidemic.  For CNYC, we identify this as day 17 from the first reported infection, when shelter-in-111 

place was instituted.  Prior to that point, it is assumed that δ  is constant in time, and a standard 112 
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SIR model applies.  The parameters for the standard SIR model can be estimated from the 113 

published growth rate and reproduction number.  The resulting values serve as initial conditions 114 

for the dynamic analysis.   115 

2.2 Development of Governing Equations 116 

The SIR equations under these conditions listed in sections 2 and 2.1 are as follows 7,5.  The 117 

primes denote dimensional quantities and will be dropped following nondimensionalization. 118 

𝑇𝑇′ =  𝑑𝑑𝑑𝑑′
𝑑𝑑𝑑𝑑′

= −𝛽𝛽� 𝐷𝐷′ 𝑑𝑑′
𝑁𝑁

                          (1a)  119 

𝑑𝑑𝑑𝑑′
𝑑𝑑𝑑𝑑′

= −𝑑𝑑𝑑𝑑′

𝑑𝑑𝑑𝑑′
− 𝜇𝜇𝑑𝑑𝐼𝐼′                         (1b) 120 

𝑑𝑑𝑑𝑑′
𝑑𝑑𝑑𝑑′

= 𝜅𝜅𝐼𝐼′ − 1
𝜈𝜈
𝐷𝐷′                     (1c) 121 

Here S’ is the number of susceptible individuals in the total population N, I’ the number of 122 

infected individuals, D’ the total number of droplets, 𝛽𝛽� the transmission rate, µI the infection 123 

recovery rate, κ the droplet production rate, and 𝑣𝑣−1  the droplet removal rate.  We next introduce 124 

the maximum number of newly reported infections (roughly 5000 per day for CNYC) α, and a 125 

time scale ∆, which we take to be the turn-around time (time required to reach dT’/dt’ = 0, about 126 

37 days for CNYC.) The function T’ is scaled by α, I’ by α∆,  and D’ by κα∆2.  Additionally, we 127 

differentiate Eq. 1a (after nondimensionalization), allowing the spread parameter  128 

 𝛿𝛿 = 𝛽𝛽�  𝜅𝜅Δ2              (1d) 129 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted January 27, 2021. ; https://doi.org/10.1101/2020.11.09.20228684doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.09.20228684


7 
 

to vary with time.  Also, for huge populations as in CNYC, we ignore terms proportional to 130 

α∆/Ν , including S’/N – 1.   Under these assumptions, the SIR equations become: 131 

𝑇𝑇 =  −𝛿𝛿 𝐷𝐷,          𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=  𝑑𝑑
𝛿𝛿
𝑑𝑑𝛿𝛿
𝑑𝑑𝑑𝑑
−  𝛿𝛿 𝑑𝑑𝑑𝑑 

𝑑𝑑𝑑𝑑
         (2a,b) 132 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑇𝑇 − 𝛾𝛾  𝐼𝐼                          (2c) 133 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐼𝐼 − 𝜆𝜆𝐷𝐷    ,       (2d)    134 

where 𝛾𝛾 = 𝛥𝛥𝜇𝜇𝑑𝑑 is the dimensionless infection recovery rate and  𝜆𝜆 = 𝛥𝛥
𝜈𝜈

    is the dimensionless 135 

droplet removal rate.  Inserting (2d) in (2b) and using (2a) yields the 2-equation system: 136 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= − 𝛿𝛿 𝐼𝐼 −  𝜆𝜆 𝑇𝑇 +  𝑑𝑑
𝛿𝛿
𝑑𝑑𝛿𝛿
𝑑𝑑𝑑𝑑

            (3a) 137 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑇𝑇 − 𝛾𝛾  𝐼𝐼           (3b) 138 

As noted above, we take the time origin to be the time of first intervention.   139 

To determine the dynamic spread function, we reformulate Eq. (3a) as an equation for δ(t), 140 

assuming T(t) and I(t) to be known.  We then obtain the T(t) profile from the published number of 141 

new infections per day in the locale of interest (e.g. New York City).  We label this published 142 

profile Tp(t) and the resulting (from Eq. (3b)) infection profile Ip(t), and we insert them into the 143 

equation for δ(t).  The resulting equation for the dynamic spread function is: 144 
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𝑑𝑑𝛿𝛿
𝑑𝑑𝑑𝑑

 =  𝑑𝑑𝑝𝑝
𝑑𝑑𝑝𝑝

 𝛿𝛿2 + �   𝜆𝜆 +  1
𝑑𝑑𝑝𝑝

 𝑑𝑑𝑑𝑑𝑝𝑝
𝑑𝑑𝑑𝑑
� 𝛿𝛿             (4) 145 

Because the governing equation for δ(t) is informed by the published Tp(t) profile, solving Eq’s 3 146 

using this dynamic spread function will reproduce (within numerical tolerances) the published 147 

Tp(t) curve.  The utility of δ(t) derives from modifying it to model alternative intervention 148 

strategies and solving Eqs (1) to determine the modified infection rate.  Modifications to account 149 

for protective strategies were performed in the following manner. 150 

2.3 Accounting for Protective Equipment 151 

We build upon a previously developed SIR model5,8 that systematically accounts for the presence 152 

of protective equipment.  Differentiating Eq. (1d) with respect to time yields 153 

 154 

 
𝑑𝑑𝛿𝛿
𝑑𝑑𝑑𝑑

=  𝜕𝜕𝛿𝛿
𝜕𝜕𝛽𝛽�

𝑑𝑑𝛽𝛽�
𝑑𝑑𝑑𝑑

+  𝜕𝜕𝛿𝛿
𝜕𝜕𝜕𝜕

 𝑑𝑑𝜕𝜕
𝑑𝑑𝑑𝑑

         (5) 155 

Apportioning a fraction ϵκ (e.g. ½) of the change in δ to changes in droplet production, we set  156 

𝜖𝜖𝜕𝜕
𝑑𝑑𝛿𝛿
𝑑𝑑𝑑𝑑

=   𝜕𝜕𝛿𝛿
𝜕𝜕𝜕𝜕

 𝑑𝑑𝜕𝜕
𝑑𝑑𝑑𝑑

          (6) 157 

Since from (1d) 158 

 𝜕𝜕𝛿𝛿
𝜕𝜕𝜕𝜕

= 𝛿𝛿
𝜕𝜕

  ,          (7) 159 

𝜖𝜖𝜕𝜕
𝑑𝑑𝛿𝛿
𝑑𝑑𝑑𝑑

=   𝛿𝛿
𝜕𝜕

 𝑑𝑑𝜕𝜕
𝑑𝑑𝑑𝑑

 ,         (8) 160 
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which can be integrated to 161 

𝜅𝜅(𝑡𝑡) =   𝜅𝜅(0) [𝛿𝛿(𝑡𝑡)/𝛿𝛿(0)]𝜖𝜖𝜅𝜅    .     (9) 162 

In Myers et al5, it was shown that the production rate in the presence of protective equipment can 163 

be written as 164 

𝜅𝜅(𝑡𝑡) =   𝜅𝜅(0)[  1 − 𝐹𝐹𝐹𝐹 ∗  𝑓𝑓𝑖𝑖(𝑡𝑡)]   .     (10) 165 

Here FE is the filtration efficiency (e.g. the FE for an N95 respirator is 95%) of the mask for the 166 

dominant droplet size, and fi is the fraction of the infected population wearing the covering at any 167 

given time.  To perform a retrospective analysis in which a barrier material of different capturing 168 

efficiency is investigated, the new FE value would be used in Eq. (10) which, with Eq. (9), would 169 

be used to create a new dynamic-spread function.  The modified spread function would then be 170 

used (in Eqs (3)) to estimate the change in infection rate.  171 

To analyze scenarios where different fractions of the infected population deploy a given mask 172 

type, Eqs. (9) and (10) can be combined to give 173 

[𝛿𝛿(𝑡𝑡)/𝛿𝛿(0)]𝜖𝜖𝜅𝜅 =    1 − 𝐹𝐹𝐹𝐹 ∗ 𝑓𝑓𝑖𝑖(𝑡𝑡)    ,      (11) 174 

and 175 

𝑓𝑓𝑖𝑖(𝑡𝑡) = 1− [𝛿𝛿(𝑑𝑑)/𝛿𝛿(0)]𝜖𝜖𝜅𝜅

𝐹𝐹𝐹𝐹
         (12) 176 

Eq. (12) can be used to estimate the fraction of infected individuals deploying a mask of a given 177 

filtration efficiency for a baseline case (known δ(t)).  The effect of different fractions of the 178 
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infected population deploying the mask can be quantified by prescribing fi(t), solving for δ(t), and 179 

using this modified spread function in Equations (3).   180 

2.4 Solution Technique  181 

The initial conditions for Equations (3) are obtained by simulating the dynamics of the infection 182 

prior to any intervention, days 1 – 17 for CNYC.  In that case, the derivative of the spread function 183 

is zero and Equations (3a,b) revert to a traditional SIR model.  Seeking solutions that have an 184 

exponential time dependence of the form exp(Mt) result in the algebraic equation 185 

 186 

2 ∗ 𝑀𝑀 = −(𝜆𝜆 + 𝛾𝛾) ± [(𝜆𝜆 + 𝛾𝛾)2 + 4𝛿𝛿0]1/2 .      (13) 187 

The subscript “0” on δ implies that the value applies to the initial period of the infection, before 188 

intervention occurs.  The other parameters do not vary during the course of the epidemic and are 189 

not subscripted.  An exponentially growing solution will occur when 190 

𝛿𝛿0
𝛾𝛾𝛾𝛾

> 1           (14) 191 

The ratio δ0/(γ λ) is the reproduction number R0 5  for the standard SIR model.  The growth rate M 192 

can be obtained from infection rates published during the beginning of the infection.  Estimates of 193 

the reproduction numbers R0 for the early stages of epidemics are also published.  In the 194 

simulations, a range of recovery times µI  (dimensionless recovery times γ ) ranging from 2 days to 195 

10 days were considered.  For any given value of γ, λ and δ0 were obtained from Eqs (13) and (14) 196 

and used in the solution of the dynamic equations (3).  The initial value for T(t) was obtained from 197 
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the published profile Tp(t) (published number of new infections per day9 ), evaluated at day 17.  198 

Ip(t) was derived from Tp(t) using Eq. (3b), rather than using a published infection profile, so that 199 

it was not necessary to ascertain how well recoveries were tabulated in the published infection 200 

curves.  The Ip(t) function evaluated at day 17 was used to provide the initial condition for I(t).  201 

Equations (3) were solved using a Runge-Kutta method (Matlab ode45, Mathworks Inc.).   202 

3. Results 203 

We performed a retrospective analysis of CNYC during days 17 - 37 .  This interval was chosen 204 

because day 17 is the day of the first intervention (shelter in place), and day 37 is the time of 205 

maximum new infections per day, based upon a 7-day average9 .  Initial reproduction numbers 206 

between 2 and 6 were considered, along with recovery times between 2 days and 10 days.  The 207 

fraction ϵκ was ½.  We analyzed scenarios where the infected population deployed different types 208 

of masks.  For baseline, it was assumed that the FE was 67%. This value is representative of 209 

homemade masks10, though the filtration capability of homemade masks spans a wide range.  210 

Higher-efficiency masks with FE’s of 75%, 80%, and 90% were considered for the hypothetical 211 

scenarios.  Uncertainty in the calculated results was obtained by performing simulations for 212 

different combinations of reproduction numbers and recovery rates and computing the mean and 213 

standard deviation for the ensemble of parameter combinations.    214 

Figure 1a shows the dynamic spread function as a function of time.  A sharp decrease is seen  215 
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 216 

 Figure 1a. Dynamic spread function for CNYC with infected population deploying masks with 217 
different filtration efficiencies.  Shadowed regions denote values within a standard deviation of the 218 
mean, for an ensemble of simulations using different reproduction numbers and recovery rates. 219 

 220 

initially, owing to the shelter-in-place restriction. For larger FE, a sharper decrease in the spread 221 

function is observed.  A large decrease in new infections (Fig. 1b) accompanies a small reduction 222 

in spread function value.  Increasing FE from 67% to 75% , for example, reduces the spread 223 

function value about 10%  at day 37, and maximum number of new infections (at day 37) 224 

decreases by about 40%.  The turn-around time is decreased from about 37 days to 32 days.   225 

 226 
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 227 

 228 

Figure 1b.  Number of new infections per day for CNYC, with infected population deploying 229 
masks with different filtration efficiencies.  Shadowed regions denote values within a standard 230 
deviation of the mean, for an ensemble of simulations using different reproduction numbers and 231 
recovery rates. 232 

 233 

For the same increase of FE from 67% to 75% , the number of infected individuals (Fig. 1c) at day 234 

37 is reduced by about 30%.  The uncertainty is considerably larger for the spread function (Fig 235 

1a) and the infected population (Fig. 1c) than the number of new infections per day (Figure 1b), 236 
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 237 

Figure 1c.  Infected population as a function of time for CNYC, when infected population deploys 238 
masks of different filtration efficiencies.  Shadowed regions denote values within a standard 239 
deviation of the mean, for an ensemble of simulations using different reproduction numbers and 240 
recovery rates. 241 

 242 

as the spread function and infected population are much more strongly influenced by the recovery 243 

time than the number of new infections.  The recovery time spanned a factor of 5 over all the 244 

simulations performed. 245 

An additional set of simulations was performed in which the fraction of the CNYC population 246 

wearing a mask with a filtration efficiency of 0.67 was increased, by 2%, 5%, and 10%.  The 247 
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baseline fraction deploying the mask was determined from Eq. (12), with δ(t) (baseline curve in 248 

Fig. 1a) derived from Eq. (4).  The fraction deploying the mask increased from 0% at day 17 to 249 

roughly 75% on day 37.  Increasing the fraction by 10% (i.e. multiplying the fi value at each time 250 

by 1.1) reduced the number of new infections per day from about 5100 to 3600 (Fig. 2).  The turn-251 

around time is reduced from approximately 37 days to 32 days.   252 

 253 

Figure 2. Number of new infections per day for scenarios where various fractions of the infected 254 
population in CNYC deploy masks with a 67% filtration efficiency.  255 

 256 

4. Discussion 257 

While days 17 to 37 were featured in our simulations, the dynamic-spread-function technique can 258 

be applied to any time interval where reliable numbers of new infections are available.  The 259 

standard SIR model is used prior to the time when either the production rate or the transmission 260 
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rate is altered by an intervention strategy.  At that point the dynamic simulations commence, with 261 

the SIR results serving as initial conditions. 262 

The model is not intended to be a predictive tool, in the sense of forecasting the future course of an 263 

ongoing epidemic.  The purpose of the model is to compare different intervention strategies for 264 

scenarios where the baseline infection profile (number of new infections per day) is provided.  265 

Also required are the initial reproduction number and an estimate of the recovery rate.  Though the 266 

model is not a forecasting tool, it can be useful for designing future countermeasures, particularly 267 

if elements of the anticipated scenario are similar to those of the scenario used to compute the 268 

spread function δ(t).  These elements include, most importantly, population behaviors such as face 269 

mask adoption (affecting both κ and  𝛽𝛽� in Eq. 5) and social distancing (affecting 𝛽𝛽� ) , but also 270 

environmental factors such as the pathogen inactivation rate.  We refer the reader to Stilianakis 271 

and Drossinos7 for the dependence of infection dynamics on the numerous properties of the 272 

pathogen, the population, and the environment.  Here we emphasize that the spread function 273 

implicitly captures the influence of all these factors, even though the functional dependence of the 274 

parameters is not introduced.  Only when considering an alternative scenario that varies one of the 275 

factors does the does the explicit parametric dependence matter.  In this paper, the functional 276 

dependence of the production rate κ upon the mask filtration efficiency is introduced via Eq. (10) 277 

in order to evaluate different PPE strategies. 278 

Calibration of the model is based upon number of new infections, rather than the size of the 279 

infected population, to eliminate the uncertainty associated with how well recoveries are tracked in 280 

the calibration dataset.   To compare with published data sets where recoveries are not accounted 281 
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for, then the integral of T(t) (converted to dimensional form) up to the time point of interest would 282 

be the proper metric for representing the size of the infected population. 283 

Since the dynamic spread function is the product of the transmission rate times the droplet 284 

production rate, it quantifies the ability of the infection to spread.  The ability of the infection to 285 

spread decreased rapidly from day 17 (Fig. 1a).  Because adoption of masks in CNYC likely 286 

occurred on a continuous basis over the weeks succeeding day 17, the curves in Fig. 1a are smooth 287 

and monotonically decreasing.  For longer periods of time, where mask usage may eventually 288 

decrease, the spread function need not be monotonic. 289 

The effects of different protective-equipment strategies in CNYC were investigated without 290 

having to update the SIR parameters during the epidemic.  The continuous adoption of masks 291 

would be difficult to simulate by updating coefficients at various times in standard SIR models.  292 

With the dynamic-spread approach, the gradual adoption of masks is captured in a natural manner. 293 

As noted above, the dynamic-spread approach allowed social distancing to be captured without 294 

being specifically modeled.  The pattern of social distancing in CNYC was retained for all the 295 

simulated scenarios involving different facemasks.  This commonality is largely responsible for 296 

the similar shapes of the curves in Fig. 1a.  The only decision made relative to social distancing 297 

was that the factors contained in the transmission rate (𝛽𝛽�) , which includes social distancing5,7 , 298 

were responsible for roughly half (ϵκ  = ½) of the reduction in the spread function (shown in Fig. 299 

1a).  Other fractions would result in different reductions in infection in Figs 1 and 2, with higher 300 

values of ϵκ resulting in larger reductions in infection rate, and vice versa.  301 
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The simulated scenarios addressed only changes in masks worn by the infected population.  No 302 

change in protection for the susceptible population was assumed.  The susceptible population 303 

deployed masks, but the type was not varied between scenarios.  As shown in Myers et al.5, the 304 

effect of mask deployment by the susceptible population can be simulated by modifying the 305 

transmission term (𝛽𝛽�(t)) in Eq. (3), using equations analogous to (9) and (10).   306 

For the conditions of the simulations, a slight increase in facemask efficiency resulted in a larger 307 

benefit than a commensurate increase in compliance.  At day 37, for example, a fractional increase 308 

in compliance of 0.1 resulted in a reduction in new infections of about 1500 per day (Fig. 2), while 309 

a fractional increase in FE of 0.1 reduced the number of new infections by about 1800 310 

(interpolating Fig. 1b).  For a higher baseline FE than 67%, increasing the compliance rate would 311 

produce a larger decrease in new infections.  This comparison between filter efficiency and 312 

population compliance illustrates the utility of the model for determining how resources devoted 313 

to countermeasures can be optimally spent.  In this case, the model can help inform the choice 314 

between 1) producing and distributing barriers of higher FE, and 2) educating and incentivizing 315 

the population to deploy barriers more readily available.   316 

A noteworthy conclusion emerging from the simulations is that considerable benefit can be 317 

obtained from higher FE masks without requiring N95 levels of efficiency (Fig 1).   It is important 318 

to emphasize that for the benefits to be realized, the filtration efficiencies for the barrier material 319 

must be attainable for the particle-size range of the dominant transmission mode for the given 320 

scenario.  One way of assuring this is for the barrier to provide the given FE across the spectrum 321 

of particle sizes.  Otherwise, knowledge of the material filtration efficiency for the intended 322 

application (e.g. reducing airborne particulates generated by coughing or sneezing by infected 323 
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persons indoors) is required in order to generate useful estimates.  The complex issues of 324 

dominant transmission mode for COVID-19, and the filtration efficiency of different masks 325 

designs for the different modes, will be addressed in future applications of the model. 326 

 327 

Data Availability 328 

Data used to inform the model was obtained from the Johns Hopkins Coronavirus Resource 329 

Center (2020),  https://coronavirus.jhu.edu/map.html.  330 

 331 
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 370 

Figure Legends 371 

1a. Dynamic spread function for CNYC with infected population deploying masks with different 372 

filtration efficiencies.  Shadowed regions denote values within a standard deviation of the mean, 373 

for an ensemble of simulations using different reproduction numbers and recovery rates. 374 

1b.  Number of new infections per day for CNYC, with infected population deploying masks with 375 

different filtration efficiencies.  Shadowed regions denote values within a standard deviation of the 376 

mean, for an ensemble of simulations using different reproduction numbers and recovery rates. 377 

1c.  Infected population as a function of time for CNYC, when infected population deploys masks 378 

of different filtration efficiencies.  Shadowed regions denote values within a standard deviation of 379 

the mean, for an ensemble of simulations using different reproduction numbers and recovery rates. 380 

2. Number of new infections per day for scenarios where various fractions of the infected 381 

population in CNYC deploy masks with a 67% filtration efficiency.  382 

 383 
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