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Abstract: 1 

Schizophrenia is a mental disorder with extensive alterations of cerebral gray matter (GM) and 2 

white matter (WM) and is known to have advanced brain aging. However, how the structural 3 

alterations contribute to brain aging and how brain aging is related to clinical manifestations remain 4 

unclear. Here, we estimated the bias-free multifaceted brain age measures in patients with 5 

schizophrenia (N=147) using structural and diffusion magnetic resonance imaging data. We calculated 6 

feature importance to estimate regional contributions to advanced brain aging in schizophrenia. 7 

Furthermore, regression analyses were conducted to test the associations of brain age with illness 8 

duration, onset age, symptom severity, and intelligence quotient. The patients with schizophrenia 9 

manifested significantly old-appearing brain age (P<.001) in both GM and WM compared with the 10 

healthy norm. The GM and WM structures contributing to the advanced brain aging were mostly 11 

located in the frontal and temporal lobes. Among the features, the GM volume and mean diffusivity 12 

of WM were most sensitive to the neuropathological changes in schizophrenia. The WM brain age 13 

index was associated with a negative symptom score (P=.006), and the WM and multimodal brain age 14 

indices demonstrated negative associations with the intelligence quotient (P=.037; P=.040, 15 

respectively). Moreover, brain age exhibited associations with the onset age (P=.006) but no 16 

associations with the illness duration, which may support the early-hit non-progression hypothesis. In 17 

conclusion, our study reveals the structural underpinnings of premature brain aging in schizophrenia 18 

and its clinical significance. The brain age measures might be a potentially informative biomarker for 19 

stratification and prognostication of patients with schizophrenia.  20 

 21 
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1 Introduction 1 

 A growing body of evidence has demonstrated that schizophrenia is a psychiatric disorder with 2 

neurobiological alterations involved in both neurodevelopmental and neurodegenerative processes1-3 3 

that manifest various impairments in brain structure and function4-6. Neuroimaging studies have 4 

reported pronounced gray matter (GM) volume loss throughout the brain7,8 and reduction in cortical 5 

thickness primarily in the frontal and temporal areas9. These changes resemble the changes observed 6 

in the aging process10. Moreover, diffusion magnetic resonance imaging (MRI) constantly reported 7 

altered integrity of white matter (WM) in schizophrenia11 which reflects the disconnection between 8 

cortical areas and may lead to cognitive impairments12. One study reported that WM integrity, as 9 

measured by fractional anisotropy, was reduced in younger patients with schizophrenia, and the 10 

reduction pattern was similar to that in older healthy controls13, suggesting a premature reduction of 11 

WM integrity in schizophrenia. These findings demonstrate an older biological status of the brain in 12 

patients and suggest premature brain aging in schizophrenia14,15. 13 

A neuroimaging-based brain age paradigm has been developed as an imaging biomarker to 14 

investigate aberrant brain aging, which occurs in numerous neurological diseases and psychiatric 15 

disorders14,16-18. This approach enables precise and individualized quantification of the extent of brain 16 

aging. To estimate the brain age index, numerous brain scans are acquired from cognitively healthy 17 

individuals, and these brain scans are employed as a reference cohort to create and define a brain age 18 

prediction model. Through modern machine learning and deep learning techniques, brain scans can 19 

be transformed from high-dimensional neuroimaging features into a concise brain age marker by 20 

learning the complex aging pattern in biomedical images. Consequently, the established brain age 21 

prediction model can predict the brain age of other individuals. The predicted age difference (PAD), 22 

which is the difference between an individual’s brain age and chronological age, quantitatively 23 

indicates deviation from the defined healthy aging trajectory19. Depending on the neuroimaging data 24 

modality, the derived PAD highlights different aspects of brain aging. 25 
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Brain age measures are capable of revealing the underlying mechanism of brain aging in 1 

schizophrenia. GM-based brain age measures have indicated apparent brain aging in patients with 2 

schizophrenia compared with healthy controls, for those in early stages and those with chronic 3 

illness14,20-22. Furthermore, several studies have indicated that the effect of apparent brain aging 4 

becomes more prominent over time, especially within the short-term period after disease onset, 5 

suggesting that accelerated brain aging occurs in patients with schizophrenia14,22. However, a study 6 

reported that patient’s brain age did not progress for the remainder of life, implying that the aging 7 

induced by the disease was not accelerated23. The conflicting reports indicate that the hypothesis of 8 

accelerated brain aging in schizophrenia is controversial.  9 

Although these pioneering studies demonstrated the applications of brain age paradigms in 10 

schizophrenia, several limitations remain. First, most brain age research has only adopted the single 11 

imaging modality, such as GM volumetric features, to estimate the PAD. Few studies have addressed 12 

the brain aging in schizophrenia with other imaging features such as WM integrity and multimodal 13 

features. Multidimensional investigations of brain structure alterations in patients with schizophrenia 14 

are still lacking. Moreover, regular PAD, which is the most common measure employed in brain age 15 

studies, has an intrinsic statistical bias when estimated during the model training phase; the PAD is 16 

significantly correlated with chronological age in the model training set24. This bias makes PAD 17 

dependent on chronological age. To our knowledge, no study of brain age in schizophrenia has directly 18 

addressed this problem. Furthermore, although machine-learning–based brain age predictions provide 19 

an advanced approach for quantitatively estimating the degree of brain aging, the characteristics of the 20 

unexplainable “black box” inside the machine learning algorithms hinder the interpretation of feature 21 

importance for neurobiological inference. 22 

To investigate the multifaceted biological age in schizophrenia and address these limitations, we 23 

constructed three types of brain age models based on the neuroimaging features of the GM, WM, and 24 

their combination (i.e., multimodality). We then estimated the bias-free brain age indices of patients 25 
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with schizophrenia. We hypothesized that these brain age indices may reflect different aspects of the 1 

advanced brain aging in the patients with schizophrenia. Additionally, the clinical relevance of brain 2 

age indices in schizophrenia was investigated; we postulated that brain age indices may exhibit 3 

statistical associations with various clinical factors, such as illness duration, onset age, symptom 4 

severity, and general cognition (e.g., full-scale intelligence quotient, FSIQ). Moreover, we established 5 

a series of region-of-interest (ROI)-based normative models25 by using healthy individuals to define 6 

the norm of imaging measures and then quantify the extent of structural impairments in schizophrenia 7 

against the healthy norm. This approach enables quantification of certain impaired brain regions in the 8 

patients with schizophrenia. We then evaluated multivariate correlation between the structural 9 

deviance of the patients with schizophrenia and their brain age indices, estimating the contribution of 10 

each structural feature. Using this framework, we aimed to delineate a brain network that explains the 11 

advanced brain aging in schizophrenia. 12 

  13 
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2 Materials and Methods 1 

 2.1 Participants 2 

Patients with schizophrenia (N = 147; mean age = 31.1; standard deviation [SD] = 8.3; range 16–3 

62; sex: 46.3% men) were consecutively recruited from the outpatient clinic of the Department of 4 

Psychiatry of National Taiwan University Hospital (NTUH) from 2010 to 2017. Patients recruited 5 

before 2014 were diagnosed of schizophrenia based on the Diagnostic and Statistical Manual of 6 

Mental Disorders‐4 (DSM-4) criteria, and their symptoms and clinical presentations satisfied the 7 

DSM-5 criteria after rediagnosis. Patients recruited after 2014 were diagnosed using the DSM-5 8 

criteria. Diagnoses of schizophrenia were made after comprehensive chart review and personal 9 

interviews performed by experienced psychiatrists. Patients with schizoaffective disorder, bipolar 10 

disorder, substance abuse, intellectual disability, major systemic disease, or neurological diseases were 11 

excluded. The symptoms at initial recruitment were assessed by the senior psychiatrists from the 12 

Department of Psychiatry of the NTUH by using the Positive and Negative Syndrome Scale (PANSS), 13 

and the FSIQ were measured by using the Wechsler Adult Intelligence Scale—Third Edition26,27. All 14 

participants provided written informed consent, and the Institutional Review Board of NTUH 15 

approved the study. 16 

Brain images of 482 cognitively normal individuals (mean age = 36.9, SD = 19.1, range = 14–17 

92; sex: 53.1% women) obtained from the NTUH MRI database, including T1-weighted images and 18 

diffusion spectrum imaging (DSI) data sets, were used as the training set to develop brain age 19 

prediction models. Another independent set of 70 cognitively normal individuals (mean age = 36.8, 20 

SD = 19.9, range = 14–83; sex: 52.2% women) from the database was used to assess the reproducibility 21 

of the brain age models. All 552 cognitively normal participants had no history of neurologic or 22 

psychiatric illness. Detailed information on the recruitment criteria for cognitively normal individuals 23 

is provided in Supplementary Material S1.1. All training and test sets were anonymized.  24 

 25 
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2.2 MRI Image Acquisition 1 

All brain images, including the training and test sets and those from patients with schizophrenia, 2 

were acquired using the same 3-Tesla MRI scanner (Tim Trio; Siemens, Erlangen, Germany) with a 3 

32-channel phased-array head coil. High-resolution T1-weighted imaging was performed using a 4 

three-dimensional (3D) magnetization-prepared rapid gradient-echo sequence with the isotropic 5 

spatial resolution in 1 mm3. DSI, which is designed to capture the microstructural integrity of WM, 6 

was performed using a pulsed-gradient spin-echo diffusion echo-planar imaging sequence with a 7 

twice-refocused balanced echo28; the imaging parameters were bmax = 4000 s/mm2 and in-plane spatial 8 

resolution = 2.5 × 2.5 mm2. The diffusion-encoding acquisition scheme followed the framework of 9 

DSI29, which comprised 102 diffusion-encoding gradients corresponding to the Cartesian grids in the 10 

half-sphere of the 3D diffusion-encoding space (q-space)30. Each MRI scan included T1-weighted 11 

imaging. DSI was completed within 20 minutes. Detailed information on the imaging parameters is 12 

provided in Supplementary Material S2.1. 13 

 14 

2.3 Image Analysis 15 

Before image data analysis was performed, all T1-weighted images and DSI data sets underwent 16 

quality assurance procedures, which are detailed in Supplementary Information S2.2. To extract GM 17 

features from the T1-weighted images, voxel-based morphometry and surface-based morphometry 18 

were performed using the Computational Anatomy Toolbox (CAT12)31, which is an extension of 19 

Statistical Parametric Mapping 1232 (Figure 1A). Voxel-based morphometry was applied to estimate 20 

voxel-wise regional volume features according to the LONI probabilistic brain atlas, which contains 21 

56 ROIs33. Surface-based morphometry was employed to measure cortical thickness through 22 

projection-based thickness estimation34. The estimated thickness features were sampled according to 23 

the 68 cortical ROIs included in the Desikan–Killiany cortical atlas 35. The detailed information of the 24 

image processing is provided in Supplementary Information S2.3. Briefly, a total of 56 volumetric 25 
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features and 68 cortical thickness features were obtained and used to estimate the GM-based brain age. 1 

WM features were extracted from DSI data sets by using an in-house automatic analytic pipeline 2 

to transform DSI data into tract-specific features36 (Figure 1A). The analytic algorithm is detailed in 3 

Supplementary Information S2.3. In brief, DSI data were reconstructed into structure-related diffusion 4 

indices (i.e., generalized fractional anisotropy [GFA] and mean diffusivity [MD]) by using the 5 

regularized version of the mean apparent propagator (MAP)-MRI algorithm37,38. A two-step 6 

registration process with an advanced diffusion MRI-specific registration algorithm39 was employed 7 

to minimize the registration bias arising from cross-lifespan data variation. Finally, the predefined tract 8 

bundle coordinates on a standard template were projected according to the transformation map 9 

obtained from the registration process onto individuals’ diffusion index maps to sample tract-specific 10 

features. The pipeline produced 45 tract features for each index from each participant. Consequently, 11 

45 GFA and 45 MD features were obtained to estimate the WM-based brain age. The parcellation of 12 

GM and WM ROIs is detailed in Supplementary eTable. 13 
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 1 

Figure 1. Analytic pipeline and conceptual explanation of brain age. Subplot A illustrates the imaging processing for the T1-weighted images and 2 

diffusion spectrum imaging datasets. Subplot B represents the brain age models established using the data sampled from a normal population. 3 

Subplot C demonstrates the hypothetical aging trajectories corresponding to the individual brain age inference. 4 

 5 
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2.4 Brain Age Modeling 1 

The GM, WM, and multimodal brain age prediction models were established using the training 2 

set’s neuroimaging features to predict brain age based on GM, WM, and both GM and WM features, 3 

respectively (Figure 1B). Sex was also included as a predictor. The architecture of the brain age model 4 

was designed to have a 12-layer feedforward cascade neural network40. A 10-fold cross-validation 5 

procedure was performed to estimate the performance of the brain age models in the training phase. 6 

An independent test set was then used to evaluate the reproducibility of the brain age models. The 7 

detailed description of brain age modeling and results of model performance are provided in 8 

Supplementary Information S1.2 and S3, respectively. 9 

After model performance was determined, the correction models for minimizing age-related bias 10 

were constructed for each brain age model by using the training set. Age-related bias refers to the 11 

statistical bias of PAD (i.e. predicted age − chronological age, used to represent the degree of aging; 12 

Figure 1C), which was significantly correlated with chronological age in the training set24. In practice, 13 

Gaussian process regression (GPR)41 was used to obtain regression model estimates for the training 14 

set; the independent variables were age and sex, and the dependent variable was the predicted age. 15 

The mean and SD of the training sample’s predicted age for a certain age and sex were estimated from 16 

the GPR models, and a new individual’s predicted age was standardized into a value resembling a Z-17 

score on the basis of the derived mean and SD of predicted age of the individual’s peers. The Z-score–18 

like value was termed normalized PAD (nPAD). The nPAD value is free of age-related bias and has 19 

biological meaning similar to that of the original PAD, with higher values indicating an older brain. 20 

This normalization procedure is in accord with the notion of a normative model42. Under the 21 

normalization, the individual’s predicted age is compared with the individual’s peers’ mean predicted 22 

age rather than the individual’s chronological age.  23 

 24 

2.5 Normative Modeling for Structural Features 25 
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ROI-based normative models were also established for each neuroimaging feature by using the 1 

training set. The purpose of normative models was to define a statistical norm for each structural 2 

feature based on a cognitively normal population-based cohort given certain age and sex42. This 3 

method enabled the quantification of an individual’s structural deviance compared with the norm. This 4 

deviance, which was equivalent to a standardized score (Z-score), served as a measure of the structural 5 

integrity of brain regions. A normative model was built for each structural feature (i.e., each GM and 6 

WM feature) by using the training set to estimate the mean and SD of model functions with GPR 7 

approach. The independent variables were age and sex, and the dependent variable was the structural 8 

feature. After ROI-based normative modeling was performed, these normative models were applied 9 

to patients with schizophrenia to calculate the Z-score for each brain region. These estimated Z-scores 10 

were further used to calculate regional contributions to brain aging in patients with schizophrenia. 11 

 12 

2.6 Statistical Analysis 13 

Three analyses were performed in the study to test the hypotheses. The first analysis was the 14 

comparison of nPAD in schizophrenia with respect to cognitively normal individuals. The nPAD 15 

scores derived from GM, WM, and multimodal models were compared with the population mean of 16 

cognitively normal individuals, which should be zero, by using one-sample t tests. In addition, paired 17 

t tests and Pearson’s correlation coefficients were respectively employed to examine the differences 18 

and correlation between GM and WM nPAD scores in patients with schizophrenia. 19 

A multiple linear regression analysis was performed to assess the relationship between the nPAD 20 

scores (as dependent variables) and clinical manifestations (as independent variables). The clinical 21 

manifestations consisted of symptom scores (i.e., PANSS positive, negative, and general scores) and 22 

clinical factors (i.e., duration of illness, onset age, and antipsychotic dosage). The multiple comparison 23 

problem was addressed by Benjamini-Hochberg correction43. In addition, the relationship between 24 

brain age indices and general cognition in patients with schizophrenia was assessed by multiple 25 
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regression analysis associating the nPAD scores (as independent variables) with the FSIQ (as the 1 

dependent variable) in the patient group. Age, sex, and years of education were controlled. 2 

The final analysis was to calculate feature importance and identify the regions that contributed 3 

most to advanced aging in schizophrenia. The analysis consisted of two steps. First, we calculated 4 

patients’ Z-score profiles of structural features using ROI-based normative models. Z-score values 5 

indicate the magnitude of structural impairment deviated from the normal means. Second, we tested 6 

the correlations between patients’ Z-score values and their nPAD scores using canonical correlation 7 

analysis (CCA)44. The coefficients of the brain regions in CCA were normalized into 0 to 1. The 8 

normalized coefficients represented the weights of the contribution to the nPAD scores, thus reflecting 9 

the feature importance of advanced aging in individuals with schizophrenia. 10 
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3 Results 1 

 3.1 Comparisons of normalized predicted age difference (nPAD) in schizophrenia 2 

 A total of 147 patients with schizophrenia were analyzed in the study. The mean (SD) of duration 3 

of illness and age of disease onset were 7.5 (7.0) years and 23.4 (6.9) years, respectively. The PANSS 4 

scores were 13.1 (5.1) in positive symptom, 15.8 (7.2) in negative symptom, and 28.2 (8.4) in general 5 

symptom. The medication dose was 312.8 (269.8) chlorpromazine-equivalent units at the moment of 6 

subject recruitment and FSIQ was 93.8 (12.9) units. 7 

 The performance of brain age modeling and nPAD are provided in Supplementary Information 8 

S3. After confirming the model performance and verifying the unbiased estimation of nPAD, the nPAD 9 

scores of the patients with schizophrenia were estimated for statistical analyses. The results of a mass 10 

one-sample t test revealed a significant difference in all the nPAD scores of the schizophrenia group 11 

compared with the healthy norm (nPAD-GM: 1.03 (1.82), t(146) = 6.89, p < 0.001; nPAD-WM: 0.84 12 

(1.83), t(146) = 5.59, p < 0.001; nPAD-multimodal: 1.36 (1.92), t(146) = 8.37, p < 0.001; adjusted by 13 

Benjamini-Hochberg correction) (Figure 2). No significant differences were observed in the nPAD 14 

scores of the test set compared with the healthy norm (nPAD-GM: −0.1 (1.40), t(69) = −0.60, p = 0.553; 15 

nPAD-WM: 0.00 (1.06), t(69) = −0.03, p = 0.977; nPAD-multimodal: −0.07 (1.30), t(69) = −0.43, p = 16 

0.667). We also determined the original PAD scores, PAD-GM: 5.56 (8.74) years; PAD-WM: 4.00 17 

(9.40) years; PAD-multimodal: 6.13 (8.36) years, which were comparable to the scores reported in the 18 

literature. Paired t test showed that there was no significant difference between nPAD-GM and nPAD-19 

WM (t(146) = 1.03, p = 0.304), but a significant correlation was identified between these two indices 20 

(rho = 0.264, p = 0.001). 21 

  22 
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 1 

Figure 2. The beeswarm plot of normalized predicted age difference (NPAD) in Schizophrenia and the 2 

Normal (test set) based on different brain age models. 3 

 4 

 3.2 Regression analysis of nPAD with symptom scores and clinical factors 5 

 Before the regression analysis, patients with clinical factors and symptom scores exceeding SD = 6 

2 were excluded (N = 23) to minimize the result bias caused by outliers. In the regression model of 7 

nPAD with symptom scores (Table 1), only negative symptoms were significantly associated with the 8 

nPAD-WM (estimated beta = 0.103, p = 0.006) and nPAD-multimodal scores (estimated beta = 0.110, 9 

p = 0.026). In the regression model of nPAD with clinical factors, the age of disease onset exhibited a 10 

significant negative correlation with nPAD-WM (estimated beta = −0.107, p = 0.006), whereas the 11 

duration of illness and antipsychotic dose did not display any significant association with any of the 12 

nPAD scores. 13 

 14 
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Table 1. Regression models of nPAD with clinical factors and symptom scores 

*: with statistical significance after adjusted by Benjamini-Hochberg correction. 

 

 

 nPAD-GM  nPAD-WM  nPAD-Multimodal 

 Estimated SE p-val  Estimated SE p-val  Estimated SE p-val 

Models for clinical factors 

Disease duration 0.0009 0.0309 1.000  -0.0385 0.0294 0.576  -0.006 0.0356 1.000 

Onset age -0.0493 0.0358 0.512  -0.1073 0.0340 0.006*  -0.0831 0.0412 0.137 

Antipsychotic 

dose 
0.0003 0.0011 1.000  0.0007 0.0010 1.000  0.0010 0.0012 1.000 

Models for symptom severity 

Positive -0.0142 0.0528 1.000  -0.0210 0.0500 1.000  0.0096 0.0626 1.000 

Negative 0.0476 0.0346 0.516  0.1028 0.0328 0.006*  0.1098 0.0411 0.026* 

General -0.0043 0.0336 1.000  -0.0159 0.0318 1.000  -0.0359 0.0398 1.000 
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3.3 Association of nPAD with FSIQ 1 

 Patients with quotient scores outside two SDs were excluded (N = 47) to reduce bias in the 2 

estimation. The nPAD-WM and nPAD-multimodal scores significantly explained the variance 3 

(estimated beta of nPAD-WM = −1.428, p = 0.040; estimated beta of nPAD-multimodal = −1.426, p = 4 

0.037; adjusted through Benjamini-Hochberg correction) in the FSIQ after adjustment for age, sex, and 5 

education years, indicating that the nPAD-WM and nPAD-multimodal scores were significantly and 6 

negatively correlated with the FSIQ. In contrast, the nPAD-GM score and FSIQ were marginally 7 

associated (estimated beta of nPAD-GM = −1.106, p = 0.089). 8 

 9 

3.4 Structural deviance in schizophrenia based on ROI-based normative models 10 

 We used the ROI-based normative models to transform the structural features into Z-scores and 11 

to quantify the alterations of brain regions and tracts in patients with schizophrenia. The regions with 12 

significant alterations were identified using a mass one-sample t test for each feature with multiple 13 

comparison corrections, as displayed in Figure 3. The findings indicated that the MD index revealed 14 

more alterations than did the GFA index, and the regional volume was affected more than the cortical 15 

thickness. 16 
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 1 

Figure 3. The density plots of the Z-score profiles in schizophrenia. The stripes with color coding 2 

indicate that the z-scores of the regions of interest in schizophrenia are significantly distinct from the 3 

norm whereas stripes with white color indicate no significant difference from the norm. The blue and 4 

red colors denote the negative and positive z-scores, respectively. Abbreviations: GM: gray matter; 5 

WM: white matter: SZ: schizophrenia; Vol: volume; CT: cortical thickness; GFA: generalized 6 

fractional anisotropy; MD: mean diffusivity. The full name of abbreviation is provided in 7 

Supplementary eTable. 8 

 9 

 3.5 Regional importance of apparent aging in schizophrenia 10 

 To investigate which underlying impaired regions contributed the most to the significantly 11 

increased nPAD scores in patients with schizophrenia, we calculated the coefficients using CCA (CCA 12 

in GM: rho = 0.995, CCA in WM: rho = 0.988) and normalized the values into a regularized range. 13 

The results are illustrated in Figure 4. Using descriptive statistics, we analyzed the importance of the 14 
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top-half regions in each modality that were deemed to be representative of the most impaired regions 1 

and the greatest contributors to advanced aging in schizophrenia. The measurements of feature types 2 

in GM indicated that the regional volume (63.48% contribution rate) had a stronger effect than the 3 

cortical thickness (36.52%). In the WM measures, the MD values had a much higher rate of 4 

contribution (72.92%) than the GFA values did (27.08%). We further divided the GM features into five 5 

major anatomical regions: frontal, parietal, occipital, temporal, and limbic and other regions. The 6 

frontal (37.66%) and temporal lobes (35.86%) contributed the most, followed by the limbic and other 7 

regions (13.23%), the parietal lobe regions (9.18%), and the occipital lobe (4.08%). Features in the left 8 

GM hemispheric region (56.94%) contributed more to advanced aging than did features in the right 9 

GM hemispheric region (43.06%). In addition, the WM features were partitioned into the association, 10 

projection, and callosal fiber systems. The association system exhibited the greatest contribution 11 

(62.64%), followed by the projection fiber system (21.95%) and the callosal fiber system (15.42%). 12 

Furthermore, the WM features in the left hemisphere (48.41%) and right hemisphere (51.59%) 13 

exhibited relatively similar contributions. 14 

 15 

  16 
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 1 

 2 

Figure 4. The bar graphs of regional importance in schizophrenia and the corresponding illustration in 3 

brain maps. The plots show the regions with the top 20 important features contributing to the 4 

normalized PAD scores of gray and white matters, respectively. The color spectrum encodes the 5 

importance of feature contribution. Abbreviations: CF: callosal fibers, CT: cortical thickness, Fus: 6 
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fusiform, FX: fornix, Gy: gyrus, GFA: generalized fractional anisotropy, Inf: inferior, Lat: lateral, MD: 1 

mean diffusivity, Mid: middle, Par: para, Tem: temporal, TR: thalamic radiation, Vol: volume, Sup: 2 

superior. 3 

  4 
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4 Discussion 1 

 The etiology of schizophrenia has a substantive impact on aberrant maturational trajectories of 2 

the brain and subsequently leads to group-level differences in adult patients3,45. This study 3 

demonstrated that multifaceted brain age indices were capable of reflecting premature brain aging in 4 

schizophrenia, compared with the normal population. Particularly, the multimodal brain age index best 5 

distinguished the patients from normal brain aging, confirming that the multimodal brain age index 6 

had better sensitivity of reflecting the aberrant aging process46. Of the three models, WM brain age 7 

revealed significant associations with the age of disease onset and negative symptom scores, and the 8 

WM and multimodal brain age indices showed significantly negative associations with FSIQ. We also 9 

identified GM and WM regions in the frontal and temporal areas which contributed the most to 10 

premature aging, highlighting the neuroanatomical underpinnings of brain aging in schizophrenia. 11 

 The brain age measures of our study showed that premature brain aging in schizophrenia resulted 12 

from diffusively impaired brain structures over the whole brain. Our results of premature aging in GM 13 

replicate the previous findings, which reported that GM brain age was 3 to 5 years older than the 14 

normal14,15,22. This discrepancy is approximately equivalent to one standard deviation apart from the 15 

normal population based on the nPAD estimation. The aberrant aging in GM primarily reflects atrophic 16 

regional volume and reduced cortical thickness, and the former might be associated with premature 17 

aging, in line with the previous neuroanatomical observation47. Moreover, these findings are congruent 18 

with previous studies reporting widespread GM volume deficits and cortical thickness reductions in 19 

schizophrenia, most pronouncedly in the frontal lobe and temporal cortex48,49. Moreover, this pattern 20 

of neuroanatomical alterations in schizophrenia has been deemed to be similar to that in frontotemporal 21 

dementia (FTD)50. FTD refers to a neurodegenerative disorder which is characterized by the profound 22 

degeneration in frontal and temporal lobes, and primarily manifested in behavioral and personality 23 

abnormalities51,52. It has been reported that schizophrenia and FTD demonstrate certain commonalities 24 

in symptoms, etiology, genetics, epigenetics, and neuroanatomy53,54. Patients with FTD showed 25 
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cortical atrophy and hypometabolism in frontal, temporal, cingulate, thalamic, and cerebellar regions51-1 

53, and these abnormal regions were comparable to those observed in our GM regional contribution 2 

analysis. Additionally, the impaired structures in FTD appear to be lateralized; the left hemisphere is 3 

more severely impaired than the right hemisphere51. This also resembles our findings and previous 4 

reports in schizophrenia research51,55. Thus, we conjecture that the underlying mechanism of older 5 

brain age in schizophrenia might potentially have common causation with the process of 6 

neurodegeneration in FTD. 7 

 Likewise, the finding that the WM brain age was significantly older in schizophrenia is compatible 8 

with the study discovering the abnormal WM aging across the lifespan in schizophrenia56. Previous 9 

evidence has demonstrated that diffusion indices can reflect microstructural changes in WM and are 10 

sensitive to capture pathophysiological alterations in aging or mental disorders56,57. Through the use of 11 

brain age paradigm, we found that patients with schizophrenia showed group-level deviance of older-12 

appearing brains in WM compared to their cognitively normal peers. Particularly, MD, which was 13 

deemed as a sensitive biological marker of disease and genetic liability in schizophrenia58, dominantly 14 

contributed to the observed premature aging. The MD increase might be related to tissue atrophy or 15 

fiber density reduction which might be related to pathological processes in schizophrenia58,59. Our 16 

findings also demonstrated that the association fiber system, especially those connecting to the frontal 17 

and limbic areas, played a key role in abnormal aging of WM in schizophrenia60. The impaired regions 18 

which dominantly contributed to the premature aging in schizophrenia might provide insight in 19 

treatment targeting. The WM abnormalities occur broadly in chronic patients, whereas the pathology 20 

might be confined to select fiber bundles which involve callosal fibers and those connecting to frontal 21 

and temporal areas early in the disorder61,62. In line with our findings, the fiber bundles connecting 22 

with the frontal, temporal, and limbic regions (e.g. fornix, genu, inferior fronto-occipital fasciculus, 23 

and callosal fibers connecting bilateral temporal lobes) were also substantially affected. Notably, most 24 

of these tracts functionally mature in early adulthood63, and this coincides with the time of peak risk 25 
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for schizophrenia61,64. It has been hypothesized that developmental timing might confer increased 1 

susceptibility to disruption of particular tracts61. A stall in WM maturation may trigger psychosis3, and 2 

this would manifest as an onset-related decline in WM integrity that has been observed65. In our results, 3 

the WM brain age index was negatively correlated with the onset age, indicating that the earlier onset 4 

might be associated with the older brain age in WM, and this might imply that the earlier the impact in 5 

the maturational brain trajectory, the more severe the disruption of brain maintenance. 6 

 Although both GM and WM nPAD scores exhibited premature brain aging in patients with 7 

schizophrenia, the two scores merely showed a weak correlation. This implies that a universal 8 

premature aging process of GM and WM is ongoing in schizophrenia, but the senescence of these two 9 

structural metrics does not synchronize66. This is consistent with the finding that age-related 10 

abnormalities in GM and WM follow different temporal sequences in schizophrenia67. Another 11 

possibility of the weak relationship is that distinct clinical dimensions in schizophrenia might be related 12 

to aberrant developmental and aging trajectories in specific brain tissues.  13 

From the perspective of symptomatology, different symptom dimensions of schizophrenia might 14 

have different neuroanatomical underpinnings, manifesting selective impairments in different 15 

structural dimensions. For instance, one study reported that associations of positive and negative 16 

symptom scores were found in WM but not in GM68. We also found that only the WM brain age 17 

measure was correlated with the negative symptom. From the perspective of cognitive impairment, it 18 

was reported that prefrontal WM but not prefrontal GM was correlated with various aspects of 19 

intelligence, including general abilities and working memory69. Similarly, we observed a significant 20 

negative association of the WM brain age index, but not the GM brain age index, with the FSIQ, 21 

suggesting that only older WM brain age in schizophrenia might prominently connect to more 22 

cognitive deficits. Therefore, different symptom dimensions in schizophrenia might be associated with 23 

distinct neural correlates, potentially contributing to different aging trajectories in GM and WM.  24 

The illness onset and progression of schizophrenia have been conceptualized as a hypothesis 25 
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called “early hit non-progression”23,45. In other words, the pathophysiological disruption of brain 1 

formation and reorganization occurs rapidly in the prodromal stage, and after the first episode, the 2 

progression of clinical syndromes is gradually maintained in a relatively stable phase called the “brain 3 

upkeep” phase in the chronic stage, which persists throughout the remainder of the lifespan45. Our 4 

negative finding on no associations between illness duration and brain age indices might be consistent 5 

with this hypothesis and the previous findings21,23. Although several studies claimed that the effect of 6 

aberrant brain aging became more prominent over time, especially within a short period after the 7 

disease onset14,22, we consider that, in a long-term scope, brain aging in schizophrenia might be 8 

relatively stationary in the remainder of the lifespan. 9 

 The findings of this study should be considered in light of several limitations. First, although we 10 

recruited a large number of patients with schizophrenia whose illness duration covered a wide range, 11 

the findings derived from the cross-sectional design are still limited to drawing inferences about 12 

individualized illness progression, which should be observed using a longitudinal design. Additionally, 13 

no demographically-matched controls were prepared for the case-control analysis. Nevertheless, a 14 

large number of cognitively normal subjects covering a broad life span suffice to offer a reliable 15 

reference for clinical samples. Finally, all of the patients used antipsychotic medication at the time of 16 

scanning. Although no correlation was found between antipsychotic medication and brain age indices, 17 

the medication effect might still be a potential confounding effect on brain aging regarding the nature 18 

of the illness. Future research is warranted to investigate the medication effect of brain aging in 19 

schizophrenia. 20 

 In conclusion, we have demonstrated that multifaceted brain age indices, which serve as a 21 

neuroimaging phenotype to reflect an individual’s aging status, are capable of detecting premature 22 

brain aging in schizophrenia. The WM brain age index is associated with the negative symptom severity, 23 

and the WM and multimodal brain age indices are negatively correlated with the intelligence quotient. 24 

Moreover, brain age exhibited associations with the onset age but no associations with the duration of 25 
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illness, which are congruent with the early hit non-progressive hypothesis. In addition, we have 1 

identified the neuroanatomical contributions of premature brain aging in schizophrenia. The 2 

contributions mainly constitute the GM regions and WM connections within the fronto-temporal circuit, 3 

which resembles those impaired in FTD. This study provides detailed investigations of brain aging in 4 

schizophrenia using bias-free multifaceted brain age indices. Our findings add new knowledge to 5 

premature aging in schizophrenia, and might aid future studies to develop imaging biomarkers for 6 

stratification and prognostication in patients with schizophrenia. 7 
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S1 Brain Age Estimation 

S1.1 Participants 

The brain age models were created by using the neuroimaging data from National Taiwan 

University Hospital (NTUH) database. This database contained a training set (N = 482) and a test set 

(N = 70), which were used to establish brain age models and evaluate model performance, respectively 

(training set: mean age = 36.9 years, max = 92, min = 14, female proportion = 53.1%; test set: mean 

age = 36.8 years, max = 83, min = 14, female proportion = 52.2%). The distributions of age and sex in 

the 2 sets were statistically identical. The participants of the 2 sets were cognitively normal and met 

the recruitment criteria, including a Mini-Mental State Examination score of 25 or above, no self-

reported substance abuse, no brain injury and brain surgery, no current experience of serious health 

problems, and no history of neurological diseases or psychiatric disorders. Participants who did not 

meet the safety and health-related criteria for MRI scanning were excluded. 

S1.2 Establishment of Brain Age Prediction Models 

The details of the MRI imaging parameters and image processing are described in S2. After 

conducting image processing, the input data for gray matter (GM)-based brain age modeling used the 

volume and cortical thickness features in regions of interest (ROIs), whereas that for white matter 

(WM)-based brain age modeling used the tract-specific features of generalized fractional anisotropy 

(GFA) and mean diffusivity (MD). Consequently, the neuroimaging features of the GM- and WM-

based model input consisted of 124 and 90 features, respectively. The sex factor was also included as 
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a predictor in the models. Twelve-layer feed-forward cascade neural network models, which provide 

an accurate prediction with flexible model architecture for transfer learning, were used to predict age 

(4). The cascade neural network is a feed-forward neural network involving connections from the input 

and every previous layer to the subsequent layer. This network is similar to a simplified fully connected 

version of a dense block in densely connected convolutional networks, which avoid the vanishing-

gradient problem and strengthen feature propagation (5). The loss function of model optimization was 

specified as a mean square error function, which was optimized using a gradient descent algorithm 

with an adaptive learning rate and constant momentum. A 10-fold cross-validation procedure was 

adopted within the training set to estimate brain age model performance. Validation set performance 

was used to stop the model parameter updates. The training procedure was implemented using 

MATLAB R2019a (MathWorks Inc., Natick, MA, USA) with an NVIDIA GeForce RTX 2080Ti 

(NVIDIA Inc., Santa Clara, CA, USA) graphics processing unit for accelerated computing. The 

performance of the trained brain age models was tested by predicting the brain age of individuals in 

the test set. To quantify model performance, Pearson’s correlation coefficient and mean absolute error 

between the predicted age and chronological age were calculated. The results of brain age modeling 

are provided in Supplementary Information S3. 
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S2 Image Data Processing 

S2.1 MRI Imaging Parameters 

The neuroimaging data in the NTUH database were acquired using a 3T Siemens TIM Trio 

scanner with a 32-channel phased-array head coil, with the same imaging protocol used for all data 

collection. High-resolution T1-weighted imaging was performed using a 3D magnetization-prepared 

rapid gradient echo (3D-MPRAGE) sequence: repetition time/echo time (TR/TE) = 2000/3 ms, flip 

angle = 9°, field of view (FOV) = 256 × 192 × 208 mm3, and acquisition matrix = 256 × 192 × 208; 

this resulted in an isotropic spatial resolution of 1 mm3. The imaging protocol for diffusion-weighted 

images followed that designed for diffusion spectrum imaging (DSI). The DSI datasets were acquired 

using the diffusion pulsed-gradient spin-echo echo-planar imaging sequence with a twice-refocused 

balanced echo (1, 2): TR/TE = 9600/130 ms, slice thickness = 2.5 mm, acquisition matrix = 80 × 80, 

FOV = 200 × 200 mm2, and in-plane spatial resolution = 2.5 × 2.5 mm2. The diffusion-encoding 

acquisition scheme used in this dataset followed the DSI framework published previously (2), in which 

102 diffusion-encoding gradients were applied corresponding to the Cartesian grids in the half sphere 

of the 3D diffusion-encoding space (q-space) within a radius of 3 units equivalent to bmax = 4000 s/mm2 

(3). Because the q-space data were real and symmetrical around the origin, the acquired half-sphere 

data were projected to fill the other half of the sphere. 

S2.2 Image Quality Assurance 

Before we performed data analysis, all T1-weighted images underwent quality assurance (QA) 
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procedures which are included in the Computational Anatomy Toolbox 12 (CAT12; 

http://dbm.neuro.uni-jena.de/cat.html), a novel retrospective QA framework for empirical 

quantification of quality differences. Retrospective QA involved automatic evaluation of essential 

image qualities such as noise, inhomogeneity, and image resolution. These quality measures were 

scaled to a rating scale, and “good” image quality level was required. Additional visual inspection was 

conducted to examine whether artifacts, including severe motion and abnormal lesions, remained in 

the images. All diffusion datasets also underwent QA procedures, including examinations for the 

signal-to-noise ratio (SNR), degree of alignment between T1- and diffusion-weighted images, and the 

motion-induced signal dropout (6). The SNR was evaluated by calculating the mean signal of an object 

divided by the standard deviation (SD) of the background noise (7). In practice, the signal was 

determined using a central square of an image for each slice, and the noise was averaged from 4 corner 

regions. Diffusion datasets with an SNR higher than mean SNR minus 2.5 SDs at their site were 

included. The degree of within-subject alignment between T1- and diffusion-weighted images was 

evaluated by calculating the spatial correlation between the T1-weighted image–derived WM tissue 

probability map and the diffusion-weighted image–derived GFA map. Higher spatial correlation 

indicated greater spatial alignment between T1- and diffusion-weighted images. In addition, because 

of the relatively long scan time of DSI, in-scanner head motion would inevitably cause signal dropout 

in diffusion-weighted images, particularly in those with high b values. For this reason, all participants 

lay on the MRI table with the head packed with expandable foam cushions to restrict head movement. 
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All acquired DSI datasets (5,712 images per participant) were examined by comparing the signal in 

the central square of each image with the predicted signal attenuation. Signal deviation from the 

predicted distribution was considered signal loss. Data with more than 60 images of signal dropout per 

participant (1% of the total diffusion-weighted images) were discarded. 

S2.3 Image Feature Processing 

In the image feature processing for GM, voxel-based morphometry and surface-based 

morphometry were used to analyze the 3D MPRAGE data. The image analyses were performed using 

an extension of the Statistical Parametric Mapping package (SPM12; Wellcome Department of 

Imaging Neuroscience, London, UK; www.fil.ion.ucl.ac.uk/spm) (8) called CAT12. For voxel-based 

morphometry analysis, the structural imaging data were preprocessed using the default settings of the 

CAT12 toolbox, including corrections for bias-field inhomogeneity and segmentation into GM, WM, 

and cerebrospinal fluid, followed by spatial normalization to the ICBM template in MNI space (voxel 

size: 1.5 × 1.5 × 1.5  mm3) with SHOOT registration (9). The LONI probabilistic brain atlas, containing 

56 ROIs, was used as a reference of volumetric tissue compartments (10) to estimate the volume of 

each ROI. For surface-based morphometry analysis of cortical thickness, we applied the automated 

surface-preprocessing algorithms included in the CAT12 toolbox that enable the estimation of cortical 

thickness of the left and right hemispheres by using the projection-based thickness method (11). Here, 

cortical thickness was determined by estimating the WM distance based on tissue segmentation. We 

used WM distance and a derived neighbor relationship to project local maxima (which is equal to the 
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cortical thickness) onto other GM voxels. This approach included partial volume correction and 

correction for sulcal blurring and sulcal asymmetries. The Desikan–Killiany cortical atlas containing 

68 cortical ROIs was employed to sample cortical features (12). In this manner, 56 volumetric features 

and 68 cortical thickness features were obtained to estimate GM-based brain age. 

In the image processing for WM, we used an in-house algorithm called tract-based automatic 

analysis (13). First, the diffusion indices, including GFA and MD, derived from the diffusion MRI 

dataset were computed using the regularization version of the framework of mean apparent propagator 

(MAP)-MRI (14, 15). The signal in 3D diffusion-encoding space was fitted with a series expansion of 

Hermite basis functions, which describe diffusion in various microstructural geometries (16). The 

zero-order term in the expansion series contained the diffusion tensor that characterizes the Gaussian 

displacement distribution. Higher-order terms in the expansion series were the orthogonal corrections 

to the Gaussian approximation, and these were used for reconstructing the average propagator. The 

MD in each voxel was determined by calculating the mean of the 3 eigenvalues of the diffusion tensor 

(17, 18). We quantified GFA as the SD of the orientation distribution function divided by the root mean 

square of the orientation distribution function (19). To extract effective features of WM, the diffusion 

indices were sampled according to the spatial coordinates of 45 predefined major fiber tract bundles 

over the whole brain, which were constructed in the DSI template NTU-DSI-122 (20) through 

deterministic streamline-based tractography with multiple ROIs defined in the automated anatomical 

labeling atlas (21). In practice, the sampling coordinates were transformed from NTU-DSI-122 into 
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individual DSI datasets with the corresponding deformation maps. The deformation maps were 

obtained through 2-step registration, which included anatomical information provided by the T1-

weighted images (22) and microstructural information provided by the DSI datasets (23). The sampling 

coordinates were aligned with the proceeding direction of each fiber tract bundle, and diffusion indices 

were sampled in the native space along the sampling coordinates normalized and divided into 100 

steps. Having sampled the diffusion indices, we averaged the indices across 100 steps along each tract 

bundle. Finally, 45 GFA features and 45 MD features were obtained for estimating WM-based brain 

age.  
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S3 Results of Brain Age Models and Normalized Predicted Age Difference 

Estimation 

We performed 10-fold cross-validation on the training set and the brain age models showed a 

strong linear correlation and low MAE between chronological age and predicted age based on GM 

features (rho = 0.956, MAE = 4.34), WM features (rho = 0.944, MAE = 4.76), and multimodal features 

(rho = 0.963, MAE = 3.99). The models also accurately predicted the brain age in the independent test 

set on the basis of GM features (rho = 0.943, MAE = 4.69), WM features (rho = 0.967, MAE = 3.95), 

and multimodal features (rho = 0.969, MAE = 3.97). Supplementary Figure 1 displays scatter plots of 

the predicted brain age in both the training and test sets.  

After the brain age models were developed, normalization of predicted age difference (PAD) was 

conducted to minimize age-related bias (Supplementary Table 1). The results indicated that the 

approach was effective. For instance, the original PAD derived from the multimodal brain age model 

had a significant negative correlation with chronological age in both the training set (rho = −0.287, p 

< 0.001) and test set (rho = −0.308, p = 0.009), as displayed in Figures 1G and 1H, repsectively. After 

the predicted age was transformed into the normalized PAD (nPAD), the index did not show significant 

statistical bias with respect to chronological age in the training and test sets (rho = 0.013, p = 0.781, 

and rho = 0.028, p = 0.819, respectively), suggesting that the brain age indices were free of bias and 

could be used for further analyses. 
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Models Sets Correlation b/w PAD and age Correlation b/w nPAD and age 

GM-based 

training set 
rho = -0.342 

p < 0.001 

rho = 0.026 

p = 0.575 

test set 
rho = -0.365 

p = 0.002 

rho = -0.031 

p = 0.800 

WM-based 

training set 
rho = -0.358 

p < 0.001  

rho = -0.016 

p = 0.726 

test set 
rho = -0.397 

p = 0.007 

rho = 0.054 

p = 0.656 

Multimodal-based 

training set 
rho = -0.287 

p < 0.001 

rho = 0.013 

p = 0.781 

test set 
rho = -0.308 

p = 0.009 

rho = 0.028 

p = 0.819 

Supplementary table 1. The linear correlation of PAD and nPAD with chronological age in the training 

and test sets. 
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Supplementary Figure 1. The scatter plots of chronological age against the predicted age derived from 

the brain age models in either the training set (A, C, E) or test set (B, D, F). The scatter plots of 

chronological age against the predicted age difference (PAD) are shown in the training set (G) and test 
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set (H), and the scatter plots of chronological age against the normalized PAD are shown in the training 

set (I) and test set (J). Note that normalized PAD does not have age-related bias. 
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