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Abstract

The Covid-19 outbreak has led countries to implement unprecedented
measures to limit virus spread within the population, impacting in partic-
ular the organization of workplaces, universities, schools. Yet, the power
and limitations of such strategies remain unquantified. Here, we develop a
simulation study to analyze Covid-19 transmission on three real-life con-
tact networks from a workplace, a primary school and a high school in
France, gathered by SocioPatterns, and assess the impact of organization
strategies. Investigated strategies include rotations, which consist in par-
titioning the individuals into two groups, with a presence switch between
groups on a weekly or daily frequency ; and On-Off, which consist in
keeping everybody together but alternating presence and telecommuting
periods. Assuming baseline non pharmaceutical interventions and reac-
tive isolation of symptomatic cases, all strategies where assessed based
on a selection of criteria (outbreak probability, outbreak size, and delay
before outbreak) and for reproduction numbers ranging 0.5-2. Our results
are clear: whatever the network used, the ranking of the strategies based
on their ability to mitigate epidemic propagation in the network from a
first index case is always the same, namely, from best to worst: Rotation
week-by-week, Rotation day-by-day, On-Off week-by-week, and On-Off
day-by-day. The advantage of a weekly alternation over a daily alterna-
tion, despite significant, is very slight: for the attack rate when there is an
outbreak in a high school for example, the numbers for On-Off are 16.8 vs.
18.4 (out of 327 individuals), a 9% improvement. Our results suggest that
when the effective reproduction number R within the network is less than
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1.34, therefore assuming concurrent implementation of social distancing
and other non pharmaceutical interventions, all four strategies efficiently
control the outbreak by decreasing effective R to less than 1; the choice
between them should therefore be guided by considerations of practical
feasibility.

1 Introduction

While the world awaits a vaccine or an effective cure, the Covid-19 pandemics
must be contained by the deployment of suitable Non-Pharmaceutical Interven-
tions (NPIs), so as not to overwhelm the healthcare systems. So far, besides
mask wearing and hygiene, governments had largely resorted to generalized lock-
down orders, which have severe adverse effects on economy and society, as well as
to milder restrictions such as partial school closures, curfews, and restrictions
to leisure activities such as gyms and restaurants. Such NPIs and organiza-
tional adaptations have to balance the competing goals of limiting contagion
and maintaining an adequate level of social and economic activity. Assess-
ing the performance of containment and mitigation strategies with respect to
the propagation of the epidemic is therefore critical to making the right policy
choices and has attracted an immense research effort from all disciplines, from
medical science to economics, engineering, and social, computer and statistical
sciences [19] [24] [10] [6} [8][14].

Within this broad policy and research question, our work concentrates on
the role of telecommuting and how to effectively include telecommuting in the
schedules of schools, workplaces or other organizations. Our purpose is to assess
and compare several telecommuting strategies in workplaces and schools. This
comparison is obtained from a fine-grained simulation study on actual contact
networks for populations of few hundreds individuals in these environments.

Coming up with a precise assessment of the effects on the epidemic of these
strategies indeed requires a precise understanding of the spreading of contagion
in different environments [32] [30]. To achieve this, two main ingredients are
needed: (1) fine-grained information about contacts between individuals in dif-
ferent environments; and (2) the specific behavior of SARS-Cov2 transmission.
The latter information includes the probability of contamination by individuals
in different conditions, such as asymptomatic or symptomatic, as well as the
possible presence of “super-spreaders” |23]. Equipped with this information,
one can then simulate the behavior of the coronavirus epidemic in the different
work environments and evaluate the effectiveness of various strategies.

Most previous work on computational simulation of epidemics has focused
on synthetically generated populations, sometimes at very large scale (e.g. a
whole country [7]), possibly because of the limited availability of detailed data
about human contacts in the relevant environments. Here instead, we build
our simulations on (publicly available) empirical data collected in schools and
workplaces [18]. Simulation on small-scale actual networks allows to visualize
the detailed evolution of the epidemics in these environments (see Figure |
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and, leveraging this understanding, yields explicit recommendations about the
effectiveness of the strategies.

Figure 1: Contact graphs. (a-c) Three contact networks on their busiest day: (a) on day 2,
primary school with 242 students, (b) on day 1, workplace with 217 workers, (c) on day 2, high
school with 327 students. Node colors correspond to known groups (classes or department).
We see that the majority of contacts happen within the same groups. (d) A synthetic random
graph with 9 groups selected randomly. For better visualization, in the four graphs only edges
representing at least 3 contacts are drawn.

2 Results

Using detailed data describing between-individual interaction proximity in pri-
mary school, high school or in a workplace, we aim at measuring how the virus
spreads within these specific settings and assess which kind of hybrid telecom-
muting is the most likely to prevent its dissemination.

We explored three contact networks representing close contacts in a primary
school, a high school, and a workplace in France (Figure over 2 to 10 days. We
develop a model (Figure for SARS-Cov2 transmission over a contact networks,
that captures the virus clinical and transmissibility characteristics, including
super-spreading events, a significant proportion of asymptomatic individuals,
etc.. In order to characterize SARS-Cov2 transmission level in simulations, we
defined different metrics: the probability that an outbreak occurs, the delay
until an outbreak starts, and the expected total number of infected patients
in case of outbreak. As expected, the simulation of virus importation through
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Figure 2: The infection model for SARS-Cov2. The incubation (Exposed, green) lasts on
average 3.7 days and is followed by an infectious period (Infectious, orange) of mean 9.5
days. For symptomatic patients, symptoms appear 1.5 days after the beginning of infectious-
ness on average, and we assume that those patients self-isolate after one day of symptoms.
Asymptomatic individuals do not isolate.

an index case in the network with no measure implemented leads to a high
probability of outbreak (27%, in the baseline case for a high school) and a large
number absolute of contagions in that case (38 students on average, in a school
of size 327), no matter the studied network.

Five containment strategies were implemented and assessed here. Two ” On-
Off” strategies which consist in allowing the whole group of individuals (pupils
/ workers) at the premises (1) every other day, or (2) every other week. We also
consider two "rotation” strategies which consists in allowing half the individuals
on (1) odd days, while the other half is allowed on even days, or (2) odd weeks,
while the other is allowed on even weeks. Finally, we additionally consider the
case of full-time telecommuting as a benchmark. In all these scenarios, we allow
the individuals to maintain a small fraction of their original interactions even
while telecommuting (thereby modeling the case of imperfect compliance by the
individuals),

Our results are clear: no matter which contact network they are tested on, no
matter the underlying comparison metric (probability of outbreak, the length of
time until outbreak, or the expected total number of infected patients when there
is an outbreak), the rankings of the four strategies are consistent (see Figure:
the rotation strategies significantly dominate the On-Off strategies which in
turns significantly dominate the absence of any policy. As expected, the full-
time telecommuting (with persistent contacts only) dominates all strategies.

To provide a precise explanation of these findings, we analyse the impact of
strategies on the effective reproductive number in the different graphs. If the
effective reproductive number is Ry in the absence of strategy (induced by a
certain choice of model parameters), what is the actual effective reproductive
number Ryfective (for the same choice of parameters) if some strategy is in
place? The answer is given in the of Fig. In this figure and in the rest of
this section, we present the results for the contact graph of a high school only
(the “middle” case between primary school and workplace, in structural terms).
The results for a primary school and for a workplace are qualitatively the same,
and can be found in the SI.

We first observe that if Ry is lower than 1, then as expected the epidemics
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Figure 3: Comparison of the effects on SARS-Cov2 outbreak of containment strategies im-
plemented in the contact graph of a high school when Ry = 1.25. The three panels respectively
correspond to three relevant metrics: (top) the probability that at least 5 people are infected
besides patient 0 (which we define as ’Outbreak’ event); (middle) the average number of days
until 5 people are infected besides patient 0; (bottom) the average total number of people
infected when there is an outbreak. The ranking of the strategies by effectiveness is the same
irrespective of the metric. In order from worst to best: None (no strategy), daily On-Off,
weekly On-Off, daily Rotation, weekly Rotation, Full telecommuting). Observe that weekly
and daily alternations are very similar in terms of the probability of outbreak and of duration
until outbreak, because those measures depend on the beginning of the epidemic only; but
the total number of infected people presented on the bottom panel shows that in the long run
weekly alternation is a little bit better than daily alternation, both for On-Off (16.8 vs 18.4)
and for Rotation (13.0 vs. 13.4).
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Figure 4: Impact of the strategies for the high school contact graph. The z-coordinate gives
the value of the baseline reproduction number Ry (mean number of persons infected by index
case). For each strategy the y-coordinate gives the mean value of the effective reproduction
number as a result of using the strategy. Thus, for our baseline value Ryp = 1.25 (dotted
vertical line), doing nothing leads to Re = 1.25 > 1, whereas, as long as Ry < 1.34, all
strategies lead to Re < 1. For each curve, the shaded areas correspond to 95% confidence
intervals on the estimate of Ro (as a function of p: horizontal error bar) and on the estimate
of Re, as a function of p and of the strategy: vertical error bar.
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Contact networks | nb days | nodes | avg. degree | avg. contacts/pers./day
Primary school 2 242 68.7 519.2
High school 5 327 35.6 230.6
‘Workplace 10 217 39.4 72.1
Synthetic graph 1 327 35.6 230.6

Table 1: Contact graphs characteristics. The three studied Sociopatterns contact networks
and the synthetic random graph are detailed in the table. Averaging over the days on which the
data was gathered, the high school, in which data was gathered over 5 school days, comprised
327 individuals (students and teachers), each of which was in contact with 35 persons on
average, and the student had 230 20-second contacts per day on average. The primary school
has the highest number of contacts per person in a day, followed by the high school, and
finally by the workplace.

does not take off and there is no need for any containment strategy. On the
contrary, if the baseline reproductive number Ry is too high (larger than Ry =
1.6), then none of those strategies, except from the full-time telecommuting,
suffices to prevent the epidemic spread, which will result in a large number of
infections, irrespective of the chosen strategy. For R, that are between 1 and
1.35, we show that all four of these strategies are satisfactory and manage to
curb the epidemic. Moreover, the ranking of the strategies described above is
consistent with the effectiveness of the strategies regarding the reduction of the
effective reproductive number. Namely, the rotation strategies outperform the
On-Off strategies, and the full-time telecommuting outperforms the rotation
strategies.

The robustness of our findings is confirmed by extensive sensitivity analysis
that we performed both on the graph structures and on the parameters of the
epidemics, such as the dispersion of transmission probability and the fraction of
asymptomatic patients.

3 Materials and Methods

Key elements in constructing our simulations are the choice of the contact net-
works and the definition of the disease transmission model, which we describe
below.

Contact networks. We use traces for three different places, that are avail-
able from the SocioPatterns project (http://www.sociopatterns.org). The
project collected longitudinal data on physical proximity and face-to-face con-
tacts between individuals in several real-world environments.

1. A primary school (see [16} [29]) where 242 persons participated in 2009
over 2 days (coverage of 96% among children and 100% among teachers).

2. A workplace Institut de Veille Sanitaire (see [18]) where 232 employees
participated in 2015 over two weeks (10 working days, coverage around
70% of the employees according to a previous deployment [17]).
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3. A high school (see [13]) where 329 individuals (students) participated in
2013 over 5 days (coverage of 86% of the students in the 9 participating
classes).

For each day on which data was gathered we extract a graph aggregating the
data for that day: a node corresponds to an individual, an edge corresponds
to a face to face contact within 1.5 meters within a 20 seconds time interval
(interactions were measured using active radio-frequency identification devices
(RFID)), and the weight of the edge is the number of such short contacts during
the day.

For comparison, we also generate a synthetic random graph, calibrated so
that its main parameters (total number of nodes, of edges, and of contacts)
match those of the high school contact network: more precisely, each edge is
generated by selecting uniformly at random two nodes with one associated con-
tact (rejecting loops and already generated pairs) and each of the remaining
contacts is associated to an edge selected uniformly at random among the previ-
ously generated edges. Tablelists the main parameters of the graphs obtained
by averaging over all days on which data was gathered.

Figuredisplays the three contact graphs on their busiest day, together with
the synthetic random graph obtained. The node colors correspond to groups
(classes or work departments) for the real-world contact graphs, and are chosen
uniformly at random among 9 colors for the synthetic random graph.

SARS-Cov2 transmission model. We model the introduction of the virus
in a network by randomly sampling an index case uniformly among the nodes
to determine the patient initially infected. We assume [I9] a natural history
derivating from the classical SEIR transmission model (see Figure: initially
individuals are susceptible (S); once contaminated, having been ezposed (E),
they go through an incubation period, after which they become infectious (I)
after which they are assumed to recover (R) and develop immunity. An individ-
ual may be symptomatic or asymptomatic. In the former case, before developing
symptoms she goes through a pre-symptomatic phase that is already infectious.
We assume that transmission between an infectious and a susceptible individ-
ual happens through proximity contacts as the ones recorded in the contact
network. To every 20-second contact is associated an independent small risk
of transmission, so that the transmission risk increases with the duration of
contact. The time step of the simulation is one day, which is consistent with
the time scale of the SEIR model: if the risk for one contact equals p and if an
infectious person is in contact with a susceptible person for 15 minutes during
the day, then the probability of transmission during that day equals 1—(1—p)3,
which for p = 0.001 approximates 4.4%. The rate of instantaneous transmission
from infectious to susceptible individuals is calibrated so that, without mitiga-
tion strategies, the expected number R of individuals infected by the first case
equals 1.25. See the trees of Figure |5|for examples of transmission scenarios
over time, featured as tree structures where each node points to the nodes it
has infected.
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Figure 5: Epidemic propagation in the contact graph of a highschool, under different strate-
gies: each panel corresponds to an example simulation for a given strategy; strategies are
sorted as by effectiveness (according to our three metrics), from none (business as usual) to
full telecommuting. In each panel, the horizontal axis corresponds to time (in days), and
each white or gray column corresponds to one week. The vertical axis shows the prevalence
(percentage of infectious persons in the workplace): its evolution is represented by the grey
curves in the background. For each strategy, the epidemic propagation over the contact graph
is shown as a tree, where each node represents an infected person and points to the persons
it infects. Nodes corresponding to symptomatic (resp. asymptomatic) persons are circled in
blue (resp. red). Similarly a blue (resp. red) arrow corresponds to a contamination by a
symptomatic (resp. an asymptomatic) person. The thickness of arrows indicates the super-
spreading factor. The node color corresponds to the group of the person (class in the case of
schools). All the propagation trees are generated using the same realizations of the proba-
bilistic events, so that the differences between the trees are not artifacts of their randomness,
but solely depend on the different strategies in place.
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The model parameters are summarized in Table The duration of the in-
cubation period follows a Gamma distribution with mean 5.2 days and shape
5 [22|112]. The pre-symptomatic period has length 1 day with probability 50%
and 2 days with probability 50%, consistent with published studies [9] (Table
S1 p.20). The remaining duration of infectiousness follows a gamma distribu-
tion with mean 8 [5] and shape 10. The fraction of asymptomatic individuals
equals 40%, within the range of [26] [25]. Symptomatic individuals are assumed
to self-isolate after one day of symptoms and therefore do not cause further con-
taminations; on the other hand, asymptomatic individuals stay in the system
and potentially transmit the virus throughout their infectious period.

In the SEIR model we do not include a finer modeling of the progress of the
disease, such as hospitalization or death, nor the possibility that immunity is
lost after some time. The reason is that, contrary to much recent work like [19}[§]
that focused on nation-wide interventions on a time scale up to months, we are
interested in modeling the early stages of an epidemic outbreak in a relatively
small organization, rather than its long-term evolution at the nation scale.

Persistent contacts. All simulations are initialized with an index case as-
sumed to have been contaminated by the outside world. We focus on contam-
ination of people in the contact graph. Since our proposed strategies act on
the school or work social networks and aims at limiting transmission clusters
occurring in these specific locations, we do not model contagion of/from people
who are not in the contact network. This choice is consistent with studies with
similar focus [10].

Nevertheless, contacts with friends or colleagues who belong to the social net-
work may also happen outside the direct school/work environment. To model
such interactions, we assume that there exists an external graph Gey of per-
sistent contacts, which is obtained from the contact network by applying a
dampening factor of 25% to all contacts. This quantity stems from imagining a
scenario in which someone working from home would invite colleagues or fellow
students to come and interact for roughly two hours during the day instead of
eight hours (hence the 25%); and the persons invited would be selected from
among their usual school/work contacts.

Superspreaders. In the Covid-19 epidemic, the number of persons contam-
inated by an infectious person has a large variance |23} |4} 11} [1} 27| [3]: many
people contaminate nobody, but a small fraction of the people (termed ’su-
perspreaders’) are responsible for many contaminations. Such superspreading
events may be due to several factors including a higher viral load or infec-
tiousness of the superspreader, a particularly high number of contacts, and
whether those contacts occur in a confined space with poor ventilation [21].
Here, we model superspreading as follows: for each day and for each contagious
person, a random superspreading factor psuper is chosen independently, where
E[psuper] = 1. Then, on that day, for each short contact with a susceptible
person, there is contamination with probability popsuper if the infectious person

10
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is symptomatic and popsuper/2 if the infectious person is asymptomatic, where
po is a parameter of the model.

Calibration of the contamination probability. The contamination pa-
rameter pg is calibrated so that the baseline reproduction number Ry, defined
as the average number of persons infected by the index case, equals 1.25, a
value chosen to implicitly take into account implementation of barrier measures
including social distancing, mask usage or hand washing . The idea of infer-
ring po from the model is inspired by [31]. We find that py = 0.001 in the
primary school contact graph, py = 0.003 in the high school contact graph, and
po = 0.008 in the workplace contact graph. Several values of Ry were investi-
gated, ranging from 0.5 to 2, corresponding (for high schools) to p ranging from
0.0012 to 0.0084.

Strategies. Several non-pharmaceutical strategies were used or recommended
across the world depending on activity type (school, workplace, university) or
country. Here we concentrate on strategies at the level of the work/school envi-
ronment which focuses on presence-sheet organization and promotion of hybrid
telecommuting with partial use or partial closure of school or work environ-
ments. First, we consider on-off strategies, in which alternatively, either 100%
of employees or students do face-to-face work, or 100% do telecommuting (dis-
tance learning). Such a strategy has, for example, been recommended as a way
to exit the lockdown by alternating 4 days on and 10 days off [20]. (Venezuela
had a temporary exit strategy in which businesses were allowed to reopen on
a week-on-week-off basisEI) Second, we consider rotation strategies, in which
50% of employees or students do face-to-face while the other 50% do distance
learning, periodically switching between the two groups. (Organizing work with
rotating shifts was one of the actions recommended by the CDCP|) We im-
plement both types of strategies with different alternations: daily alternation
(even day, odd day, not counting weekends) and weekly alternation (even week,
odd week). Finally, we consider a full telecommuting strategy. This results
in five strategies, which we compare in their ability to reduce the likelihood and
intensity of epidemic outbreaks.

Evaluation criteria. More precisely, strategies are evaluated based on three
criteria: the probability of epidemic outbreak occurs, defined as the percentage
of simulations for which at least 5 persons were infected besides the index case;
the velocity of outbreak (number of days until five persons are infected, given
there is an outbreak); and the cumulative number of infections until extinction
of the epidemics, given there is an outbreak.

1As reported in https://venezuelanalysis.com/news/14924
2See https://wuw.cdc.gov/coronavirus/2019-ncov/downloads/php/
CDC-Activities-Initiatives-for-COVID-19-Response.pdf
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4 Discussion

Summary. By simulating SARS-Cov2 transmission over a diversity of contact
networks, we show how (hybrid) telecommuting reduces the virus transmission
in schools and workplaces. We focused on three types of strategies : On-Off,
Rotation, and Full telecommuting. Our results highlight that, whatever the con-
tact network, these measures significantly reduce the risk of outbreak, lengthen
the time until the outbreak occurs, and reduce the attack rate. This conclusion
holds even though we assume some persistent contacts between individuals and
a fraction of their workplace contacts, when they are not at the work location
(for example, colleagues meeting outside work). The rankings of the strate-
gies are consistent (Figure [3): Full telecommuting (with persistent contacts
only) significantly dominates the Rotation strategies which significantly domi-
nate the On-Off strategies which in turns significantly dominate the absence of
any policy.

These results can be intuitively explained. To differentiate between the types
of strategies, observe that Rotation strategies induce fewer contacts overall than
On-Off strategies, because they involve the presence of smaller groups and thus
(we could say that the number of contacts of an individual grows at least pro-
portionally with the number of colleagues that are present at the same time).
To make this insight more precise, observe that the curves of Figureplotting
R, as a function of Ry are almost linear. Indeed, a back-of-the-envelope calcula-
tion suggests that the strategies reduce the average number of contacts, for each
individual over a 2-week period, by the following ratios: On-off 63%; Rotation
44%; Full Telecommuting 26%. These ratios do not suffice to determine the
ranking, because of nonlinear effects: a person with 500 contacts with 500 dif-
ferent people will infect more people on average (namely, 500p if the probability
of transmission for one contact is p) than another person, also with 500 contacts,
but all with the same person (namely, 1 — (1 — p)®°° < 500p). Non-linearity is
a reason to recommend a reduction in degree, i.e., concentrating one’s contacts
over a small number of individuals: if one only has 3 neighbors, then, even if
there are many contacts with them, at most 3 persons will be infected. This
argument is even more relevant to cope with potential superspreaders, whose
presence is also a source of nonlinearity. Note that the advantage of rotation
strategies has also been argued in papers like [10} 2] based on mathematical
arguments that use deterministic compartmental models.

To differentiate between weekly and daily alternations, observe that a weekly
alternation is naturally in phase with the natural duration of the incubation
period and inter-generation time of the disease, therefore effectively breaking
the contact chains. Consistently, Figure (as well as Figures [8| and @ show
that weekly alternations are better than daily alternations. Indeed, an infected
person becomes contagious after 3.7 days on average, and, if he is infected during
his five days of in-person work/school, he is therefore likely to be telecommuting
during its period of contagiousness. This intuition has already been discussed
since [10] and has been elaborated through various mathematical and simulation
arguments [2| [I4]. The effect is not very visible for short-term events such as
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the probability of an outbreak (Figure[4) but is enough to reduce the attack
rate somewhat, since the latter accumulates over a longer time.

An illustration of the simulation of the strategies can be viewed on Figure
The propagation trees we observe (see also Figures are likely to
occur in reality when an index case is infected inside a working place or school.
We observe that transmissions often occur between nodes of the same color,
i.e. inside groups (classes in school and departments at work), reflecting the
higher density of contacts within groups (see Figure . We also observe that
a large fraction of the transmissions are due to asymptomatic cases. This is
expected as asymptomatic individuals do not isolate. The superspreaders are
easy to identify and account for many transmissions as well. In Figure [5] a
superspreader effect in week 2 seem to be the origin of a large propagation. We
can visualize how the various strategies help mitigate that effect.

Implementation and choice in practice Of course, the choice of strategies
also crucially depends on other criteria: feasibility in practice, ease of imple-
mentation, etc. For example, even though hybrid teachinﬂ has been used in
many universities in France since the beginning of the epidemic, it may be more
convenient for an instructor to teach on and off to the full group either online,
or onsite. On the other hand, in sectors like manufacturing a minimum of work-
ers on site may be essential to maintain production, and then rotation will be
the most appealing strategy. We note that the main ingredient differentiating
Rotation from On-Off is the breaking of the groups (except for the persistent
contacts described above). A strategy in a school that would, for example,
bring in all 9th and 11th graders on even weeks and all 10th and 12th graders
on odd weeks would resemble On-Off more than Rotation, because it would not
break the groups of students who are in contact. To summarize: (1) when Ry
is moderately high, all types of hybrid telecommuting strategies reduce it to
less than 1, and the choice between them should primarily be done on the basis
of practical considerations. (2) To help prevent dissemination of the disease,
it is preferable to alternate over longer periods (weekly rather than daily), but
the difference is so slight that practical, psychological, and other considerations
should determine the alternation time.

Validity of the model and robustness of the results. Because a lot of
uncertainty exists regarding SARS-Cov2 epidemiology and natural history, we
estimated from our simulations some of the outbreak key characteristics to assess
their realism.

Are our values for the baseline probability of transmission comparable to
the literature? There is a known estimate of p = 0.003 for the transmis-
sion of influenza from an infectious to a susceptible individual in 20 seconds
of contact [28], so this is of the same order of magnitude as the values p =

3In hybrid teaching, teachers have to manage distance-teaching for half of a group and
onsite-teaching for the other half.
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0.001,0.003,0.008 which we calibrated to get Ry = 1.25 for the three graphs we
studied.

Is the dispersion of supercluster events in our model distributed like in the
literature? It has been suggested that about 80% of transmission events are
caused by about 10% of the total cases (see [1I] for example). We do not quite
reach that level of dispersion, but in our baseline model for high schools, we see
that there is already much dispersion: 20% of the choices for the index case lead
to 68% of the infections at the next generation.

Is the generation time of our model consistent with the literature? The
generation time is the average number of days until the persons infected by
the index case are infected. In our baseline model, we have a generation time
of 7.5 days. This is a weighted average of two types of events: contagions
by asymptomatic persons, whose average equals 9.5 days, and contagions by
symptomatic persons, whose average equals 5.5 days, which is consistent with
an estimate of 5.2 for the Singapore cluster [15] (and a little higher than for the
Tianjin cluster).

Are our results for R, (Figure[4) comparable to [20]7 In our model, if we
set Ry ~ 1.15, making people go to work 7 days a week yields Ry = 1.48; we
then obtain that for full telecommuting R;, = R. ~ 0.53, and simulating the “4
days on, 10 days off” On-Off strategy from [20] yields R, ~ 0.82. Thus, this is
consistent with the findings from [20]: for Ry = 1.5 and Ry = 0.6 they find
that R. = 0.86. We also note that from the above calculation, our baseline
intensity set at 25% for persistent contacts happens to yield a ratio Rw/RL
that is almost the same as in [20], further confirming our choice of 25%.

Is the baseline value Ry = 1.25 of our model realistic? This corresponds to
estimates in France at the date of October 15, 2()2 This is much lower than the
estimates from a few months earlier because of non pharmaceutical interventions
such as frequent hand hygiene, generalization of masks and increase of distances
between individuals.

Sensitivity with respect to Ry were carried out investigating a range of values
between 0 and 2.5. Higher Ry values led to higher risks of outbreaks and bigger
outbreak sizes (reaching 142 for Ry = 2), but the investigated strategies always
reduced the global risk compared with "no strategy”. As observed on Figure |4}
we show that for Ry < 1.34, all investigated strategies work at reducing R to
below 1.

In addition, a series of sensitivity analyses were run to assess to which extent
our results are sensitive to these assumptions.

For simplicity, in the main text we only presented our results for the high
school contact graph: the corresponding results for the other graphs are pre-
sented in Figures @ and Sensitivity analyses were carried out to assess
the robustness of our results with respect to models assumptions and parame-
ter values: they are presented in Figures |§| through and commented in the
accompanying captions.

4The weekly report of Santé Publique France at that date estimated for the effective re-
production number to be 1.35 or 1.20 or 1.13, depending on which type of data the estimate
was based on.
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Our sensitivity analysis shows that although the evolution of the epidemic
varies greatly with those parameters, the variations are smooth and the ranking
of the strategies is always respected. We observe that the duration of the epi-
demic until outbreak is the least sensitive measure. The most sensitive measure
is the total number of infected people when there is an outbreak. This quantity
becomes much larger when the contact graph is replaced by a (calibrated) ho-
mogeneous graph (Figure@ when the graph of persistent contacts is replaced
by a (calibrated) complete graph (Figure when Ry increases (Figure; and
when the shape parameter of the transmission probability distribution increases,
due to superspreaders@.

Limitations of our study Because we aim at modelling transmission us-
ing rather simple assumptions, the results presented here should be interpreted
in the light of the following assumptions. First, we explored empirical con-
tact graphs that were built from publicly available data collection in just three
schools and workplaces. Even though that is too small to be representative
of all schools and workplaces, we believe that the key characteristics of those
networks (such as their community structure and their degree distribution) are
typical of the social groups under study. In addition, despite the significant
differences between the three empirical graphs, our results are consistent across
all of them, suggesting their broad relevance. Furthermore, our qualitative con-
clusions also extend to synthetic random graphs as described in Materials and
Methods. However, the random graph produces results that are quantitatively
rather different from the original graph that has been used to tune its parameters
(see Figure@): this difference cautions against deriving quantitative predictions
from random models.

Second, the three investigated graphs themselves are small. However, much
of our study is focused on the emergence of an outbreak from a single index
case, and for that, whether the graph has 100 or 10000 nodes is not important.

Third, we only consider virus transmission within the contact network from a
single initial index case, neglecting transmissions potentially occurring through
other external contacts, which could for instance include family members or ex-
ternal friends. At high community circulation level of the virus, individuals are
also exposed to the virus from other sources than the school or work place, this
chance being potentially increased over telecommuting periods. Because our ob-
jective was not to provide prediction about the expected prevalence in schools
or workplaces but rather to evaluate the network-associated virus dissemination
risk, we focused on the quantification of this risk following a unique introduc-
tion of the virus by a network member. Acquisition from the community was
therefore only considered for the index case. Nevertheless, to more realistically
mimic contact patterns in a situation where a full lockdown is not implemented,
we allowed for the telecommuting individuals to maintain a proportion of their
contacts with colleagues or friends. This could depict a situation where compli-
ance with telecommuting orders is low. In a case of a strict lockdown, during
which individuals have also restricted contacts over their telecommuting periods,
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they are not able to visit colleagues or school friends, so there are no persistent
contacts, and the situation depicted here overestimates the risk of outbreak.
More precisely, consider the top left panel of Figure When a strict lock-
down causes removal of all persistent contacts (that situation is obtained in the
simulation by multiplying the contact graph by a factor of 0%), the outbreak
probability drops from 27% to 20%.

Fourth, we leave open for further work the question of incorporating the
possibility that some people are more fragile than others, hence more likely to
get infected when put in contact with an infectious individual.

Fifth, the implementation of the proposed strategies could be in practice
different from what we assume in our analysis. Throughout our simulations,
Rotation is significantly better than On-Off. However, we always assume that
in the rotation strategy, individuals are randomly partitioned into two groups.
It is likely that, in reality, people would probably try to be in the same group
as the colleagues with whom they interact the most. Such a partition would go
against the advantage of Rotation over On-Off.

Finally, consider the role of asymptomatic transmissions. Considering the
transmission trees on Figures and one notes that many of the trans-
missions occur from asymptomatic cases. Indeed, in our simulations, for the
high school contact network 56% of transmissions on average come from asymp-
tomatic individuals. Compared to symptomatic individuals, asymptomatic in-
dividuals are less infectious but do not self-isolate, so they have a reduced rate
of transmission but over a longer period of time. This assumption is consis-
tent with current recommendations in school and workplaces where individuals
are asked to stay at home when they have any suspect symptoms. Imperfect
compliance with isolation recommendations, if mildly symptomatic individuals
maintain social contacts and potentially spread the virus, would result in an
increased risk of outbreak in all settings.

Acknowledgements

We wish to thank Amandine Veber (ModCovid project) for providing interesting
references and contacts, and Simon Cauchemez for an inspiring discussion about
modeling superspreaders.

References

[1] Dillon Adam, Peng Wu, Jessica Wong, Eric Lau, Tim Tsang, Simon Cauchemez, Gabriel
Leung, and Benjamin Cowling. Clustering and superspreading potential of severe
acute respiratory syndrome coronavirus 2 (sars-cov-2) infections in hong kong. Nature
Medicine, 2020.

[2] Uri Alon, Tanya Baron, Yinon Bar-On, Ofer Cornfeld, Ron Milo, Eran Yashiv, and LSE
CfM. COVID-19: Looking for the exit. Technical report, working paper, 2020.

[3] Benjamin M Althouse, Edward A Wenger, Joel C Miller, Samuel V Scarpino, Antoine
Allard, Laurent Hébert-Dufresne, and Hao Hu. Stochasticity and heterogeneity in the
transmission dynamics of SARS-CoV-2. arXiv preprint arXiv:2005.13689, 2020.

16


https://doi.org/10.1101/2020.11.09.20228007
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.11.09.20228007; this version posted November 12, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in
perpetuity.

It is made available under a CC-BY-NC-ND 4.0 International license .

graph of contacts between . . .
sociopattern graph, or Sociopatterns project
Gy people that are at work on .
random graph 11701291113
day d g
graph of contacts between | 1/4 scahng)7 of thf Fraction of outside con-
Gext people that are not both at | average at-work tacts
work graph
vo patient initially infected random uniform null hypothesis
do day of infection of vg random uniform null hypothesis
q probal.)lhty of being symp- 60% 35 to 60% [26][25
tomatic S
probability of transmission “ - )
p during a 20-second contact P 37 PO Psympt *Psuper
mean transmission proba- | chosen such that
po bility Ro=1.25
asymptomatic transmission | 1/2 when asymp- (i3]
Psympt | factor tomatic, 1 otherwise
S}xperspreadmg transmis- mean=1,
Psuper sion factor, for each day .
Gamma(shape=0.1)
and each person
. mean=3.7,
length exposed period Gamma(shape=5) 911221 [12]
l?ngth presymptomatic pe- | mean=1.5, uniformly mean from [3]
riod 1 or 2 days -
. . mean==§,
length symptomatic period Gamma(shape=10) 15]
number of days of symp- 1
toms before isolation

Ro average number of person infected by vg

outbreak

di —do

event that at least 5 persons are infected besides vg
dy the average date of infection of the persons infected by vg
generation interval

Table 2: The first table gives the reference values of the parameters used in our simulations,
with the supporting references. The second table summarizes some notation.

17



https://doi.org/10.1101/2020.11.09.20228007
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.11.09.20228007; this version posted November 12, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in
perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

[4] Qifang Bi, Yongsheng Wu, Shujiang Mei, Chenfei Ye, Xuan Zou, Zhen Zhang, Xiaojian
Liu, Lan Wei, Shaun A Truelove, Tong Zhang, et al. Epidemiology and transmission of
COVID-19 in 391 cases and 1286 of their close contacts in Shenzhen, China: a retrospec-
tive cohort study. The Lancet Infectious Diseases, 2020.

[5] Andrew W. Byrne, David McEvoy, Aine Collins, Kevin Hunt, Miriam Casey, Ann Barber,
Francis Butler, John Griffin, Elizabeth Lane, Conor McAloon, Kirsty O’Brien, Patrick
Wall, Kieran Walsh, and Simon More. Inferred duration of infectious period of SARS-
CoV-2: rapid scoping review and analysis of available evidence for asymptomatic and
symptomatic COVID-19 cases. BMJ Open, 10(8), August 2020.

[6] F. Casella. Can the COVID-19 epidemic be controlled on the basis of daily test reports?
IEEE Control Systems Letters, 5(3):1079-1084, 2021.

[7] Sheryl L. Chang, Nathan Harding, Cameron Zachreson, Oliver M. Cliff, and Mikhail
Prokopenko. Modelling transmission and control of the COVID-19 pandemic in australia,
2020.

[8] Fabio Della Rossa, Davide Salzano, Anna Di Meglio, Francesco De Lellis, Marco Coraggio,
Carmela Calabrese, Agostino Guarino, Ricardo Cardona-Rivera, Pietro De Lellis, Davide
Liuzza, et al. A network model of Italy shows that intermittent regional strategies can
alleviate the COVID-19 epidemic. Nature Communications, 11(1):1-9, 2020.

[9] L. Di Domenico, G. Pullano, C.E. Sabbatini, and et al. Impact of lockdown on COVID-19
epidemic in Ile-de-France and possible exit strategies. BMC Med, 18(240), 2020.

[10] Jeffrey Ely, Andrea Galeotti, and Jakub Steiner. Rotation as contagion mitigation. 2020.

[11] A Endo, S Abbott, AJ Kucharski, and S Funk. Estimating the overdispersion in COVID-
19 transmission using outbreak sizes outside China. Wellcome Open Research, 5(67),
2020. [version 3; peer review: 2 approved).

[12] Seth Flaxman, Swapnil Mishra, Axel Gandy, and et al. Estimating the number of in-
fections and the impact of non-pharmaceutical interventions on covid-19 in 11 european
countries. Imperial College London (30-03-2020).

[13] Julie Fournet and Alain Barrat. Contact patterns among high school students. PLoS
ONE, 9(9):e107878, 09 2014.

[14] Alberto Gandolfi. Planning of school teaching during Covid-19. Physica D: Nonlinear
Phenomena, 415:132753, 2021.

[15] Tapiwa Ganyani, Cécile Kremer, Dongxuan Chen, Andrea Torneri, Christel Faes, Jacco
Wallinga, and Niel Hens. Estimating the generation interval for coronavirus disease
(covid-19) based on symptom onset data, march 2020. Eurosurveillance, 25(17):2000257,
2020.

[16] Valerio Gemmetto, Alain Barrat, and Ciro Cattuto. Mitigation of infectious disease at
school: targeted class closure vs school closure. BMC infectious diseases, 14(1):695,
December 2014.

[17) M. Génois, C. L. Vestergaard, J. Fournet, A. Panisson, I. Bonmarin, and A. Barrat.
Data on face-to-face contacts in an office building suggest a low-cost vaccination strategy
based on community linkers. Network Science, 3:326-347, 9 2015.

[18] Mathieu Génois and Alain Barrat. Can co-location be used as a proxy for face-to-face
contacts? EPJ Data Science, 7(1):11, May 2018.

[19] Giulia Giordano, Franco Blanchini, Raffacle Bruno, Patrizio Colaneri, Alessandro Di Fil-
ippo, Angela Di Matteo, and Marta Colaneri. Modelling the COVID-19 epidemic and
implementation of population-wide interventions in Italy. Nature Medicine, pages 1-6,
2020.

[20] Omer Karin, Yinon M. Bar-On, Tomer Milo, Itay Katzir, Avi Mayo, Yael Korem, Boaz
Dudovich, Eran Yashiv, Amos J. Zehavi, Nadav Davidovich, Ron Milo, and Uri Alon.
Adaptive cyclic exit strategies from lockdown to suppress COVID-19 and allow economic
activity. medRxiv, 2020.

18


https://doi.org/10.1101/2020.11.09.20228007
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.11.09.20228007; this version posted November 12, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in
perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

[21] Kai Kupferschmidt. Why do some covid-19 patients infect many others, whereas most
don’t spread the virus at all. Science, 10, 2020.

[22] Stephen A Lauer, Kyra H Grantz, Qifang Bi, Forrest K Jones, Qulu Zheng, Hannah
Meredith, Andrew S Azman, Nicholas G Reich, and Justin Lessler. The incubation
period of 2019-nCoV from publicly reported confirmed cases: estimation and application.
medRziv, 2020.

[23] Ramanan Laxminarayan, Brian Wahl, Shankar Reddy Dudala, K. Gopal, Chandra Mo-
han, S. Neelima, K. S. Jawahar Reddy, J. Radhakrishnan, and Joseph A. Lewnard.
Epidemiology and transmission dynamics of COVID-19 in two Indian states. Science,
2020.

[24] Anup Malani, Satej Soman, Sam Asher, Paul Novosad, Clement Imbert, Vaidehi Tandel,
Anish Agarwal, Abdullah Alomar, Arnab Sarker, Devavrat Shah, et al. Adaptive con-
trol of COVID-19 outbreaks in india: Local, gradual, and trigger-based exit paths from
lockdown. Technical report, National Bureau of Economic Research, 2020.

[25] Hiroshi Nishiura, Tetsuro Kobayashi, Takeshi Miyama, Ayako Suzuki, Sung-mok Jung,
Katsuma Hayashi, Ryo Kinoshita, Yichi Yang, Baoyin Yuan, Andrei R Akhmetzhanov,
et al. Estimation of the asymptomatic ratio of novel coronavirus infections (covid-19).
International journal of infectious diseases, 94:154, 2020.

[26

Daniel P Oran and Eric J Topol. Prevalence of asymptomatic SARS-CoV-2 infection: A
narrative review. Annals of Internal Medicine, 2020.

[27] Julien Riou and Christian L. Althaus. Pattern of early human-to-human transmission
of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020. Euro-
surveillance, 25(4), 2020.

[28] Marcel Salathé, Maria Kazandjieva, Jung Woo Lee, Philip Levis, Marcus W. Feldman,
and James H. Jones. A high-resolution human contact network for infectious disease
transmission. Proceedings of the National Academy of Sciences, 107(51):22020-22025,
2010.

[29] Juliette Stehlé, Nicolas Voirin, Alain Barrat, Ciro Cattuto, Lorenzo Isella, Jean-Frangois
Pinton, Marco Quaggiotto, Wouter Van den Broeck, Corinne Régis, Bruno Lina, and
Philippe Vanhems. High-resolution measurements of face-to-face contact patterns in a
primary school. PLOS ONE, 6(8):€23176, 08 2011.

[30] Chen Stein-Zamir, Nitza Abramson, Hanna Shoob, Erez Libal, Menachem Bitan, Tanya
Cardash, Refael Cayam, and Ian Miskin. A large COVID-19 outbreak in a high school
10 days after schools’ reopening, israel, may 2020. Eurosurveillance, 25(29), 2020.

[31] L Temime, MP Gustin, A Duval, and et al. A conceptual discussion about RO of SARS-
COV-2 in healthcare settings. Clin Infect Dis., 2020.

[32] Russell M Viner, Simon J Russell, Helen Croker, Jessica Packer, Joseph Ward, Claire
Stansfield, Oliver Mytton, Chris Bonell, and Robert Booy. School closure and manage-
ment practices during coronavirus outbreaks including COVID-19: a rapid systematic
review. The Lancet Child € Adolescent Health, 4(5):397 — 404, 2020.

19


https://doi.org/10.1101/2020.11.09.20228007
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.11.09.20228007; this version posted November 12, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in
perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

A Our results for the other contact networks

The supplementary information has three groups of figures. In the first group,
we present results analogous to the results already given in the main body of the
paper for the high school contact graph, when the contact graph is a primary
school, or a workplace, or a random graph calibrated to resemble the high school
contact graph. In the second group, we do a systematic sensitivity analysis of
all the parameters used in the model. Our observations are presented in the
caption of each figure.

Color coding of measures studied For added readability, in Figures @
and (8] just like in Figure 3} the color of the background encodes the parameter
studied: probability of outbreak in blue, duration until outbreak in green, and
final total number of people infected when there is an outbreak in red.

B Details about the simulations

Finally, here are some details about the program implementing the simulation.

Rounding reals to integers while preserving the mean of the distri-
bution Since the process is discrete, with one discrete step equal to one day,
we need times to be integers. A random variable drawn from a Gamma distri-
bution is a real number, so we need to round it to an integer. To perform that
without changing the mean of the distribution, we used randomized rounding;:
if X = 5.4 for example, then with probability 40% it is rounded to 6 and with
the complementary probability 60% it is rounded to 5, thus the average rounded
value equals 5.4.

Number of executions performed To perform the simulations of the paper,
we proceeded as follows: for each possible index case, for each possible day when
that person gets infected (given that the On-Off and Rotation strategies have a
period of 2 weeks, there are 14 possibilities for the starting day), do 10 random
executions. Thus, for high schools, each quantity is obtained by averaging over
327 x 14 x 20 = 91560 random executions.
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