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Abstract 58 

 59 

People living with human immunodeficiency virus (PLWH) have significantly increased risk for 60 

cardiovascular disease in part due to inflammation and immune dysregulation. Clonal 61 

hematopoiesis of indeterminate potential (CHIP), the age-related acquisition and expansion of 62 

hematopoietic stem cells due to leukemogenic driver mutations, increases risk for both 63 

hematologic malignancy and coronary artery disease (CAD). Since increased inflammation is 64 

hypothesized to be both a cause and consequence of CHIP, we hypothesized that PLWH have a 65 

greater prevalence of CHIP. We searched for CHIP in multi-ethnic cases from the Swiss HIV 66 

Cohort Study (SHCS, n=600) and controls from the Atherosclerosis Risk in the Communities 67 

study (ARIC, n=8,111) from blood DNA-derived exome sequences. We observed that HIV is 68 

associated with increased CHIP prevalence, both in the whole study population and in a subset of 69 

230 cases and 1002 matched controls selected by propensity matching to control for 70 

demographic imbalances (SHCS 7%, ARIC 3%, p=0.005). Additionally, unlike in ARIC, ASXL1 71 

was the most commonly implicated mutated CHIP gene. We propose that CHIP may be one 72 

mechanism through which PLWH are at increased risk for CAD. Larger prospective studies 73 

should evaluate the hypothesis that CHIP contributes to the excess cardiovascular risk in PLWH.  74 
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Introduction  75 

 76 

As current treatments have rendered human immunodeficiency virus (HIV) a chronic 77 

condition, coronary artery disease has emerged as a major source of morbidity in people living 78 

with human immunodeficiency virus (PLWH). Inflammation and immune dysregulation likely 79 

accelerate CAD risk among PLWH.1 Recently, ‘clonal hematopoiesis of indeterminate potential’ 80 

(CHIP), the age-related acquisition and expansion of leukemogenic mutations (primarily in 81 

DNMT3A, TET2, ASXL1, JAK2) in white blood cells, was found to increase risk for both 82 

hematologic malignancy2,3 and CAD4,5 among asymptomatic individuals in the general 83 

population. The proatherogenic mechanisms for CHIP included heightened inflammation.4,6 84 

Given converging mechanisms promoting CAD risk and increased hematologic malignancy risk 85 

among PLWH, we tested the hypothesis that HIV-infected individuals have heightened 86 

prevalence of CHIP. 87 

 88 

Methods 89 

 90 

We identified CHIP in a multi-ethnic sample of 600 PLWH who had available exome 91 

sequences from the Swiss HIV Cohort Study (SHCS), aged 21-83. The SHCS is a multicenter, 92 

prospective observational study for interdisciplinary HIV research7. Established in 1988, the 93 

SHCS currently comprises more than 20,000 PLWH with median 51 years of age. Samples of 94 

600 patients, used for exome sequencing, were chosen randomly in terms of gender, age, 95 

category of transmission, as well as HIV management and control.8 96 

We utilized a set of 8111 individuals with available exome sequences from the 97 

Atherosclerotic Risk in the Community study (ARIC), aged 45-84 years, as population controls.9 98 

The ARIC study is a prospective longitudinal investigation of the development of atherosclerosis 99 

and its clinical sequelae which enrolled 15,792 individuals aged 45 to 64 years at baseline.10 At 100 

study enrollment (1987-1989), the participants were selected by probability sampling from four 101 

United States communities: Forsyth County, North Carolina; Jackson, Mississippi; the 102 

northwestern suburbs of Minneapolis, Minnesota; and Washington County, Maryland. 103 

CHIP was called in both exome sequenced cohorts using a previously described 104 

pipeline.4,11 Briefly, short read sequence data was aligned to the hg19 reference genome using 105 

the BWA-mem algorithm and processed with the Genome Analysis Toolkit MuTect2 tool to 106 

detect somatic variants.12 Identification of individuals with CHIP, used a pre-specified list of 107 

variants in 74 genes known to be recurrent drivers of myeloid malignancies.  108 

As CHIP prevalence depends strongly on age, we performed a 1:5 case/control 109 

propensity matching on age, sex and self-reported ethnicity using nearest neighbor matching13 110 

and requiring an exact match on age as implemented by the MatchIt package version 3.0.2 in R. 111 

Univariate Fisher’s exact test and multivariate logistic regression tested the association between 112 

HIV status and CHIP prevalence. Multivariate models were adjusted for age, sex, self-reported 113 

ethnicity, and smoking status. Analyses were performed in R version 3.6. A threshold of p<0.05 114 

was considered statistically significant. 115 

Written informed consent was obtained from all human participants by each of the 116 

studies with approval of study protocols by ethics committees at participating institutions. 117 

Secondary analysis of the data  in this manuscript was approved by the Mass General Brigham 118 

Institutional Review Board. All relevant ethics committees approved this study and this work is 119 

compliant with all relevant ethical regulations. 120 
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 121 

 122 

Results 123 

 124 

We began by considering the fraction of CHIP across the entire SHCS PLWH cohort 125 

(N=600) and ARIC cohort (N=8111) (Figure 1). SHCS PLWH and ARIC participants had mean 126 

(SD) age 44 (11) and 57 (6) years (p=1.8 x 10-167), were 25% and 56% female (p=1.9 x 10-46), 127 

and were 95% and 74% of European ancestry (p=5.2 x 10-36) respectively. With adjustment for 128 

age, age2, sex and ethnicity, we observed a significant association between HIV case status and 129 

CHIP (OR: 1.77, 95% CI: 1.33-2.21, p=0.02).  130 

Give the overall demographic imbalances, we pursued a propensity matching strategy and 131 

matched datasets by age, gender and ethnicity. Propensity matching analyses yielded a set of 230 132 

PLWH cases and 1002 ARIC population controls. Neither age nor sex, differed significantly  133 

between the matched cohorts (Table 1) and the standardized mean difference across age, sex and 134 

self-reported ethnicity were all less than 0.1 indicative of adequate matching. In this subset, 135 

CHIP was detected in 7% of exomes from PLWH, but only 3% of the controls (Table 1, 136 

univariate p=0.005; multivariate p=0.004).  Of note, the statistical association strengthened 137 

despite a significantly decreased sample size, likely due to the exclusion of younger SHCS 138 

PLWH, who are less likely to have CHIP. Depth of coverage of the four most common CHIP 139 

genes (DNMT3A, TET2, ASXL1, JAK2), when incorporated into the multivariate logistic 140 

regression model, did not affect the results.  141 

 The limited sample size precluded inference on the association of HIV status with 142 

specific CHIP driver genes, however we observed differences in the genes most likely to carry 143 

CHIP mutations between PLWH and population controls. The most common CHIP gene in the 144 

SHCS was ASXL1 (13 out of 27 CHIP mutations, 48%) followed by  TET2 (8 out of 27 CHIP 145 

mutations, 30%) and DNMT3A  (5 out of 27 CHIP mutations, 19%). Overall this distribution was 146 

inverted from the control cohort where CHIP mutations were more frequent in DNMT3A, 147 

followed by TET2 and ASXL1. In total, 22 PLWH had a single CHIP mutation, while one 148 

individual had 2 mutations and one individual had 3 mutations. 149 

 Within the full PLWH cohort (N=600) we considered additional  phenotypes, which 150 

might be a cause or consequence of CHIP. First, we observed a trend toward an increase in CAD 151 

among CHIP carriers (Fisher’s exact test OR: 2.99, p = 0.068). Second, we observed that 152 

duration of antiretroviral therapy (ART) was twice as long in CHIP carriers versus non-carriers ( 153 

ART mean (st. dev.) ART 2675 [1850]  days vs 1322 [1454] days in carriers vs non-carriers 154 

respectively ; p = 0.0004, Mann-Whitney U test). This association was directionally concordant 155 

after adjusting for patient age in multiple logistic regression (p = 0.066) or and remained 156 

significant after matching of 24 CHIP carriers with 24 non-carriers by age (p = 0.042 paired 157 

Mann-Whitney U test). It is important to note that although ART duration positively correlates 158 

with the total duration of HIV infection (Spearman’s rho = 0.58, p=2.0 x 10-54,N = 600), the total 159 

duration of HIV infection is not associated with CHIP p = 0.452; paired Mann-Whitnmey U test 160 

on matched CHIP carriers and non-carriers, p = 0.22] 161 

 162 

Discussion 163 

We here report that HIV associates with increased prevalence of CHIP, a recently 164 

recognized risk factor for blood cancer and CAD. In the present samples, we identify at least 2-165 
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fold enrichment of CHIP among PLWH versus controls when considering known factors 166 

predisposing to CHIP.  167 

HIV infection is linked to accelerated biologic aging and chronic low-grade 168 

inflammation, providing a fertile substrate for CHIP development. Our study is consistent with 169 

another recent study that showed that HIV leads to a greater risk of myelodysplastic syndrome 170 

(MDS), a downstream consequence of CHIP and precursor to myeloid malignancy.14 171 

Furthermore, similar to the gene distribution in MDS, we find a greater relative prevalence of 172 

ASXL1 mutations among PLWH compared to controls. Of note, while cigarette smoking selects 173 

for ASXL1 clonal hematopoiesis15, our cohort of PLWH still had an increased prevalence of 174 

ASXL1 mutations compared to the control cohort despite being well balanced for smoking status 175 

across cohorts. 176 

HIV infection may promote CHIP development through various mechanisms, including 177 

induced immunodeficiency, chronic immune activation from antigenic simulation, as well as 178 

increased prevalence of tobacco smoking and other co-morbid conditions. HIV may induce 179 

CHIP also through the ART which can either increase the rate of somatic mutagenesis or change 180 

the fitness landscape of hematopoietic stem cells or decrease effective population size of blood 181 

cells. HIV may also modify the selective coefficients of specific CHIP mutations. A recent 182 

model proposed that many of the CHIP mutations increase cell fitness, ensuring their 183 

proliferation with age.16 The relative contribution of these factors to CHIP risk, including in the 184 

context of spontaneous viral control and antiretroviral therapy, will require larger studies. An 185 

important limitation of the present study is its cross-sectional nature, but CHIP is highly unlikely 186 

to be a risk factor for HIV acquisition. The relative contribution of these factors to CHIP risk, 187 

including in the context of spontaneous viral control and antiretroviral therapy, will require 188 

larger studies. An important limitation of the present study is its cross-sectional nature, but CHIP 189 

is highly unlikely to be a risk factor for HIV acquisition.  190 

We propose that CHIP may be one mechanism that elevates risk for CAD in PLWH. 191 

Further studies are required to evaluate the hypothesis that CHIP contributes to the excess 192 

cardiovascular risk associated with long-term HIV infection. CHIP may represent a unique 193 

opportunity for precision identification and targeting of CAD risk with particular relevance for 194 

HIV medicine. 195 

 196 

 197 

Data Availability 198 

CHIP genetic variant callsets and associated participant level phenotype data used in this study 199 

are available to qualified investigators by application to the SHCS and ARIC. 200 
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Table 1: Demographics and CHIP association in matched samples 298 

 HIV+ 

Individuals 

(SHCS) 

Population 

Controls 

(ARIC) 

p-value 

n 230 1002  

Age at blood draw, 

mean (st. dev.) 

54.2 (7.4) 55.0 (6.8) 0.12 

Female, N (%) 44 (19%) 240 (24%) 0.086 

Ever smoker, N (%) 143 (62%) 651 (65%) 0.408 

Diabetes mellitus, N (%) 18 (8%) 80 (8%) 0.936 

Black, N (%) 7 (3%) 80 (8%) 0.017 

CHIP carrier, N (%) 16 (7%) 30 (3%) 0.005 

P-value derived from Fisher's exact test for counts and t-test for continuous variables. 299 

 300 

  301 
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 302 

 303 
Figure 1: CHIP prevalence in Swiss HIV Cohort Study and Atherosclerotic Risk in the 304 

Community Study 305 

Upper panel: fraction of cohort observed to have CHIP over time fit with a general additive 306 

model spline. 95% confidence interval displayed as shaded area. Lower panel: Count of number 307 

of individuals with and without CHIP binned by age of time of blood sampling across entire 308 

sequenced cohort. 309 
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