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CT-based Rapid Tr iage of COVID-19 patients: Risk Prediction and Progression
Estimation of ICU Admission, Mechanical Ventilation, and Death of Hospitalized Patients

Summary

The wave of COVID-19 continues to overwhelm the medical resources, especially the stressed intensive care unit
(ICU) capacity and the shortage of mechanical ventilation (MV). Here we performed CT-based analysis combined
with electronic health records and clinical laboratory results on Cohort 1 (n = 1662 from 17 hospitals) with
prognostic estimation for the rapid stratification of PCR confirmed COVID-19 patients. These models, validated on
Cohort 2 (n = 700) and Cohort 3 (n = 662) constructed from 9 external hospitals, achieved satisfying performance
for predicting ICU, MV and death of COVID-19 patients (AUROC 0.916, 0.919 and 0.853), even on events
happened two days later after admission (AUROC 0.919, 0.943 and 0.856). Both clinical and image features showed
complementary roles in events prediction and provided accurate estimates to the time of progression (p<.001). Our
findings are valuable for delivering timely treatment and optimizing the use of medical resources in the pandemic of
COVID-19.

Introduction

From 30 December through 11 October, the ongoing severe acute respiratory syndrome–coronavirus 2 (SARS-CoV-
2) pandemic has caused over 37 million coronavirus disease 2019 (COVID-19) confirmed cases and 1 million
deaths globally.1 The spread of COVID-19 continues to overwhelm the medical resources without effective
therapeutics and vaccines. In particular, stressed intensive care unit (ICU) capacity and the shortage of mechanical
ventilation (MV) are major factors that drive COVID-19 mortality rates.2, 3, 4 To enable sufficient supply of medical
resources, rapid triage method for COVID-effected patients with potentially serious outcomes has become an urgent
priority for reallocating medical resources as well as distributing patients to balance ICU loads across affected
regions so as to deliver timely treatment.5, 6, 7, 8

Evaluating the severity of patients with infectious pneumonia have been applied in clinics such as measuring the
acute physiology and chronic health evaluation II (APACHE-II) score and laboratory indicators including
neutrophil-to-lymphocyte ratio (NLR).9, 10, 11, 12 However, the scoring systems of APACHE-II are highly subjective
and time-consuming while laboratory indicators are not comprehensive enough to predict the adverse outcomes of
the newly emerged COVID-19. Although computed tomography (CT) assessment by radiologists is now an
important criterion for COVID-19 diagnosis and severity evaluation of COVID-19,13 it is limited by manual
evaluation of radiologists with marked inter- and intra-observer variability and unable to provide accurate prognosis
prediction. Better ways to utilize multi-modal data for grouping hospitalized COVID-19 patients according to their
potential clinical outcomes remain to be developed to deliver specific treatment timely.

In this study, we provided risk stratification based on CT-based radiomics features and clinical data for COVID-19
patients in terms of stable or severe disease (requiring ICU) on admission. Then we developed specific outcome
prediction (MV/ death) models for critically ill patients. Finally, we provided insights into estimating time to the
progression (ICU/MV/death) for COVID-19 patients.

Results

Patient cohor t

In total, 2362 patients were used in this study, including a primary cohort (Cohort 1, n = 1662) for model
development included patients from 17 hospitals, and a validation cohort (Cohort 2, n = 700) consisted of patients
from 9 external and independent medical centers (Figure 1, Figure S1, Table S1). Additionally, we built a specific
subset of Cohort 2 (Cohort 3, n = 662) for patients from the 9 medical centers whose interval between admission and
progression to critical outcomes (ICU/MV/death) were more than two days, aiming to evaluate the performance of
our models on predicting events happening at least two days after admission. Prediction models were built for three
prediction tasks, including ICU (adverse cases in Cohort 1/Cohort 2/Cohort 3, n = 96/59/21, respectively), MV
(adverse cases in Cohort 1/2/3, n = 55/39/19), and death (adverse cases in Cohort 1/2/3, n = 31/28/20). Note that
most patients with death were also in the MV group, while all patients with MV or death lay into the ICU group. In
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our study, 2207 patients (93.5%) were discharged without any adverse outcome (stable group), 155 (6.5%) patients
developed adverse clinical outcomes and were admitted to the ICU (adverse group), of whom 94 (60.6%) required
MV, and 59 (38.0%) died within 28 days from admission (Table 1, Table S2, Table S3). This cohort had 1229 men
(52.0%) and 1133 women (48.0%), with a median age of 51.5 years (IQR, 39 - 64 years). The median age among
men was 57 years (IQR, 45 - 68 years) and the median age among women was 52 years (IQR, 39 - 64 years). No
statistical difference in age was found between men and women in this cohort.

Compar ison of radiomics models with other modalities

We recognized the marked differences of CT-based radiomics data (abbreviated as Radiom), Clinical records
(abbreviated as Clin), Laboratory results (abbreviated as Lab), and Radiologists’ semantic data (abbreviated as R-
score) on Cohort 1 and Cohort 2 between negative outcome patients and positive outcome patients (Figure 2, Figure
S3, Table S2, Supplementary Appendix 1). The optimal models for each data type (i.e. Radiom, RadioClin,
RadioClinLab, ClinLab, and R-score) were chosen on Cohort 1 and validated on Cohort 2 and Cohort 3 (Table 2,
S4-5, Figure 3). On Cohort 2, radiomics features alone (Radiom) showed good performance to predict ICU
(AUROC 0.869, AUPRC 0.441), MV (AUROC 0.805, AUPRC 0.245), and death (AUROC 0.667, AUPRC 0.136).
When combined with clinical features (RadioClin), the performance of models improved significantly (all three
events p-value < .001) (Table S4-5). Notably, as we continued to add the lab results (RadioClinLab), models
achieved optimal performance on all three events (AUROC ICU: 0.916, MV: 0.919, death: 0.853; AUPRC ICU:
0.563, MV: 0.476, death: 0.248). RadioClinLab models also outperformed clinical data alone models (ClinLab) (all
three events p-value < .001) (Table S4-5, Figure S4), suggesting the importance of radiomics features in predicting
severe outcomes. Similarly, RadioClinLab models also had comparable performance on Cohort 3 for ICU (AUROC
0.919, AUPRC 0.348), MV (AUROC 0.943, AUPRC 0.388), and death (AUROC 0.856, AUPRC 0.218). These
results demonstrated the models’ ability to predict severe events that occur at least two days after admission (Table 2,
Table S4).

Compar ison of radiomics with radiologists’ scor ing

The performance of Radiom models was overall superior to that of radiologist score (R-score) models on both two
validation cohorts for the three tasks (ICU/MV/death: Cohort 2 AUROC 0.776/0.804/0.678, AUPRC
0.332/0.222/0.120; Cohort 3 AUROC 0.772/0.736/0.653, AUPRC 0.137/0.115/0.092) (Table 2). Specifically,
Radiom models had significantly improved predictive value in predicting ICU (p < .001) and were comparable to R-
score models with a higher AUPRC for MV (p = .003) and death (p = .021) on Cohort 2. The predictive value of
Radiom for ICU and MV happening two days later was higher than R-score, while there was no significant
difference between these two models on prediction of death on Cohort 3 (Table S4-5, Figure S4).

Key imaging features and clinical prognostic indicators

Among the top-ranking prognostic indicators, clinical data and radiomics features showed a complementary role
with no significant correlations (Figure 3, Figure S5-6). In clinical data, elder age, dyspnea, higher lactate
dehydrogenase (LDH) and inflammatory factors (white blood cell (WBC), neutrophil) signaled severe outcomes.
Particularly, hypertension and some inflammatory factors (lower lymphocyte, higher C-reactive protein (CRP) and
neutrophil)) were valuable for predicting ICU admission, also higher potassium and α-Hydroxybutyrate
dehydrogenase (HBDH) and several inflammatory factors (lower lymphocyte, higher CRP) were predictive for MV,
while higher D-dimer provided great diagnostic value for death. Most clinical variables were independently
correlated with disease progression (Supplementary Appendix 5). Furthermore, GLSZM-based, GLCM-based, and
first-order radiomics features are important features for the prediction of outcomes. In addition, our R-score model
suggested that diffuse pulmonary parenchymal ground-glass and consolidative pulmonary opacities in the left upper
lobe and pleural effusion increased the adverse outcomes (ICU, MV, death) in COVID-19 patients. Notably, crazy-
paving on the initial CT chest was a risk factor of death. (Table S6, Figure S7)

Individual severe-event-free survival analysis and per formance of time-to-event models

Next, we used time-to-event modeling to stratify survival outcomes of patients. We first separated the patients into
high-risk and low-risk groups and evaluated the survival curves of the two groups. Kaplan-Meier curves using the
predicted score with the optimal RadioClinLab were generated (Figure 4). The high-risk group (ICU: 40
observations with 18 events, MV: 23 observations with 8 events, death: 13 observations with 3 events) had a much
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lower survival probability compared to the low-risk group (ICU: 642 observations with 32 events, MV: 659
observations with 28 events, death: 669 observations with 19 events) in all 3 tasks with a significant statistical
difference (p < 0.001, log-rank test).

According to the results of time-to-event prediction (Table S9) on Cohort 2, the RadioClinLab showed the highest
concordance index values on three prediction tasks (0.917, 0.888, and 0.906). Additionally, the RadioClinLab
outperformed other models on ICU and MV prediction (Brier score 0.061 and 0.053) while the ClinLab model
performed best on death prediction (Brier score 0.028). On Cohort 3, RadioClinLab showed the highest concordance
index values on three tasks: 0.921, 0.884 and 0.911 and the lowest integrated Brier score on ICU and MV prediction:
0.039 and 0.036 while the ClinLab model showed the lowest integrated Brier score of 0.027. The bootstrapping
experiments (Table S10) showed that on Cohort 2, RadioClinLab showed the highest concordance index on three
tasks (p<0.001, paired one-sided t-test) and the lowest integrated Brier score on ICU and MV prediction (p<0.03)
while there was no statistically significant difference in the integrated Brier score values between RadioClinLab and
ClinLab on death prediction. Generally, these results showed that Radiom, RadioClinLab and ClinLab models
achieved satisfactory performances in time-to-event prediction. In particular, the combination of radiomics features
and clinical data contributed most to the prediction and provided the most accurate estimates to the time in days that
critical care demands are required.

Discussion

Our study achieved three goals. First, we provided risk stratification based on CT-based radiomics features and
clinical data for COVID-19-infected patients in terms of stable or severe disease (requiring ICU) on admission.
Second, our models provided specific outcome prediction (MV and death) for critically ill patients. Finally, we
offered insights into estimating time to progression of severe events (i.e. ICU, MV, and death). This analysis
potentially enables rapid stratification and timely intensive care management of patients during this pandemic.

We carefully defined outcome events (i.e. ICU, MV, or death) as prediction labels rather than the general risk
severity, so that different medical centers can optimize the resources allocation by utilizing the prediction outcomes.
According to our prognosis estimation results, it is possible to request medical resource transfers, such as personnel,
local ICU beds, or MV from the Emergency Medical Services command as well as distribution of stable patients
from overloaded local ICUs to neighboring affected regions with lower COVID-19 prevalence to balances ICU
loads. Additionally, the prediction of MV on admission allows for closer monitoring and repeat assessments of
patients over time to determine priority for initiating MV, because there is typically only a limited time window for
life saving when their breathing deteriorates.20 Furthermore, combining predictions of demand for medical resources
with outcome estimation of death anticipated the need to allocate resources to the patients who are most likely to
benefit, which may also help develop priority rationing strategies during pandemics.21

Our findings demonstrated the predictive value of CT-based imaging for outcome predictions of CVOID-19 patients.
The performance of radiomics-based models (Radiom) was better than radiologist’s scores (defined as R-score).
Concretely, we found that first-order texture, and higher-order radiomics features (i.e. GLSMZ and GLCM-based)
constituted the most important predictors. Our results also indicated that the feature values of diffuse pulmonary
parenchymal ground-glass and consolidative pulmonary opacities in the left upper lobe as well as pleural effusion
increased the adverse outcomes (ICU, MV, death) in COVID-19 patients, which were consistent with prior
findings.22, 23, 24 Additionally, crazy paving was a predictor of death.25

Among the identified clinical predictors in our study, elder age, dyspnea, a liver biochemistry marker (higher lactate
dehydrogenase (LDH)) were significant in all three prediction tasks.26, 27, 28, 29 Furthermore, the change of various
inflammatory factors (higher white blood cell (WBC), C-reactive protein (CRP) and neutrophil, and lower
lymphocytes) was predictive for the three severe events, consistent with current research that SARS-CoV-2 may
accelerate the inflammatory response and cause the fluctuation of inflammatory factors, thereby leading to severe
immune injury and lymphopenia.26, 27, 30, 31, 32, 33 Previous studies also indicated that leukocytosis resulting from a
mixed infection of bacteria and fungi in the context of viral pneumonia indicates poor outcomes.34, 35 In addition, our
study suggests that electrolyte and acid-base balance (K+) relating to respiratory function and the indicator of
myocardial infarction (higher α-Hydroxybutyrate dehydrogenase (HBDH)) contributes to the prediction of
progression to severe illness requiring MV, while D-dimer was associated with an increased risk of in-hospital
mortality, in agreement with previous studies.11, 12, 26, 32, 36 Other features such as comorbidity (e.g. hypertension)
were also related to poor prognosis.27, 29
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Our work has several limitations. First, we did not consider the effect of different treatments on the prognosis of
patients among clinical centers. In our study, several treatments were adopted including oxygen therapy, MV,
ECMO, antiviral treatment, antibiotic treatment, glucocorticoids, and intravenous immunoglobulin therapy. In-depth
comparison of different treatment outcomes might improve response prediction. Second, ten well-experienced
thoracic radiologists analyzed the CT images in consensus and evaluated traditional imaging features in our study,
however, we did not study inter-reader variability and such an analysis might need to be addressed in future work. In
addition, although our study had a large sample size with clear prognosis information, the numbers of endpoints
were limited and only from Chinese hospitals which could potentially limit the generalizability of models in other
areas. Finally, additional validation across populations from European and American hospitals are needed to further
validate the reported models.

In conclusion, we developed computational models with clinical prognostic estimation functions incorporating CT-
based radiomics features as well as clinical data from electronic medical records for COVID-19 patients. This
information may aid in delivering proper treatment and optimizing the use of limited medical resources in the
current pandemic of COVID-19.

Methods

Patient cohor t

Our data in this study was collected from 39 hospitals in China. All patients (n = 3522) followed the inclusion
criteria: (a) confirmed positive SARS-CoV-2 nucleic acid test; (b) chest CT examinations and laboratory tests on the
date of admission; (c) clear short-term prognosis information was available (discharge, or adverse outcomes
including the admission to ICU, requiring MV support, and in-hospital death). After screening with exclusion
criteria, 2363 from 26 medical centers were analyzed in our study (Figure 1, Figure S1, Table S1). This study
protocol was approved by the institutional review board of Jinling Hospital, Nanjing University School of Medicine
(2020NZKY-005-02).

Data collection and processing

Our multi-modal data for each patient included (a) Clinical records (abbreviated as Clin): demographics,
comorbidities, and clinical symptoms; (b) Laboratory results (abbreviated as Lab): blood routine, blood
biochemistry, coagulation function, infection-related biomarkers; (c) CT-based radiomics features (abbreviated as
Radiom); (d) Radiologists’ semantic data (abbreviated as R-score); (e) Time-to-event data: the time intervals
between the date of admission and the date of development of adverse outcomes (requiring ICU, MV, and death), or
the date of discharge. (Table S2, Supplementary Appendix 1) To address the imbalance and high feature
dimensionality in modeling, we adopted several combinations of methods to downsample the negative cases
(n=2207, referred to the stable group where patients discharged without any adverse outcome) and oversampling the
positive cases (n=155, referred to the adverse group where patients required ICU admission, including 94 patients
who needed MV and 59 death) to enhance models’ learning ability for the imbalanced data (Supplementary
Appendix 2).

Model development and prediction evaluation

There were three binary classification tasks in this study, namely, stable (negative) samples vs. adverse (ICU)
samples, non-MV samples vs. MV samples, and survival samples vs. death samples. To test the prediction
performances of different data type combinations, multivariable models based on five types of data were developed
and compared: 1) radiomics data only (denoted as “Radiom”); 2) radiomics, clinical features (including
demographics, comorbidity and clinical symptoms) (denoted as “RadioClin”); 3) radiomics data, clinical features,
and laboratory results data (denoted as “RadioClinLab”); 4) clinical features and laboratory results (denoted as
“ClinLab”); 5) radiological score based on the linear combination of semantic imaging features evaluated by
radiologists (denoted as “R-score”). To confirm the patients were reasonably grouped based on the adverse
outcomes and whether the event occurred within 48 hours, we first provided an intuitive manner to understand the
distribution of all types of features used in this study with the help of heatmaps and t-distributed Stochastic
Neighbor Embedding (t-SNE) in terms of ICU, MV, and death (Supplementary Appendix 3).
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To systematically explore the performance of multiple machine-learning classifiers, we used the following
approaches to predict outcomes: 1) Logistic Regression (LR); 2) Random Forest (RF); 3) Support Vector Machine
(SVM); 4) Multilayer Perceptron (MLP); 5) LightGBM. In Cohort 1 (n=1662), the data were split into training and
testing sets (ratio 7:3) using a stratified random sampling based on death cases. We used 5-fold cross-validation on
the training set only to tune the model hyperparameters (Supplementary Appendix 4). Both a randomized search
with accuracy as the optimization goal and a grid search with F1 score as the optimization goal were implemented
on the 5-fold cross-validation and the predictive performances were evaluated on the test set of Cohort 1. Finally, to
select an optimal model for each prediction task, five models with the top receiver operating characteristic
(AUROC)14 were firstly selected and the model with the highest precision-recall (AUPRC)15 curves was then chosen
as the optimal model for each outcome prediction because AUROC and AUPRC could show model accuracy,
precision and recall in a more comprehensive manner with varying thresholds.

Model validation and compar ison

We tested the statistical difference of the performance of selected models with 30 bootstrapped resamples on unseen
data (Cohort 2 n = 700, Cohort 3 n = 662, Figure 1) and used the AUROC and AUPRC curves to estimate their
generalization ability. Particularly, with Cohort 3, we could verify models’ ability of predicting events that will
occur two days later, which may allow the healthcare system to have at least two days to plan ahead and react to the
demand for resources. Box plots were also drawn to compare the performances of the optimal models found based
on Cohort 1 in three classification tasks. Finally, we selected an optimal model for each prediction task based on the
results of the paired one-sided t-test, which compared the AUROC and AUPRC of models consisting of different
data types (Radiom, RadioClin, RadioClinLab, ClinLab). Additionally, we constructed the R-score model using
logistic regression based on semantic features to compare with the Radiom model (on both Cohort 2 and Cohort 3)
and found out the traditional image features that were helpful to predict the outcome events (Supplementary
Appendix 2).

Analysis of predictive features

We identified the feature importance from the selected optimal models and normalized the highest importance
scores in each of the bootstrapping experiments on Cohort 2 (n =700). By taking an average of the feature
importance values over thirty bootstrapping experiments, we then focused on the ten most important features for
each prediction task. We also plotted the pairplot of the most important features to visualize the relationship of top
ten features. Furthermore, we performed the independent two-sided t-test (continuous variables, with normal
distribution), proportional z-test (categorical variables) and rank sum test (continuous variables, without normal
distribution) to validate the statistical significance in the feature values of positive cases and all cases in Cohort 1,
Cohort 2 after firstly using Shapiro Wilk normality test.

Time-to-event modeling

Cox regression with the l1 penalty and scikit-survival package 0.12.1 was adopted on time-to-event data in Cohort 1
(n = 1277, 77% of the patients originally in Cohort 1 had event time recorded) and Cohort 2 (n = 682, 97% of the
patients originally in Cohort 2 had event time recorded).16, 17, 18, 19 Three different data combinations were used for
the time-to-event modeling: Radiom, RadioClinLab, and ClinLab. We used five-fold cross-validation on Cohort 1 to
determine the “alpha_min_ratio” hyperparameter,18, 19 and calculated the performance on Cohort 2. We used the
concordance index (C index) and the integrated Brier score to evaluate the models. On Cohort 1, the optimal model
for each data combination was chosen in a similar manner as previously described for the classification tasks by first
filtering based on mean C index and then optimizing the mean integrated Brier score on the three tasks. Next, we
used Kaplan-Meier analysis to visualize the time-to-event models and the log-rank test to estimate significance. A
“high-risk” and “low-risk” group was created according to the predicted score for each patient on each task with the
optimal RadioClinLab model. To group the patients into the high-risk group and the low-risk group, we first
calculated the ratios of positive cases in Cohort 1, then set thresholds on the predicted probability of the test samples
to separate patients according to the ratios based on Cohort 2.

Statistical analysis

SPSS v15.0 [Chicago, SPSS Inc.] and MedCalc statistical software were used for statistical analysis. The Shapiro-
Wilk test was used to evaluate the normality of quantitative data among the selected top important features. Mean
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and standard deviation (SD) were used to describe normally distributed data, while the median and interquartile
range (IQR) was used to describe non-normally distributed data. Categorical variables were presented as numbers
and percentages. The AUROC, AUPRC, accuracy value and their 95% CI were listed to assess the model
performance. The paired one-sided t-test was used to calculate the statistical significance of the difference between
each AUROC and AUPRC value in the bootstrapping experiments. Chi-square test and Fisher’s exact test were
exploited to compare categorical data while independent t-test and Wilcoxon rank sum test were used to compare the
feature values of continuous variables in positive and negative cases in the entire cohort (n = 2362). Proportional test
was done to compare the feature values of categorical variables in positive and negative cases among the most
important features found by classifiers and test the statistical significance of categorical variables between Cohort 1
and Cohort 2. Kaplan-Meier survival analysis was done on the high-risk and low-risk group based on predictions
and log-rank test was used to evaluate statistical significance.

Role of the funding source

The funders of the study had no role in the study design, data collection, data analysis, data interpretation, or writing
of the report. The corresponding authors had full access to all the data in the study and had final responsibility for
the decision to submit for publication.
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The data that support the findings of this study are available on request from the corresponding author (G.M.L.). The
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Table captions
Table 1. Clinical character istics of COVID-19 patients in Cohor t 1, Cohor t 2, Cohor t 3, and the whole cohor t

All patients (n = 2362) Cohor t 1 (n = 1662) Cohor t 2 (n = 700) Cohor t 3 (n = 662) p-value

Demographics

Age (years) 51.720 ± 15.646 52.465 ± 15.863 49.953 ± 14.984 48.985 ± 14.545 < 0.001

Gender (male) 1229 (52.0%) 881 (53.0%) 348 (49.7%) 338 (51.0%) 0.143

Comorbidity

Coronary heart disease 172 (7.2%) 123 (7.4%) 49 (7.0%) 36 (5.4%) 0.732

Chronic liver disease 82 (3.4%) 58 (3.4%) 24 (3.4%) 24 (3.6%) 0.941

Chronic kidney disease 29 (1.2%) 18 (1.0%) 11 (1.5%) 8 (1.2%) 0.325

COPD 51 (2.1%) 33 (1.9%) 18 (2.5%) 12 (1.8%) 0.371

Diabetes 261 (11.0%) 191 (11.4%) 70 (10.0%) 59 (8.9%) 0.291

Hypertension 500 (21.1%) 370 (22.2%) 130 (18.5%) 110 (16.6%) 0.045

Carcinoma 61 (2.5%) 44 (2.6%) 17 (2.4%) 15 (2.2%) 0.759

Clinical symptom

Fever 1950 (82.5%) 1340 (80.6%) 610 (87.1%) 580 (87.6%) < 0.001

Cough 1651 (69.8%) 1170 (70.3%) 481 (68.7%) 455 (68.7%) 0.416

Myalgia 553 (23.4%) 467 (28.0%) 86 (12.2%) 78 (11.7%) < 0.001

Fatigue 952 (40.3%) 719 (43.2%) 233 (33.2%) 224 (33.8%) < 0.001

Headache 191 (8.0%) 138 (8.3%) 53 (7.5%) 50 (7.5%) 0.551

Nausea or vomiting 116 (4.9%) 84 (5.0%) 32 (4.5%) 30 (4.5%) 0.620

Diarrhea 167 (7.0%) 115 (6.9%) 52 (7.4%) 48 (7.2%) 0.659

Abdominal pain 28 (1.1%) 21 (1.2%) 7 (1.0%) 6 (0.9%) 0.589

Dyspnea 403 (17.0%) 312 (18.7%) 91 (13.0%) 70 (10.5%) 0.001

Outcome

ICU 155 (6.5%) 96 (5.7%) 59 (8.4%) 21 (3.1%) 0.017

MV 96 (3.9%) 55 (3.3%) 39 (5.5%) 19 (2.8%) 0.010

Death 59 (2.4%) 31 (1.8%) 28 (4.0%) 20 (3.0%) 0.002

* The mean interval (d) (IQR)

Admission - ICU 4.4 (1 - 6) 4.6 (1 - 6) 4.2 (1 - 6.5) 8.4 (5 - 10.5) 0.207

Admission - MV 6.1 (2 - 9) 6.1 (1 - 10) 6.1 (2 - 8.25) 9.6 (5 - 13.5) 0.758

Admission - death 16.1 (9.5 - 21.5) 16.5 (9.5 - 24) 15.6 (10 - 18) 15.9 (11.8 - 18.3) 0.386

Admission - discharge 15.7 (7 - 22) 13.3 (5 - 9) 19.3 (13 - 25) 19.3 (13 - 25) < 0.001

Note. P-values show statistically significant differences in features between Cohort 1 and Cohort 2. There were
statistically significant differences in prognostic features (e.g. age, dyspnea) in Cohort 1 and Cohort 2, but there was
no significant difference in these features of positive cases (refers to the adverse group where patients required ICU
admission) in the two cohorts (Table S3). Thus, this difference may be due to the discrepancy in the proportion of
Hubei cases (Cohort 1, 69.8%; Cohort 2, 80.1%), which have a higher proportion of severe outcomes (6.9%, 8.6%,
respectively).
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Table 2. Bootstrapping results of the optimal models in Cohor t 2 and Cohor t 3
ICU

Cohor t 2 (n=700) Cohor t 3 (n=662)
Data AUROC (95%CI) ACC (95%CI) AUPRC (95%CI) AUROC ( 95%CI) ACC (95%CI) AUPRC (95%CI)

Radiom 0.869 (0.857-0.879) 0.864 (0.836-0.889) 0.441 (0.413-0.480) 0.830 (0.809-0.851) 0.876 (0.843-0.907) 0.139 (0.109-0.173)
RadioClin 0.886 (0.854-0.920) 0.917 (0.876-0.936) 0.480 (0.345-0.590) 0.863 (0.825-0.913) 0.954 (0.923-0.971) 0.226 (0.126-0.401)

RadioClinLab 0.916 (0.892-0.945) 0.928 (0.901-0.944) 0.563 (0.397-0.677) 0.919 (0.884-0.962) 0.957 (0.940-0.971) 0.348 (0.192-0.505)
ClinLab 0.860 (0.735-0.924) 0.803 (0.749-0.860) 0.548 (0.348-0.684) 0.906 (0.813-0.971) 0.818 (0.757-0.876) 0.446 (0.294-0.608)
R-score 0.776 (0.725-0.822) 0.916 (0.916-0.917) 0.332 (0.233-0.422) 0.772 (0.722-0.831) 0.968 (0.967-0.968) 0.137 (0.077-0.257)

MV
Cohor t 2 (n=700) Cohor t 3 (n=662)

Data AUROC (95%CI) ACC (95%CI) AUPRC (95%CI) AUROC (95%CI) ACC (95%CI) AUPRC (95%CI)

Radiom 0.805 (0.759-0.844) 0.944 (0.940-0.947) 0.245 (0.178-0.399) 0.760 (0.717-0.831) 0.968 (0.962-0.973) 0.122 (0.089-0.200)
RadioClin 0.869 (0.836-0.912) 0.944 (0.940-0.950) 0.348 (0.282-0.431) 0.867 (0.823-0.917) 0.969 (0.965-0.971) 0.209 (0.161-0.297)

RadioClinLab 0.919 (0.885-0.944) 0.950 (0.944-0.957) 0.476 (0.400-0.616) 0.943 (0.918-0.968) 0.972 (0.967-0.976) 0.388 (0.260-0.533)
ClinLab 0.722 (0.594-0.838) 0.936 (0.927-0.947) 0.312 (0.192-0.450) 0.768 (0.704-0.867) 0.960 (0.949-0.971) 0.303 (0.166-0.477)
R-score 0.804 (0.738-0.854) 0.944 (0.943-0.944) 0.222 (0.171-0.288) 0.736 (0.661-0.841) 0.971 (0.971-0.971) 0.115 (0.074-0.178)

Death
Cohor t 2 (n=700) Cohor t 3 (n=662)

Data AUROC (95%CI) ACC (95%CI) AUPRC (95%CI) AUROC (95%CI) ACC (95%CI) AUPRC (95%CI)

Radiom 0.667 (0.597-0.746) 0.959 (0.954-0.963) 0.136 (0.093-0.194) 0.655 (0.589-0.762) 0.968 (0.964-0.971) 0.104 (0.052-0.178)
RadioClin 0.802 (0.790 0.819) 0.945 (0.937-0.950) 0.281 (0.251-0.315) 0.790 (0.774 0.808) 0.963 (0.957 0.969) 0.286 (0.236 0.345)

RadioClinLab 0.853 (0.799-0.900) 0.960 (0.957-0.963) 0.248 (0.170-0.401) 0.856 (0.804-0.911) 0.969 (0.965-0.973) 0.218 (0.123-0.361)
ClinLab 0.799 (0.758-0.829) 0.938 (0.932-0.945) 0.222 (0.172-0.271) 0.809 (0.761-0.856) 0.956 (0.948-0.963) 0.228 (0.180 0.307)
R-score 0.678 (0.566-0.760) 0.960 (0.960-0.960) 0.120 (0.071-0.206) 0.653 (0.551-0.746) 0.970 (0.968-0.970) 0.092 (0.051-0.249)

Note. -CI = confidence interval; AUPRC = area under the receiver operating characteristics; AUPRC = area under the precision-recall curve; ACC = accuracy.
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Figure captions

Figure 1. Illustration of workflow in this study. (a) Our primary cohort (Cohort 1, n = 1662) for model
development included patients from 17 hospitals, and our validation cohort (Cohort 2, n = 700) consisted of patients
from 7 external and independent medical centers. Additionally, we built a specific cohort (Cohort 3, n = 662) for
patients from the 7 medical centers whose interval between admission and progression to critical outcomes
(ICU/MV/death) were more than two days, aiming to evaluate the performance of our models on predicting events
happening at least two days after admission. (b) Explanation of our data split and the cor responding usages. (1)
Step one: feature visualization of Cohort 1 and Cohort 2 to get the preliminary intuitive sense; (2) Step two: 70%
samples of Cohort 1 were picked as the training set using stratified sampling based on death cases, where 5-fold
cross-validation was used to tune the hyperparameters of the models; (3) Step three: model selection was performed
on the remaining 30% samples of Cohort 1; (4) Step four: Cohort 2 and Cohort 3 were used to evaluate model
performance in different aspects.

Figure 2. Heatmap showing the prognostic per formance of (a) radiomics data and (b) clinical data and R-
score data on Cohor t 2 with cluster ing of features. 150 Negative patients were randomly selected as well as all
patients having outcomes of ICU admission, Mechanical Ventilation or Death to draw the heatmap. For patients
with more than one adverse outcome, they will appear as samples in each corresponding category. The patients
were grouped based on adverse outcomes (i.e. ICU admission, MV, and death) and whether the event occurred
within 48 hours after admission. The features were clustered within their categories to better visualize the data.
The differences between negative outcome patients (yellow) and positive outcome patients can be seen from both
(a) and (b), with some features showing different patterns for negative (patients discharged without any adverse
outcomes) or positive patients (patients who required ICU, MV, or death while hospitalized). Almost all CT
image features showed good discrimination between negative and severe outcome patients and had more obvious
distinctions compared to clinical data. Among clinical data, lab results and demographics had good discriminating
power. Part of radiologists’ score features had good discriminating power while clinical features have
comparatively weak discriminating power. Regarding the distinctions between ICU admission, mechanical
ventilation, and death, CT image features showed better discriminating power than clinical data. In CT image
features, from ICU to MV to death, trends of value increasing or decreasing can be observed while in clinical data,
this kind of trend is not visible.

Figure 3. The model per formances in the prediction of three outcomes (Cohor t 2) and the ten most
impor tant features in the three outcome prediction tasks. The first and second row presented ROC curves and
PR curves for predicting three events of models based on different data types. a) and d), b) and e), c) and f)
indicated that RadioClinLab based models for predicting ICU/MV/death achieved the highest AUROC
(0.944/0.942/0.860) and AUPRC (0.665/0.551/0.346), respectively. g-i) The ten most important features and their
relative importance based on thirty bootstrapping experiments for the three prediction tasks based on the feature
importance of the LightGBM classifiers.

Figure 4. Kaplan-Meier curves for 3 tasks in Cohor t 2. Risk groups were divided according to model predicted
scores. (a) ICU admission (b) mechanical ventilation, and (c) death (high-risk: risk=1, low-risk: risk=0)
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Inpatients with laboratory-confirmed SARS-CoV-2 infection from 39 hospitals 
December 27, 2019 and March 31, 2020

N = 3522

Exclusion criteria due to one of the following:
a. Patients age < 18 years old (n = 12)
b. Patients transferred to other hospitals or remaining hospitalized without any adverse outcomes (n = 390)
c. Patients lack follow-up information (n = 428)
d. CT scans with slice thickness > 2.5mm or convolutional kernel not related to lung (n = 322)
e. CT scans lack serial information or with motion artifacts or significant resolution reductions (n = 8)
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ICU
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70% Cohort 2, n = 700

(2) Hyperparameter tuning: 5-fold cross-validation on training set

(3)

70% 30% Cohort 2, n = 700

Model selection: different data types, feature processing methods, and classification algorithms

(4)

Cohort 2, n = 700Cohort 1, n = 1662

Model performance test: whether models work in real-world cases 

Cohort 3, n = 662
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Data visualization
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