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Abstract

We establish the principal that the prediction, timing and magnitude of second
and more distinct waves of infection can be based on the well-known physics
and assumptions of classical diffusion theory. This model is fundamentally
different from the commonly used SEIR and Ry fitting methods. Driven by data,
we seek a working approximation for the observed orders of magnitude for the
timing and rate of second and more waves. The dynamic results and
characteristics are compared to the data and enable predictions of timescales
and maximum expected rates where diffusive effects dominate.

The important point is this simple physical model allows understanding of the
dominant processes, provides prediction estimates, and is based the solutions
derived from existing, consistent and well-known physical principles. The
medical system and health policy implications of such inexorable diffusive
spread are that any NPI and other countermeasures deployed for and after the
rapid first peak must recognize that large residual infection waves will then
likely occur.
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Background: typical infection patterns and repeating “wave” phases

Since viral pandemics exhibit successive waves or peaks of infections, the
key question is what physical model can explain and predict their occurrence
trends and timing? The present note expands the purely numerical study by
Aciola [1] by examining if the dynamic community-wide spread can be
described and understood using classical diffusion theory.

To avoid confusion, the relevant fundamental physics is completely distinct
from the use of the term “diffusion” by sociologists and political scientists to
qualitatively explain the varying implementation of pandemic countermeasures
and policies between nations [2].

The onset and subsequent progress of pandemics such as HIN1 in 1918 and
Covid -19 (aka SARS-CoV-2) in 2020, are well known and observed to be
characterized by multiple increases or “waves” of infections, peaking,
declining and returning over many 100’s of days. We do not re-iterate all the
well-documented features of pandemics and their behavior [ see, for example
3,4,5,6] ,or the many and various person-to-person infection pathways and
mechanisms [ see e.g.7 and 8 ]. We distinguish between: the dominant
mechanisms of initial (direct and local transmission) rapid spreading for the
first wave; and subsequently community spreading for the second and more
waves ( within region/country) being slowly transmitted. We postulate the first
peak or “wave” is also the result of rapid initial but mainly externally
introduced random infections as the virus attacks the first susceptible and
unaware hosts. Infections grow exponentially by unconstrained random person-
to-person transmission in a population without prior resistance or effective
countermeasures. The initial peak (what we term here Peak 1) is reached in
about 30 days, quickly spreading between countries/regions by which time
social and non-pharmaceutical intervention (NPI) countermeasures become
effective (e.g. improved hygiene, social distancing, improvised quarantines
etc..) and counterbalances the growth in the infection rate. The Peak 1 wave
is initial infections that grow according to initially rapid (few day)
transmission and incubation timescales, subsequently declining universally
according to learning theory adopting simple countermeasures [9,10].

Zero infection numbers or rates are not achieved or achievable (as known for
perennial influenza) leaving a finite probability and rate due to hidden
residual infections, asymptomatic cases and/or undetected importations. This
initially low level of subsequent mainly internally introduced or enabled
community-wide spread inside countries is widely observed, even in island
states where complete entry and viral import restrictions, mandates or controls
are possible (like Hawaii, Australia and New Zealand). The virus progressively
becomes fully embedded throughout the community, and largely undetected or
hidden progressively continues to spread. Since the initial infective decline is
competing against diffusive increase, the second wave onset only starts to be
discernable or noticeable many weeks after the Peak 1 at circa 30 days.
Eventually, after about 100 days, a second distinct “wave” or increase to a
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plateau (what we term here as Peak 2) is more clearly observed, which is also
reached before some balance is achieved between increased diffusive
transmission and effective countermeasures.

Even if not exactly followed by all regions, these overall data patterns, trends
and surges are compelling and apparently independent of continent, culture,
society or century, as shown in Figure 1 (the rates per day are normalized to
the first peak and the temporal evolution measured in days exceeding 100
initial infections as a nominal start or pandemic threshold). We hypothesize
that the second and subsequent waves have a fundamentally different physical
spreading character, having moved from the early rapid infection phase of
initial local populations dominated by rapid personal incubation timescales (3-
5 days) to slower and more extensive overall community spreading (50-100
days) dominated by slower societal interactions, more cautious behaviors and
residual infections'. These phases may of course overlap or not be entirely
distinct everywhere, so we look to data for guidance, quantification and
verification.

General idealized universal infection framework
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1. Initial random infections, ng, from external introduction with rapid rise
(incubation limited timescale, G)
2. Exponential rise to first wave peak, nyy, in circa 20- 30 days, dum;

' We utilize infection rates as a leading indicator of spread, while public health officials
usually focus on death numbers and rates which lag infections; and which fraction of
infections is variable being highly dependent on the propensity, vulnerability, medical
treatment and ages of the population so cannot be solely diffusivity dominated.
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3. Decline due to learning (countermeasure like awareness, hygiene, and
social distancing...), k
4. Minimum achievable infection rate (or detection threshold), np
5. Second “wave” apparent onset, ngy, at circa 50-100 days (community
spread limited timescale)
6. Second rise, n(d), from random inter-community spread (societally
embedded)
7. Second peak or plateau, nm2, at about, duz, circa 100+ days often larger
than first peak
8. Plateau or decline due to learning, countermeasures plus human host
spreading limits
9. Minimum “acceptable” or achievable rate achieved again
10. Additional waves possible (annual, seasonal, social...)
Figure 1 General idealized trends of pandemic infection waves over the last
century, with daily infection numbers normalized to the first peak

To model the physics, we postulate that after the initial peak this subsequent
community-wide spreading is dominated and governed by a diffusion process,
with infections seeping steadily and inevitably throughout the population. As
first pointed out by Aciola [1] for the first peak using purely numerical
solutions: “a simple diffusion model treats each individual in a population as a
Brownian particle ...added to this model is the incubation period of the virus
and a probability of transmission of the virus if individuals are closer than a
certain distance.”

Therefore, for second or other waves the problem and equation to be solved is
essentially Fick’s Law, where the net rate of change of infections at any
location is proportional to the incremental infection gradient. For any
infection number, n, at any time, t, conventionally:

on _ 2
5= DVvn (1)
The community diffusion coefficient, D, physically represents all random
person-to-person and intra-societal cross infections and is a key parameter and
has to be deduced from observational data. Equation (1) is a second order
differential equation, so is: (a) fundamentally more general than the first order
equations used in classic Ry and SEIR epidemiological spread models with
multiple adjustable parameters; (b) contains a very limited number of variable
physically- based coefficients that can be directly tested against or fitted to
data; and (c) therefore able to draw on the foundations and prior knowledge of
classical physics and methods for heat and concentration diffusion. The usual
SEIR and Ryp models [11, 12 and 13] have been fitted using some seven
parameters to first peak rise and decline data [e.g. 14,15] where the infection
increase rate is limited by personal incubation timescales. To illuminate the
physics, we seek an analytical solution to Equation (1) that is testable against
publically available data.

Method: Basic Theory, Postulates, Approximations and Derivation
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Exact solutions of equation (1) are numerical while we only seek a working
correlation at this time to aid our understanding. So for the second and
successive “waves”, we make simplifying assumptions and reasonable
approximations to enable the derivation of a basic analytical solution form for
the dynamic infection number trends, the accuracy of which can be determined
by later comparisons to data. Hence, even if and as countermeasures are
deployed, without complete isolation or elimination the virus spreads:

a) by diffusion in any local region(s) or cities, becoming inevitably
embedded in the wider community (regions of higher infection numbers
naturally infect regions with lower);

b) throughout any national or regional location, all the population equally
able to be randomly infected so the distribution of the virus is to first
order homogenous and any and all infections are equally possible;

c) with fundamental physics limiting the extent and rate of subsequent
community spreading as described by the classic Fick’s Law with
diffusivity parameters averaged over the population/region/society; and,

d) for initial simplicity, being equally possible affording a simple
homogenous and one-dimensional approximation, and the number of
infections ,n, is some fraction of the total possible ,N, where usually
n<<<N, depending on the overall community transmission mechanisms,
societal behaviors, and countermeasure effectiveness.

For some overall societal characteristic effective transmission scale, L, after
an elapsed time measured in days, d, the rate of change of infections or
number counted on any day, n(d,L), Equation (1), in one dimension becomes,

o pln (2)
ad 912
Using the usual non-dimensional formulation, 6 =nn_n: , with nominal
02— "'m

minimum achievable and second wave initial numbers, n,, and ny,,
respectively we have,

a9 _ . 9%9
ad ~ alL2

(3)

Prior physics and classic texts provides the analogous Fourier flux solution
satisfying Equation (3) [1,16,17] and is the wusual error function,

o) =1-erf{—t] (a)

(4Dd) /2
where, the term Lp= (4Dd)'’? is an effective overall community viral diffusive
penetration distance. To guide our thinking for present correlation and
trending purposes, for the large-scale ratios, L/(4Dd)''? , relevant to whole
communities and regions during diffusion, we can retain just the first term in
the series expansion [see 18 #586], so:
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Usually, the minimum number, n, << n(d) and ng, , so 6(d) = %. The
02

validity, accuracy and limitations of this (or any other) approximate analytical
solution must be demonstrated by data. For any chosen region this simple
solution (5) has the sensible limiting conditions, n—>n,asL—-0 , n - nyg,asd-
0, and n—>oasd - o for any given diffusivity, D. After the first wave, note
that we can expect to observe an initially slow square root increase in
infection numbers followed by an inevitable exponential increase at longer
elapsed times which is a prediction consistent with the observations (Figure
1). Writing Equation (5) in a convenient non-dimensional form, with L =Lp/L,
1
2

a(L") = (;) /2 L* e—(l/zL*)2 (6)

Using Equations (5) and (6) for describing the second wave requires
determining just two adjustable parameters: the diffusion coefficient, D m?/d;
and the assumed characteristic or effective length scale, L m, both of which of
course depend on some integration/aggregation of all the exact overall societal
viral transmission mechanisms (person-to-person, aerosols, crowds,
contamination, random exposure...) which we simply assumed to exist.
We can then also estimate the relative size and timing, dm2, for attaining Peak
2 when the diffusive growth is eventually balanced, assuming the same NPI
learning countermeasures are employed (e.g. social distancing, improved
hygiene, public awareness etc...) . For Peak 1, the decrease in the increasing
rate decreases when the daily transmission and incubation increase number,
nmi, 1S comparable to or balanced by countermeasures and public awareness.
For some learning constant, k, representing the effect of overall
countermeasures effectiveness and resilience during and after Peak 1 [10],
ny1(d)~ny; e (E~Kdm (7)
Here, the parameters for incubation growth, G, learning recovery, k, and peak

day, dmi, are known from the Peak 1 prior data trends (Figure 1) . This second

. . d
wave or “curve flattening” plateau has an asymptote given by ﬁ -0, so from

1
Equation (5), tends to flatten as , dy, — (L2/8kD) 2, i.e. governed by the ratio of

the learning reduction to diffusion increase e-folding rates. So, with
countermeasures, the ratio of the Peak 1 and Peak 2 infection numbers is, for
the nominal initial base or threshold numbers, ng; and ng,, respectively, from
equations (5) and (7),

2
oMz %{(SDdMZ/LZT[)l/Z e—(L /8DdM2_(G—k)dM1)} (8)
01

nm1
Given this approximate plateau, from equation (8) the predicted Peak 2 to

Peak 1 rate size ratio is of order, %{(BDdMZ/LG)l/Z e((G‘k)dMl"l)}, and is usually >
01

1 depending on effective initial learning and the ratio of the base infection
numbers. Using the ratio removes any dependency on uncertainties in actual
case counts, testing variations and reporting protocols.
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Results: Comparisons of theory trends to pandemic wave data

We directly examine the insights, if any, from diffusion theory using the
excellent numerical data for daily infection numbers available in downloadable
spreadsheet format from the open source world-in-data website? (accessed
ourworldindata.org/covid-cases), derived from WHO, Johns Hopkins University
and other reliable sources from January 2020, including local state data from
Departments of Public Health websites. As a reference origin, we adopt the
initial detection/reportable threshold of n>100 total cases as a datum for the
onset of significant infections, d=0, where varying this threshold has only a
minor impact as initial Peak 1 usually occurs in 20-30 days.

The origin of the minimum achieved rate at the second wave onset, 6(dy2), is
the lowest daily infection count continuously achieved following the
exponential decline from Peak 1 to normalize all subsequently increasing

daily infection rates, R~ = 0(d)/0(do2). To encompass widely separated and
differing societies, we performed test calculations for ongoing (as of October
15, 2020) and continuing infection data showing distinct second waves as
listed in the Table 1 for UK, Italy, France, Canada, and Australia. The latter is
specifically chosen as being a distinct “island state” with comparatively low
(but non-zero) rates but a second wave despite extensive internal controls and
border/entry restrictions.

The comparisons to the theory are shown in Figure 2, where the fits were
derived by simple comparison using the range of 0.012 <D< 0.014 m?*/s and
7<L<12 m values as shown in Table 1 and are largely independent of country.
These fitted parameter values in Table 1 indeed are consistent with a whole

society reaching a peak or plateau at dy, = (L2/8kD) 22200 days using

k~0.02/day as we previously derived for the recovery from Peak 1 in Italy and
also applicable for UK and Turkey. The estimated values for the long-term
diffusion coefficient in Table 1 and Figure 2 are all O(10*)m?*/d , and for L
~10 m ,so for d~100 days we have, L/(4Dd)"'? ~5, so the first term
approximation for Equation (5) is reasonable).

The overall agreements with such disparate data are not perfect (Canada and
UK exhibit over predictions) but the salient overall slowly growing trend and
100-200 day timescales are reasonable (especially for Australia, France and
Italy) given the approximations in the theory. Capturing the steep exponential
onset is also inexact at present. The Australia case with literally different
boundary conditions on infection control shows clearly that Peak 2 can also be
reached, while terminating the second wave growth as also observed in the
classic 1918 pandemic [4, 19,20].

2 Research and data contributors listed as Hannah Ritchie, Esteban Ortiz-Ospina, Diana
Beltekian, Edouard Mathieu, Joe Hasell, Bobbie Macdonald, Charlie Giattino, and Max
Rose; and web development Breck Yunits, Ernst van Woerden, Daniel

Gavrilov, Matthieu Bergel, Shahid Ahmad, and Jason Crawford
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Table 1 Country data with first peak and distinct second wave

Country/region |Start d=0, 2020 | Peak 1 rate |0(do)day |D m’/d [L m
Australia 18 March 715 81 0.013 10
Canada 12 March 2760 53 0.012 7
France 5 March 4610 107 0.014 10
Italy 25 February 6560 100 0.014 12
UK 7 March 5290 120 0.014 9

Table 2 US state data with first peak and distinct second wave

US state Peak 1 rate,npy Peak 2 rate,ny Ratio, nya2/nmq
Alabama 346 2143 6.2
Arkansas 323 992 3.1
Colorado 526 1139 2.2
Florida 1269 13965 11
Georgia 1333 4813 3.6
Idaho 131 878 6.7
Kansas 345 1040 3
Louisiana 1857 3840 2.1
Nebraska 645 1286 2
Washington 584 959 1.6
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Figure 2 Second wave trends compared to theory
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When recovery from Peak 1 is not always complete, ng,>ng;, ensuring that
Peak 2 is significantly larger, which is what is actually observed. For
countries already known to exhibit second wave peaks with recovery/decline,
Australia actually had a peak 1 to Peak 2 infection ratio of 2.2 and Japan of 3.
The still evolving USA data had a first peak of ¢ 30,000 at 40 days which,
after an initial decline, at 150 days merged into a second “wave” at 150 days
almost trending to a wavy plateau or still persisting rate of some 70,0000 ,
giving a peak ratio of circa 2.3.

Within a given society there is wide variation in /ocal infection numbers and
rates, so we made a more detailed “within country” analysis for the ten US
states which have exhibited a distinct or discernable early Peak 1 plus
evidence of already reaching Peak 2 or some plateau in daily rates after about
100+ days (accessed 15 October, 2020 at
https://coronavirus.jhu.edu/data/state-timeline/new-confirmed-cases/), As

shown in Table 2, there is a wide range of ratios with an average of %=4.1,
M1

higher than the above national average. These observations can be compared to
the predicted Peak 1 to Peak 2 number ratio from the diffusion model (equation
(8)). Using the above observed and fitted values of dy;~30 days, D~0.01 m?/d

, L~10 m, dy, ~100 days, (G-k) ~0.15 /day, gives M2 ~81%2 o1 a second

nM1 No1
Peak 2 or plateau of even an order of magnitude larger than the Peak 1
preceding it.

Having made these predictions and estimates, we examined the apparently
unique case of China’: (a) being the original source of the pandemic reaching
Peak 1 in 26 days of 4000 cases per day by February 13 2020; (b) exhibiting a
rapid decline from Peak 1 which followed learning theory and presaged global
recovery trends [9]; but (c¢) thereafter reporting low daily infection rates
(claimed to be mainly importations), with a barely discernable second wave
Peak 2 reported as 276 cases per day on July 31;and (d) maintaining almost
complete control of population movement and mobility, with enforced NPI
mandates and personal tracking. With low and fluctuating numbers, it is
difficult to uniquely pinpoint the second wave onset day, dno2, and rate value,
ng,, taken here as nominally day 100 with just 2 reported cases per day,
suggesting noa2/ng; ~ 2/100 =0.02, which would give nu2/nm; ~ 0.16, compared
to that reported or observed of 276/4000 ~ 0.07.

> This case study was suggested by Professor Francesco D’Auria as being of particular
importance in terms of the total population at risk.
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Figure 3 Comparison of theory to second wave data in China.

The comparison of the data to the fitted theory (Equation (5)) is shown in
Figure 3 using the same D=0.012 m?/d and L=10 m found for the Table 1
countries. This similarity suggests the fundamental physical diffusion and
societal transmission processes are globally the same; and that China exhibits
the same long-term embedding in the community as everywhere else.

While not claiming complete accuracy as further confirmation, as of the
submission date of this note, a wide range of second defined waves or plateaux
after troughs following Peak 1 are on-going and have not yet really declined
(e.g. current ratio examples include Austria (3), Belgium (8), Denmark (4),
France (8), Germany (2.3), Indonesia (4.5), Iran (2), Israel (9.5), Italy (3),
Nepal (7.6), Spain (2.3), Sweden (2), Canada( 1.6 ), and UK (5 )) . These
overall country ratios cover a similar range (2-12) to the US internal/regional
state ratios in Table 2, and encompass the Equation (8) estimate, which surely
is not a coincidence.

Presuming diffusion is the limiting phenomena, the present simple 1-D theory
cannot replicate every detail for more complex scenarios but can plausibly
explain as follows:

(a) mno discernable first peak appears because multiple numerous initially
rapid infections dominate initial national counts, followed by more
widespread cases over the 100’s of days of slow diffusive timescale,
notably as observed in Argentina and Brazil.

(b) only a slow recovery occurred after the initial rapid Peak 1, so many
thousands of cases were still occurring during the diffusion masking
the second wave onset which is then superimposed after about 150
days, as notably demonstrated by Russia and the USA
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(c) insignificant local initial infection numbers occur outside initial peak
regions but increase or onset of a peak also after about 100-150 days
solely due to slow progressive internal diffusive spread throughout a
region, notably say for states like Alabama, Alaska, , Wisconsin and
some European countries.

Beyond the scope of the present paper, these detailed trends require a more
complex intra-regional analysis. An initial analysis for case ( a) of no local
Peak 1 but a “second wave” emerging within the community after 100 days
found the same D and L parameters as for whole countries which further
supports the basic diffusion concept.

Ascribing physical significance, the overall characteristic diffusive length
scale of approximately 10 m is then an effective overall societal distance not
inconsistent with realistic or feasible transmission dimensions [21]. The order
of magnitude for, D, is a factor of more than 10,000 smaller than the 107%-1073
m?”/s associated or expected for local airborne atmospheric particulate or
aerosol spreading mechanisms [see e.g. 21,22] reflecting the slow onset of
second and other waves are simply the consequences of normal human
interactions and overall social risk-taking behavior[23]. The only perfect
diffusion “barrier” or so-called “circuit breaker” is complete isolation for
everyone everywhere, which is not feasible and why pandemic second and more
waves persist.

Conclusions

We have made second wave size and timing predictions by adopting the
dominant physics of community spreading as being diffusion limited. This
simple physical concept explains the successive “waves” or recurrences of high
infection numbers after 100’s of days since the first cases. Any residual,
asymptomatic or undetected infections ensure the virus becomes slowly and
inexorably embedded throughout the entire community after the initial rapid
infection onset and partial recovery due to countermeasures.

To obtain physical insight, we have derived explicit approximate equations
using the simplest homogenous one-dimensional diffusion model. Two
physically-based variables, a characteristic societal length scale and an
effective community wide diffusion coefficient, provide the major trends in
the daily infection number trends for second waves have been fitted to the data
for a wide range of countries and regions. The relative size of the second and
subsequent peaks have been estimated where the peak or plateau of the second
wave(s) is also limited by the relative (in)effectiveness of NPI
countermeasures and societal learning effects. The policy implications of such
inexorable diffusive spread must be by recognizing potentially larger infection
waves will inevitably occur and planning for that eventuality. Further work is
suggested to extend the physical diffusion theory concept to multiple regions
and dimensions.
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Nomenclature

Effective community diffusion coefficient
Elapsed time in days
Initial characteristic infection rate
Learning countermeasure characteristic rate
Characteristic transmission societal scale

* Diffusive scale ratio, (4Dd/L?*)'"?

PI Non-pharmaceutical intervention

Number of infections in any day

Infection number ratio, R* = 0(d)/0(do).

Time

Non-dimensional number ratio (eq 5)

Subscripts

M1 Maximum value at Peak 1

M2 Maximum or asymptotic value of second wave

m Minimum achieved or attainable value
0 Initial or beginning value
01 Initial value for onset of Peak 1

02 Initial value for onset of second wave
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