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Abstract 35 

Familial Adenomatous Polyposis (FAP) is an autosomal dominant disorder caused by mutation 36 

of the APC gene presenting with numerous colorectal adenomatous polyps and a near 100% 37 

risk of colon cancer. Preliminary research findings from our group indicate that FAP patients 38 

experience significant deficits across many cognitive domains. In the current study, fMRI brain 39 

metrics in a FAP population and matched controls were used to further the mechanistic 40 

understanding of reported cognitive deficits. This research identified and characterized any 41 

possible differences in resting brain networks and associations between neural network 42 

changes and cognition from 34 participants (18 FAP patients, 16 healthy controls). Functional 43 

connectivity analysis was performed using FSL with independent component analysis (ICA) to 44 

identify functional networks. Significant differences between cases and controls were observed 45 

in 8 well-established resting state networks. With the addition of an aggregate cognitive 46 

measure as a covariate, these differences were virtually non-existent, indicating a strong 47 

correlation between cognition and brain activity at the network level. The data indicate robust 48 

and pervasive effects on functional neural network activity among FAP patients and these 49 

effects are likely involved in cognitive deficits associated with this disease. 50 

 51 

(Keywords: Familial Adenomatous Polyposis, fMRI, Resting State Networks, Cognition, 52 

Adenomatous Polyposis Coli) 53 

 54 

 55 

 56 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 4, 2020. ; https://doi.org/10.1101/2020.11.02.20224477doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.02.20224477


4 

 

Introduction 57 

Familial Adenomatous Polyposis (FAP) is an autosomal dominant disorder caused by 58 

germline mutations in the APC (adenomatous polyposis coli) gene. This disease presents at 59 

young age with multiple adenomatous polyps in the colorectum and leads to early-onset 60 

cancer. If left untreated, these patient develop colorectal on average by the fourth decade of 61 

life (Fearnhead, Britton, & Bodmer, 2001). The frequency of the disease is estimated to be  1 in 62 

8,000 persons (Bisgaard, Fenger, Bulow, Niebuhr, & Mohr, 1994).  63 

 Based on anecdotal clinical observations of behavioral and cognitive difficulties, 64 

researchers have recently become interested in examining cognitive function in FAP patients. A 65 

2010 study by researchers at the Cleveland Clinic reported that though FAP patients have IQs 66 

parallel with the general population, hearing/language-dependent verbal scores were 67 

significantly lower than those without the mutation (O'Malley et al., 2010). Preliminary data in 68 

a small sample, sibling-paired pilot study suggested that siblings who are FAP positive are more 69 

likely to suffer from behavioral and emotional problems than their healthy siblings (Azofra et 70 

al., 2016), and a prior study reported a high incidence of formal psychiatric diagnoses 71 

(especially anxiety diagnoses) in FAP adolescents (Gjone, Diseth, Fausa, Nøvik, & Heiberg, 72 

2011). The most recent investigation of neurocognitive function of FAP patients identified and 73 

characterized robust deficits in several cognitive measures (particularly long term retrieval and 74 

cognitive fluency), suggesting that APC protein plays a critical role in cognition (M. R. Cruz-75 

Correa et al., 2020). 76 

 The pilot study from 2016 identified no significant differences in brain morphology 77 

comparing healthy siblings to FAP sibling counterparts, and this was the first time an FAP 78 
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population had been studied for neuroanatomical differences using magnetic resonance 79 

imaging (MRI) (Azofra et al., 2016). Given lack of understanding of the neurological and 80 

neurocognitive effects of this disease, the objective of the current study was to develop a more 81 

robust understanding of how FAP affects brain function. The present study employed resting 82 

state functional MRI (fMRI) to investigate potential neural substrates for cognitive deficits in a 83 

homogenous Hispanic population. To our knowledge, this is the first study of FAP patients using 84 

resting-state fMRI, which is ideally suited to the study of neurocognitive differences and related 85 

mechanisms (Hawes, Sokolowski, Ononye, & Ansari, 2019; LaClair et al., 2019; Li & King, 2019; 86 

Picó-Pérez et al., 2019; Sripada et al., 2019).   87 

Methods 88 

MRI data acquisition 89 

Magnetic resonance images were acquired using a GE Discovery MR750 3T Scanner 90 

(General Electric Healthcare, Chicago, Illinois). An axial resting-state functional magnetic 91 

resonance imaging scan was performed on 34 individuals, which included 18 with FAP and 16 92 

healthy controls (HC). The group consisted of 16 males and 18 females, (mean age of controls: 93 

30.75; cases: 31.44 years). Axial fMRI scan time was approximately 6:15 (mm/ss). The scanner 94 

was equipped with a standard 8-channel head coil. Scan parameters: Frequency FOV (22.4), 95 

Slice thickness (3.5), Flip angle (90), Pixel size (3.5x3.5), Pulse (Gradient Echo EPI), Sequential 96 

Slice Order, Acquisition TR (2500msec).  97 

Participants 98 

Inclusion criteria for cases included genetically confirmed FAP (based on a mutation on 99 

the APC gene performed by commercial laboratory testing), ageM≥M10Myears, able to assent 100 
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(children) and consent (adults) to participate in this study, and able to complete all 101 

neurocognitive testing. Inclusion criteria for controls included no known family history of FAP, 102 

negative clinical diagnosis of FAP based on colonoscopy (for adults), and willingness to undergo 103 

neurocognitive testing. Participants were all Spanish-speaking individuals from Puerto Rico. As 104 

education and age are correlated with IQ, cases were matched to non-FAP control individuals 105 

with regards to age (± three years), gender, and education (less than high school, at least high 106 

school, bachelors-degree or post-graduate education). Exclusion criteria for both cases and 107 

controls included previous diagnosis of any major psychiatric condition given the potential 108 

impact of these conditions on neurocognitive functioning, inability to sign/assent/consent study 109 

participation, or complete the neurocognitive tests. 110 

Participants signed informed consent (or assent for children) prior to participation in the 111 

study and were evaluated at the Puerto Rico Clinical and Translational Research Consortium at 112 

the University of Puerto Rico (UPR) Medical Sciences Campus. The research protocol was 113 

approved by the Institutional Review Board of the UPR Medical Sciences Campus. 114 

Independent Component Analysis (ICA) 115 

 Independent component analysis is a tool often used to separate a specific signal or 116 

“blind signal separation” from a host of signals (McKeown et al, 2010). In this study, ICA was 117 

employed to parse out the specific signals generated by fMRI and identify potential noise 118 

artifacts. Based on established practices in previous studies using FSL and ICA, a total number of 119 

30 ICs were extracted to avoid overfitting and underfitting of the dataset (Woolrich et al, 2009). 120 

Group-level ICA was performed using well-defined resting state networks (RSNs)(Smith et al, 121 

2009). 122 
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Data Preprocessing  123 

Raw fMRI images were processed using FSL (figure 2). Slice timing correction was 124 

implemented in a bottom/up order. Within FSL, Independent Component Analysis (ICA) was 125 

used to visualize significant components. Motion was corrected for by omitting any 126 

components that displayed rapid changes in both time series and power spectra after an initial 127 

pass using FSL’s MELODIC ICA tool with a subsequent second correction being done manually, 128 

removing any components that showed noise based on the recommendations of Griffanti et al, 129 

2016. Images were then concatenated and dual regressed. FSL’s “randomize” function was 130 

implemented with a threshold of Z>2.3 or P<0.05 and 10,000 permutations were run to ensure 131 

significance held at the .05 level (n= 10,000, 0.0500 ± 0.0044). A matrix was designed within the 132 

tool to display any differences in rsFC when comparing control patients to cases (Control>Case, 133 

Case<Control). The networks presented in this paper were chosen based on commonly seen 134 

RSNs in previous studies that detailed network differences in populations with cognitive 135 

impairments. 136 

 137 

Table 1.  Demographic characterization and cognitive data of study population.   138 

FAP (n = 18) Controls (n=16) 

Male 8 8 

Female 10 8 

Age (years) 31.44 (SD 14.6 ± 3.44) 30.75 (SD 15.22 ± 3.80) 

Cognitive Score (Batería 

III Woodcock Mũnez) 78.50 (SD 12.04 ± 2.83) 96 (SD 8.58 ± 2.14) 

 139 
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140 

 141 

Figure 1: fMRI analysis workflow using Independent Component Analysis. 142 

Cognitive Measures 143 

 Based on the cognitive assessments employed in the proof-of-concept paper (Cruz-144 

Correa et al, 2020), an omnibus cognitive measure was created by averaging the nine cognitive 145 

domains from the Batería III Woodcock Mũnez.  These measures consisted of: Cognitive 146 

Efficiency, Working Memory, Long-Term Retrieval, and Executive Function, Verbal Ability, 147 

Processing Speed, Phonemic Awareness, Cognitive Fluency, and Thinking Ability. This omnibus 148 

score was then averaged between groups and introduced as a covariate into the GLM matrix of 149 

the fMRI data. The FAP group had an average cognitive score of 78.50 (SD 12.04, N=18) and the 150 

mean for the healthy controls was 96 (SD 8.58, N= 16). 151 

8 
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Results 152 

Resting State 153 

Differences in resting state data were seen in approximately 8 well-established 154 

networks identified in previous works (Smith et al., 2009). The Left Frontoparietal Network 155 

(LFPN), Visual Medial Network, Default Mode Network (DMN), Task-Positive Network (TPN), 156 

Salience Network, Lateral Visual Network, Executive Control Network (ECN), and Auditory 157 

Network were all noted as the most identifiable networks (fig. 1). rsfMRI data was coregistered 158 

to the standard MNI152 template for visualization (Montreal Neurological Institute) (Fonov et 159 

al., 2011). Additionally, a secondary analysis of the FAP group revealed no significant 160 

differences when accounting for genotype-phenotype severity using “attenuated” and “classic” 161 

FAP as covariate groupings (M. Cruz-Correa & Giardiello, 2003; M. R. Cruz-Correa et al., 2020). 162 

Cognition as a Covariate 163 

 Group differences between all nine of the cognitive variables were statistically 164 

significant both independently and when combined to form the aggregate score used in the 165 

rsfMRI analysis (p<0.05). When adjusting for cognition as a covariate to the rsfMRI data, 166 

significant differences were virtually eliminated, with only indications of minor differences 167 

throughout the components. This suggests a high correlation between cognitive functioning 168 

and rsfMRI findings. 169 

 170 

 171 

 172 
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Figure 2:  Activation maps of significant group differences projected onto MNI-152 standard 174 

space  displaying clusters resembling 8 well-established brain networks (right, Smith et al, 175 

2019). Upon introduction of the omnibus cognitive covariate into the GLM, cluster activation 176 

was no longer present (left).   177 

 178 

Discussion 179 

 The present study represents the first report of significant differences in resting state 180 

functional connectivity in FAP patients, with robust alterations in 8 brain networks which 181 

mediate cognition and sensory perception, compared to healthy controls.  These neural 182 

network alterations were strongly linked to previously reported cognitive deficiency in FAP 183 

patients (Cruz-Correa et al., 2020).   Observed differences in neural network cluster activation 184 

between FAP cases and healthy controls were correlated to cognition.  Although this study 185 

cannot determine causality, this result indicates a strong association between cognition and 186 

brain-wide network activation.  In combination with these cognitive deficits, the present data 187 

suggest that dysfunction in the APC protein affects functional neural connectivity in a broad 188 

range of cognitive and, perhaps, sensory brain networks and regions.  Potential implications of 189 

the network specific findings and how they relate to previous literature in APC relevant topics, 190 

including depression, schizophrenia, autism, sensory perception and general cognition, are 191 

pertinent here. 192 

The LFPN has been implicated as a network potentially involved in aphasias and in 193 

certain stroke patient’s decrease in language function (Zhu et al., 2014). The LFPN component 194 

identified in our analysis was primarily comprised of activation in the superior temporal gyrus, 195 
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middle temporal gyrus, and precentral gyrus.  Cognitive processing speed has been specifically 196 

linked to lateralization in FP networks (Chechlacz, Gillebert, Vangkilde, Petersen, & Humphreys, 197 

2015). From an evolutionary and developmental perspective, specific and minor 198 

neuroanatomical changes in frontoparietal networks have substantial effects on cognition 199 

(Vendetti & Bunge, 2014), and developmental alterations of frontoparietal connectivity predict 200 

symptom load in high functional autism patients (Lin et al., 2019).  It will be valuable to follow 201 

cognitive aging in FAP patients, as cognitive processing networks, including frontoparietal, are 202 

particularly susceptible to age related decline (Nashiro, Sakaki, Braskie, & Mather, 2017). 203 

The Medial Visual Network (MVN) is essential for performing both simple and higher 204 

order visual tasks (Heine et al., 2012). This network presents as activity localized in a bi-205 

temporal manner in the most anterior portion of the brain, centralized in the striatum 206 

(Castellazzi et al., 2014; Coppen, Grond, Hafkemeijer, Barkey Wolf, & Roos, 2018).  Decreased 207 

connectivity in the MVN in schizophrenia and bipolar patients are associated with cognitive 208 

deficits (Jimenez, Riedel, Lee, Reavis, & Green, 2019).  Furthermore, congenital hypertrophy of 209 

the retinal pigment epithelium, which could affect connectivity patterns in visual networks, has 210 

been observed in FAP (Laghmari & Lezrek, 2014; Traboulsi, 2005), although this was not 211 

examined in the present study.  Decreased connectivity with the MVN was reported in 212 

temporal lobe epilepsy patients with cognitive deficits (H. Yang et al., 2018).  It is postulated 213 

that connectivity alterations in the MVN adversely affect the processing of visual stimuli in FAP 214 

patients, resulting in decreases in processing speed and cognitive efficiency. 215 

The Default Mode Network (DMN), used as a standard network in most neuroimaging 216 

studies, with its activity observed across a wide variety of tasks and pathologies (Haatveit et al., 217 
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2016), was also identified in our ICA analysis of FAP patients. This network is associated with 218 

autobiographical thought, including moments of self-reflection, and often deactivates when 219 

subjects are actively completing functional paradigms (Smith et al., 2009).  Gray matter volume 220 

in regions typically showing activation resembling the DMN is predictive of the progression of 221 

mild cognitive impairment (MCI) to Alzheimer’s disease (AD)(Eyler et al., 2019; Petrella, 222 

Sheldon, Prince, Calhoun, & Doraiswamy, 2011; Wang et al., 2013).  Late life depression is also 223 

associated with alterations in DMN connectivity (Alexopoulos et al., 2012), and the beneficial 224 

effects of mindfulness based cognitive therapy on depression symptoms (included cognitive 225 

deficits) are correlated with changes in DMN connectivity (Cernasov et al., 2019).  In 226 

schizophrenia, deficits in typical activation of the prefrontal cortex (PFC) is related to specific 227 

components of the DMN (Hu et al., 2017), suggesting that future internetwork and whole brain 228 

connectivity analyses in FAP would be valuable (Pan et al., 2018; Varangis, Razlighi, Habeck, 229 

Fisher, & Stern, 2019). 230 

The Task Positive Network (TPN) is generally comprised of two bilateral crescent-like 231 

clusters spanning the dorsolateral prefrontal cortex and sensorimotor areas around the 232 

temporoparietal junction (Corbetta, Kincade, & Shulman, 2002; Fox et al., 2005; Grady et al., 233 

2010). This network is most active during attention demanding tasks and exhibits correlated 234 

fluctuations in activity with task accuracy. The TPN is commonly paired with the DMN as it is 235 

generally anticorrelated with the DMN activation, however, the DMN has similarly been shown 236 

to be active in specific tasks as well (Haatveit et al, 2016).  Changes in TPN interaction with the 237 

DMN have been implicated in adverse cognitive patterns in depression, such as rumination 238 

(Hamilton et al., 2011).  In a study of the performance of young and old participants in visual 239 
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cognitive tasks, changes linked to decreased neurocognitive efficiency were observed in both 240 

the DMN and TPN (Grady et al., 2010).  The TPN is also altered in patients with mild cognitive 241 

impairments (MCI) supporting the hypothesis that increased TPN activity may be a 242 

compensatory response to neurodegeneration (Melrose et al., 2018).  Changes in the TPN 243 

and/or how it interacts with the DMN may mediate attention related aspects of cognitive 244 

deficits in FAP patients. 245 

The major regions of the salience network (SN) include the amygdala, substantia nigra, 246 

thalamus, and hypothalamus (Seeley et al., 2007). This network plays a role in processing of 247 

rewards, cognitive control, and behavior (Ham, Leff, de Boissezon, Joffe, & Sharp, 2013). The SN 248 

is activated in the presence of particularly salient stimuli, and this network may be correlated 249 

with feelings of anxiety when assessed pre-MRI scan (Seeley et al., 2007).  Typical internetwork 250 

connectivity patterns with the SN are disrupted in MCI, and the degree of disruption is 251 

associated with the degree of overall cognitive deficit (Chand, Wu, Hajjar, & Qiu, 2017).  Similar 252 

to studies of the TPN, this role of SN in cognition was not limited to MCI, and the SN may be 253 

another region with a key role in age related cognitive changes (La Corte et al., 2016).  254 

Hyperconnectivity within the SN may be a defining feature of autism spectrum disorders (Uddin 255 

et al., 2013), and atypical connectivity between the DMN and SN suggest similar neural 256 

mechanisms in ASD and schizophrenia (Chen et al., 2017).  While additional longitudinal data 257 

are needed, FAP mediated changes in the SN may be the result of abnormal 258 

neurodevelopmental and/or premature age related alterations. 259 

The lateral visual network (LVN) has been attributed to helping to facilitate 260 

sensorimotor processes (Castellazzi et al., 2014). It commonly presents as activation in the 261 
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occipito-temporal and parietal regions and is associated with the observation of highly 262 

appealing visual stimuli (Belfi et al., 2019).   A study of late life depression, which often involves 263 

cognitive deficits, reported significant alterations in visual networks (Eyre et al., 2016).  In 264 

addition, both major depression and schizophrenia patients exhibit differences in visual 265 

network connectivity compared to healthy controls (Wu et al., 2017).  Hence, FAP related 266 

changes in both the lateral and medial visual networks may adversely affect the processing and 267 

response to visual stimuli. 268 

The Executive Control Network (ECN) is comprised of fronto-localized activation, with 269 

regions including the anterior cingulate and paracingulate (Zhao, Swati, Metmer, Sang, & Lu, 270 

2019). This network is important in facilitating executive function. One study examining 271 

cirrhotic patients (liver disease) showed that patients performed significantly worse than 272 

controls on a Stroop Task as well as the performance showing a significant correlation with 273 

disrupted ECN connectivity (Yang, Chen, Chen, & Lin, 2018). Similarly, this network has recently 274 

been implicated in studies of major depressive disorder, with increased activation to specific 275 

network-related areas (Zhao et al., 2019).  A lack of segregation between ECN and DMN 276 

activation was correlated with decreased processing speed in a longitudinal study of healthy 277 

older adults (Ng, Lo, Lim, Chee, & Zhou, 2016).  As individuals age, the functional specialization 278 

of these two networks is attenuated.  Decreased network segregation is implicated in major 279 

depression, where connectivity with the ECN and between the ECN and DMN is disrupted 280 

compared to non-depressed controls, potentially representing compensatory cognitive 281 

mechanisms (Albert, Potter, Boyd, Kang, & Taylor, 2019).  Future studies of the mechanisms 282 
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mediating cognitive deficits in FAP patients should focus on the role of the ECN, its functional 283 

connections with the DMN, and potential moderating factors, such as depression. 284 

The auditory network presents as activation in the insula, auditory cortices, cingulate, 285 

and occipital cortices (Maudoux et al., 2012), and is primarily responsible for processing and 286 

parsing auditory stimuli. This network has been investigated for its potential involvement in 287 

processing fearful stimuli, with emotional “hubs” being associated with its activity (Koelsch, 288 

Skouras, & Lohmann, 2018).  Auditory deficits have been reported in FAP patients in the 289 

absence of significant differences in IQ (O'Malley et al., 2010), although another investigation 290 

did not observe significant impairments (Jones et al., 2010).  The APC protein is essential for 291 

cellular processes related to cochlear sensitivity, and since these are common cellular 292 

processes, it is suggested that APC mediates synaptic maturation in wide variety of tissues 293 

(Hickman, Liberman, & Jacob, 2015).  It is possible that auditory deficits in FAP patients could 294 

be mechanistically mediated by effects at the ear and/or auditory processing nuclei. 295 

Limitations 296 

 Main limitations of this study include the use of an aggregate cognitive score due to 297 

small sample size, the presence of only one imaging time point, and the lack of structural data.  298 

While the use of an aggregate cognitive score precludes associations between specific types of 299 

cognition and network connectivity changes, this was justified based on the consistency across 300 

cognitive scores, the small sample size, and the focus on general conclusions strongly supported 301 

by the imaging data.  Future studies would benefit from additional data points and the inclusion 302 

of structural MRI data to investigate the etiology of these cognitive deficits in FAP patients in 303 

early through late life. Although structural changes are likely given the role of APC in 304 
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neurodevelopment and structural-functional relationships in cognition, the current manuscript 305 

can only speculate on these changes due to the focus on functional data. 306 

Conclusion 307 

 Resting state functional connectivity in FAP patients is substantially disrupted in a broad 308 

range of networks critical to cognition and visual and auditory stimuli processing.  These 309 

alterations in connectivity are strongly associated with overall cognitive deficits in these 310 

individuals.  Taken together, the APC gene appears to play a critical role in neurocognitive 311 

function and sensory processing, and could negatively affect development through changes in 312 

neural connectivity.  Future studies should characterize changes in neurocognition and auditory 313 

and visual sensation and processing throughout the lifespan to characterize the progression of 314 

related deficits in FAP patients. The role of the APC protein in other neurodegenerative 315 

disorders, such as autism and schizophrenia, is warranted.  316 

 317 
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