It is made available under a [CC-BY-NC-ND 4.0 International license](http://creativecommons.org/licenses/by-nc-nd/4.0/) .

Mapping the human helminthiases: a systematic review of geospatial tools in medical parasitology ²

Catherine G. Schluth¹, Claire J. Standley², Shweta Bansal¹ and Colin J. $Carlson^{1,2,†}$

 1 Department of Biology, Georgetown University, Washington, D.C. 20057, USA. ² Center for Global Health Science and Security, Georgetown University Medical Center, Washington, D.C. 20057, USA.

 \dagger Correspondence should be directed to colin.carlson@georgetown.edu.

August $6, 2022$

4

Abstract 10

Helminthiases are a class of neglected tropical diseases that affect at least one billion ¹¹ people worldwide, with a disproportionate impact in resource-poor areas with limited disease ¹² surveillance. Geospatial methods can offer valuable insights into the burden of these infections, particularly given that many are subject to strong ecological influences on the environmental, ¹⁴ vector-borne, or zoonotic stages of their life cycle. In this study, we screened 6,829 abstracts 15 and analyzed 485 studies that use maps to document, infer, or predict transmission patterns 16 for over 200 species of parasitic worm. We found that quantitative mapping methods are $\frac{17}{17}$ increasingly used in medical parasitology, drawing on One Health surveillance data from the 18 community scale to model geographic distributions and burdens up to the regional or global ¹⁹ scale. However, we found that the vast majority of the human helminthiases may be entirely 20 unmapped, with research effort focused disproportionately on a half-dozen infections that ²¹ are targeted by mass drug administration programs. Entire regions were also surprisingly 22 under-represented in the literature, particularly southern Asia and the Neotropics. We 23 conclude by proposing a shortlist of possible priorities for future research, including several ²⁴ neglected helminthiases with a burden that may be substantially underestimated. ²⁵

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

It is made available under a [CC-BY-NC-ND 4.0 International license](http://creativecommons.org/licenses/by-nc-nd/4.0/) .

Introduction 26

Infections with parasitic worms, or *helminthiases*, have a massive global burden on human 27 health. More than a billion people are infected with soil-transmitted helminths alone (1) , with \approx a total burden of over 3.3 million disability-adjusted life years (DALYs) [\(2\)](#page-17-1); these may be \approx underestimates, given more recent estimates that hookworm alone may account for more than $\frac{30}{20}$ 4 million DALYs [\(3\)](#page-17-2). The burden of these infections is highly heterogeneous over space, from $\frac{31}{21}$ case clustering at the community level up to the global scale. Helminthiases persist and recur $\frac{32}{2}$ disproportionately where healthcare systems are too limited for routine treatment, preventative $\frac{33}{20}$ therapies, and case management; but these areas are, conversely, often the places where dis- ³⁴ ease surveillance is most limited, and so the burden of these infections is most poorly characterized. $\frac{35}{20}$

36

46

Many previous studies have therefore identified geospatial analysis as a key part of scientific $\frac{37}{20}$ and clinical work on helminthiases. As a basic tool of descriptive epidemiology, maps are one of $\frac{38}{8}$ the simplest, easiest way to visualize data, communicate risk, and engage local communities in ³⁹ participatory research methods. Morever, geospatial modeling can help fill knowledge gaps about $\frac{40}{40}$ the prevalence or incidence of infectious diseases in under-sampled regions, turning clinical data $_{41}$ into a more continuous view of transmission. With enough data, this approach can be used to $\frac{42}{4}$ translate local prevalence surveys into regional and global estimates of incidence or burden. Along $\frac{43}{43}$ the way, geospatial modeling often illuminates environmental and social risk factors for disease, ⁴⁴ and perhaps most importantly, helps practitioners target, evaluate, and improve interventions. $\frac{45}{100}$

Previous reviews of infectious disease cartography have evaluated research effort and set priorities $\frac{47}{47}$ for future pathogens to map $(4; 5)$ $(4; 5)$ $(4; 5)$, but have only minimally addressed the human helminthiases. A systematic analysis of research trends could help identify the limitations of existing data, target ⁴⁹ interventions more effectively, and broaden the scope of helminth research and control. Here, so out of over 6,000 candidate mapping studies, we examine a total of 485 scientific studies that $\frac{1}{10}$ developed empirical maps of over 200 helminth species known to infect humans. From these $\frac{52}{20}$ studies, we evaluate trends in research methodology and scope, highlight global gaps in research 53 effort, and propose a list of neglected helminthiases that researchers (and surveillance systems) ⁵⁴ could prioritize in future geospatial studies. ⁵⁵

$\bf{Methods}$

Identifying candidate species 57

To compile a list of human-associated helminth species, we used a recently-published dataset ss of host-parasite associations curated by the Natural History Museum in London (NHM). (6) From these data, we compiled a list of human helminthiases by searching for associations with ϵ Homo sapiens, and recording the number of references listed for each species. There were $407₆₁$ helminth species on this initial list. To verify whether each helminth species is still considered 62 taxonomically valid and is capable of infecting humans, we manually searched for records of ϵ ₅₃ human infection for each species. In Google Scholar, we used the search queries "[species name]" and "human*" to search for records of human infection. In Google, we used the search queries 65 "[species name]" and "syn^{*"} to determine if species with no records or only old records of human 66 infection have since been renamed. We removed a species from the study if we could find no ϵ evidence that the species infects humans, the species name was found to be synonymous with a ϵ more recent species name on the list, there was conflicting evidence as to whether the species can infect humans, or the species was found to infect humans only in a hybrid with another helminth π species. This left a total of 232 taxonomically-valid human helminthiases. $\frac{71}{11}$

It is made available under a [CC-BY-NC-ND 4.0 International license](http://creativecommons.org/licenses/by-nc-nd/4.0/) .

S ystematic review $\frac{72}{72}$

Taking an iterative approach to data collection, we used Wuchereria bancrofti as a test species to $\frac{1}{3}$ determine which search terms would be most effective to retrieve helminth mapping studies. On $_{74}$ Google Scholar, we used the search queries "Wuchereria bancrofti" and "mapping." Based on τ an informal analysis of the results, we selected a final set of keywords that consistently signaled τ_{6} that empirical spatial analysis was undertaken. Our final search query was "[species name]" and π ("SaTScan" or "MaxEnt" or "spatial cluster*" or "spatial analysis" or "geospatial" or "ecological ⁷⁸ niche model*" or "mapping" or "nearest neighbor" or "spatial GLM^* "). To identify candidate τ studies, we searched PMC and PubMed for these terms with each of the 232 helminth species, $\frac{80}{100}$ one by one. Our search may have missed mapping studies that were written and published in $\frac{1}{81}$ other languages, as well as grey literature produced by health ministries or non-governmental ⁸² organizations; as such, our study represents only a snapshot of the retrievable literature.

Our literature review was conducted between November 2018 and May 2019 (and is, as such, ss limited to the pre-pandemic period), following PRISMA guidelines (see Figure S1). We included \bullet studies in our dataset if they presented novel data or a new modeling product representing the $\frac{87}{100}$ known or predicted spatial distribution of a helminth species, the condition(s) it causes, and/or $\frac{88}{100}$ the medication used to treat it; studies were excluded if they did not use empirical data to $\frac{1}{89}$ generate either a map-based visualization or a spatial model of human helminthiasis infection \sim over space. Two authors conducted the review and both verified each study that was selected for ⁹¹ inclusion. In total, we found 485 studies that mapped a total of 45 helminth species. For each $\frac{92}{2}$ study in the final dataset and analysis, we recorded all available information on: the full binomial $\frac{93}{2}$ nomenclature of helminth species being mapped; the citation for and link to each study; the year 94 each study was conducted; the spatial scope of each study; the specific methodologies used in each $\frac{95}{2}$ mapping effort; the sample size and type in each study; whether each study addressed uncertainty set and population at risk; whether each study examined coendemicity and/or coinfection among $\frac{97}{2}$ helminth species or between helminth species and other diseases; and whether each study had its data publicly archived.

Ontology of study methodology 100

84

We classified the mapping methodology of studies into a handful of non-exclusive categories: $\frac{101}{100}$

- Grey data describes the presentation of spatial point data of either cases or positive- ¹⁰² negative testing results. For attempts to develop *post hoc* databases and risk maps, these $\frac{103}{200}$ are data that could be heads-up digitized and reused (provided they have not been jittered $_{104}$ for data security and anonymization). 105
- Prevalence mapping refers to raw or aggregated prevalence data presented on a map; 106 like grey data, this is a presentation of raw data, but with more granularity with respect to $\frac{107}{107}$ intensity of transmission. For our purposes, this also includes non-prevalence quantitative 108 measures of transmission intensity, like fecal egg counts.
- Prevalence modeling refers to using statistical models to analyze or reconstruct patterns 110 of prevalence, involving either a model with an explicit spatial component or spatial ¹¹¹ covariates (like climate data), or spatial autocorrelation analyses such as Moran's I or ¹¹² autocorrelograms. (For example, a binomial logistic regression that is stratified by age and 113 sex alone would not qualify for this; such a model incorporating distance to rivers, gridded $_{114}$ rainfall, or a conditionally autoregressive term would qualify.) 115

It is made available under a [CC-BY-NC-ND 4.0 International license](http://creativecommons.org/licenses/by-nc-nd/4.0/) .

- Cluster analysis refers to spatial clustering methods like SaTSCAN or directional distribution models (standard deviation ellipse), a subset of prevalence modeling focused on ¹¹⁷ identifying specific, discrete points and areas of case clusters or transmission hotspots.
- Risk mapping refers broadly to the projection of modeled risk surfaces over a continuous 119 area or at regional levels; this involves at least some amount of inference of risk, from a 120 model of prevalence or occurrence, and visual presentation of modeled results (i.e., not 121 hand-drawn or expert-informed maps).
- Ecological niche modeling is a subtype of risk mapping, for when authors explicitly $_{123}$ refer to habitat suitability models, ecological niche models, or species distribution models ¹²⁴ as the methodology being used. Risk maps with ecological covariates are arguably habitat 125 suitability models *sensu lato*, but not necessarily part of that specific body of literature. 126
- Finally, endemicity mapping refers to the delineation of known or suspected zones of 127 endemicity or transmission, based on historical or published data reused or consolidated 128 to identify likely zones. For example, this can be the identification of possibly at-risk ¹²⁹ communities, or the mapping of survey results at the national level for a whole continent. 130

$\textbf{Results}$ and $\textbf{131}$

147

Helminthiases are a topic of growing interest in medical geography 132

We found a total of 485 studies that mapped human helminthiases across a mix of scales, regions, 133 pathogens, and purposes. The number of helminth mapping studies has steadily increased since ¹³⁴ the year 2000 (Figure 1), and the field is still growing rapidly. Across all time periods, we ¹³⁵ found that most studies use maps first and foremost as a data visualization tool (case occur- ¹³⁶ rence data or prevalence maps; Figure [2\)](#page-11-0); however, the last decade has seen a particular shift $_{137}$ towards advanced statistical modeling and machine learning approaches. In particular, tools ¹³⁸ from ecological niche modeling began to be used around 2007 to 2010, when the most popular $_{139}$ algorithms (MaxEnt and GARP) began to cross over into medical geography. This particular ¹⁴⁰ approach to predictive modeling is continuing to become more popular as more disease ecologists ¹⁴¹ become involved in neglected tropical disease research. In the last decade, we also observed a ¹⁴² methodological shift away from studies using licensed software like ArcGIS, and increasingly ¹⁴³ taking advantage of open-source software like QGIS and GRASS, or console programs like R and ¹⁴⁴ Python. These accessible softwares can be easily used by researchers and stakeholders without 145 the financial barriers of proprietary softare that are prohibitive even for many in the Global North. ¹⁴⁶

S patial scale and global gaps 148

We found that the vast majority of mapping studies were boots-on-the-ground epidemiological $_{149}$ research conducted in a single community or a handful of communities within a single country 150 (Figure [2\)](#page-11-0). We found relatively few large-scale (multinational to global) prevalence or risk maps, ¹⁵¹ likely because the raw prevalence data are unsynthesized in a modelable format or, for many 152 infections, have never been collected at sufficient scale. We also found that the distribution of $_{153}$ research effort has been strikingly uneven (Figure [3\)](#page-12-0). Hotspots of research in China, Brazil, and ¹⁵⁴ tropical Sub-Saharan Africa reflect a mix of population size, infectious disease burden, and unique ¹⁵⁵ aspects of the medical parasitology community of practice (e.g., Fiocruz in Brazil). However, we $\frac{156}{2}$ found major research gaps in South and Southeast Asia, the Middle East, and Latin America 157 and the Caribbean, despite the high parasite burden faced by many communities in these regions 158

It is made available under a [CC-BY-NC-ND 4.0 International license](http://creativecommons.org/licenses/by-nc-nd/4.0/) .

 $(e.g., (7))$ $(e.g., (7))$ $(e.g., (7))$. Overall, these findings suggest that the global burden of many helminthiases might be 159 underestimated, especially if parasite prevalence is high in research and surveillance coldpots. 160

161

176

191

Most human helminthiases are unmapped or undermapped $_{162}$

Of the 232 species targeted by our systematic review, only 45 had any associated studies— ¹⁶³ indicating nearly 200 unmapped species of human parasites. Out of those 45, a half-dozen of the ¹⁶⁴ best-known conditions—the major vector-borne helminthiases (schistosomiasis, lymphatic filariasis, ¹⁶⁵ and onchocerciasis) and soil-transmitted helminthiases (hookworm, Ascaris, and Trichuris)— 166 account for the vast majority of research effort (Figure [1\)](#page-10-0). Unsurprisingly, these infections account 167 for the majority of the total burden of helminthiases on global health and poverty. Ascariasis is ¹⁶⁸ the most common helminth infection in the world, thought to infect between 737 million and 872 169 million people worldwide (8) , and is a major cause of stunting and malnutrition in children (9) . Trichuris and hookworm have a similarly massive burden, infecting roughly 435 million and 450 ¹⁷¹ million people worldwide, respectively (8) . Schistosomiasis infects between 179 million and 200 $_{172}$ million people worldwide (8) , with a high burden especially in HIV-coendemic areas. Aside from 173 these infections, all other human helminthiases are generally presumed to infect fewer than 100 $_{174}$ million people worldwide.

Feedbacks between mapping and interventions 177

Research effort also reflects feedbacks among mapping work, ease of treatment, and scale of $_{178}$ interventions. A small number of infections are targeted by MDA programs, both because $_{179}$ of cheap widely-available treatments and because they account for the highest global burden. ¹⁸⁰ These programs are naturally complimentary with spatial analysis: defining the boundaries of 181 a community, testing people or animals for helminthiases, and updating endemicity maps is ¹⁸² one of the easiest ways to visualize burden and decide on the frequency and distribution of ¹⁸³ drug administration. This ongoing feedback of prevalence studies, GIS work, and targeted drug ¹⁸⁴ administration has been a key part of successful MDA efforts over the past 20 years, not just 185 to tailor efforts but also to measure their success and justify ongoing funding. These programs 186 are therefore the main reason that broad, synthetic data and cartography are possible for a 187 small subset of the best-mapped helminthiases (i.e., soil-transmitted helminths, schistosomiasis, 188 lymphatic filariasis, and onchocerciasis). Conversely, we found that most infections without readily ¹⁸⁹ available antihelminthic treatments were relatively understudied, or never appeared in our dataset. 190

Soil-transmitted helminths are also exceptional in that most have a relatively simple life cycle; as ¹⁹² such, prevalence data in humans are usually likely to capture the extent of transmission, (though $_{193}$ see [\(10\)](#page-17-9)). In contrast, many under-represented helminth species were zoonotic, likely because ¹⁹⁴ complex life cycles or wildlife hosts make them more challenging targets for surveillance. When 195 non-human hosts are studied, they are almost always livestock (especially cattle and sheep), ¹⁹⁶ pets (cats and dogs), or synanthropic wildlife (rats and mice); true wildlife hosts account for a ¹⁹⁷ small fraction of studies (Figure [4\)](#page-13-0). Some of the most understudied helminthiases are the ones that complete parts of their life cycle in hosts that are particularly difficult to sample, like fish ¹⁹⁹ and marine mammals (e.g., Anisakis or Diphyllobothrium). Similarly, vector-borne transmission ∞ adds another layer of ecological influence, which can make ecological models more useful, but $_{201}$ primary data collection more challenging; we found more studies collected spatial data on snails ₂₀₂ (the "vectors," or more accurately intermediate hosts, of schistosomiasis) than on more mobile ²⁰³ vectors like mosquitoes or flies. Surprisingly, even for soil-transmitted species, we found that ²⁰⁴

It is made available under a [CC-BY-NC-ND 4.0 International license](http://creativecommons.org/licenses/by-nc-nd/4.0/) .

environmental sampling is nearly never reported (Figure S2).

206

220

Coinfections, coendemicity, and syndemic interactions 207

We found that a surprising number of mapping studies directly addressed helminth coinfections and $\frac{208}{208}$ coendemicity. Many surveillance programs—especially those guiding mass drug administration— ²⁰⁹ inherently collect data on multiple helminthiases at once $(e.g., Kato-Katz screening can detect$ Ascaris, Trichuris, schistosomiasis, hookworm, and other eggs of other parasites as well). Studies ₂₁₁ that map hotspots of coinfection (e.g., $(11; 12; 13)$ $(11; 12; 13)$ $(11; 12; 13)$ $(11; 12; 13)$ $(11; 12; 13)$) can help prioritize where treatment might have $\frac{212}{212}$ the greatest social and economic benefit. These approaches can also address more complicated 213 syndemic interactions (14) : for example, onchocerciasis control programs often use ivermectin, $_{214}$ a drug that can cause severe neurological complications or even death when administered to a ²¹⁵ patient with loiasis [\(15\)](#page-18-0). Increasingly, mapping studies have been used to address *Onchocerca-Loa* ₂₁₆ coendemicity in west and central Africa, helping practitioners to delineate where ivermectin can ²¹⁷ be administered safely, and where other interventions like vector control might be safer and more 218 \bullet effective.

Finally, we found over a dozen studies that addressed coinfections or coendemicity of helminthiases $_{221}$ with other infections. Most of these studies focused on malaria: three studies mapped coinfections $_{222}$ with hookworm $(13; 16; 17)$ $(13; 16; 17)$ $(13; 16; 17)$ $(13; 16; 17)$ $(13; 16; 17)$, two with schistosomiasis $(18; 19)$ $(18; 19)$ $(18; 19)$, and another with lymphatic filariasis [\(20\)](#page-18-5). Integrated mapping can address different aspects of syndemic interactions: for example, ²²⁴ some helminthiases share a preventable transmission route with other pathogens (e.g., Anopheles $_{225}$ mosquitoes transmit both malaria and lymphatic filariasis); others are treatable with the same ²²⁶ drugs (artemisin, a widely-used antimalarial, also targets immature schistosomes [\(21\)](#page-18-6); recent $_{227}$ evidence suggests ivermectin in bloodmeals may reduce Anopheles mosquito lifespan $(22; 23)$ $(22; 23)$ $(22; 23)$). $_{228}$ Perhaps the most elusive facet of helminthiases' burden is their immunomodulatory effects, which $_{229}$ can have unpredictable impacts on other diseases: for example, while Schistosoma mansoni or 230 hookworm infections may increase susceptibility to malaria, S. haematobium infections may confer $_{231}$ protection against severe malaria $(24; 25)$ $(24; 25)$ $(24; 25)$. In any of these contexts, helminthiases are worth $_{232}$ considering in broader efforts to measure and reduce the global burden of disease. ²³³

Discussion 235

Here, we screened over 6,000 studies, and found extensive literature on the human helminthiases $_{236}$ that incorporated geospatial approaches (nearly 500 studies). However, we found that most ²³⁷ of these studies were focused on a half-dozen or so parasites with a simple life cycle, available ²³⁸ low-cost treatments, and the greatest global burden—the circumstances that make elimination ²³⁹ programs a cost-effective investment. For the vast majority of human helminthiases, we found no ²⁴⁰ geospatial data or analysis of any kind in the studies we reviewed. Some of these parasites may ²⁴¹ only sporadically infect humans, but several others are known to have an uncertain but likely ²⁴² medium-to-high global burden. Often, these neglected helminthiases have a complex (zoonotic or ²⁴³ vector-borne) life cycle that both complicates surveillance and limits the feasibility of vertical ²⁴⁴ control programs (especially if elimination is precluded by non-human reservoirs). ²⁴⁵

For these neglected infections, there are many opportunities for mapping work to both establish $_{247}$ a clearer baseline on global burden, and to support One Health interventions that include vector ²⁴⁸ control, community sanitation, food safety, livestock vaccination, routine deworming of household ²⁴⁹

246

234

It is made available under a [CC-BY-NC-ND 4.0 International license](http://creativecommons.org/licenses/by-nc-nd/4.0/) .

pets, and similar practices. In service of this goal, we propose a shortlist of several notable but ²⁵⁰ neglected human helminthiases that were underrepresented in the literature (Box 1).

$\mathbf{Opportunties}$ for global burden (re-)estimation 252

256

267

278

287

Several helminthiases with a global distribution have a likely-high but uncertain burden, which $_{253}$ could be clarified by a coordinated data synthesis and geospatial modeling effort—potentially ²⁵⁴ motivating more global investment in prevention and treatment. For example:

Echinococcosis. Echinococcus granulosus and E. multilocularis are zoonotic tapeworms that $_{257}$ cause cystic and alveolar echinococcosis, respectively. These infections typically remain asymp- ²⁵⁸ tomatic for years until cysts grow large enough to disrupt organ function; when they rupture, or $_{259}$ (in the latter case) result in liver failure, case fatality rates are relatively high (26) . Between the $_{260}$ two infections, recent estimates place the global burden around roughly 19,000 deaths per year $_{261}$ out of 1 million active cases [\(27\)](#page-18-12). Treatment is difficult, and may require surgery, but infections $_{262}$ can also be prevented with a One Health strategy that includes slaughterhouse hygiene and ²⁶³ deworming dogs. Global summaries of prevalence data at national or subnational levels were ²⁶⁴ recently compiled not just for human hosts, but also wildlife and domesticated hosts (28) ; these $_{265}$ data could be readily applied to more detailed, fine-scale geospatial modeling.

Taeniasis and cysticercosis. A zoonotic parasite of swine, *Taenia solium* is endemic worldwide ₂₆₈ in communities with poor sanitation and consumption of undercooked pork. Intestinal infection ²⁶⁹ with the adult tapeworm is usually mild, but fecal-oral transmission between humans leads to $_{270}$ paratenic infections that can form on the brain or on the spinal cord. These severe infections $\frac{271}{271}$ cause at least $28,000$ deaths annually (27) , and account for at least a third of all epilepsy cases 272 in endemic areas [\(29\)](#page-19-0). Estimates range between 2-6 million infections worldwide $(8; 27)$ $(8; 27)$ $(8; 27)$, but 273 regional estimates (e.g. 1.2 million attributable epilepsy cases in India alone [\(30\)](#page-19-1)) suggest these $_{274}$ are underestimates. A high-resolution global estimate of burden could help target One Health $_{275}$ interventions pairing MDA for taeniosis with pig vaccination, which can eliminate the pathogen $_{276}$ over just 4-5 years (31) .

Strongyloidiasis. Strongyloides stercoralis is a soil-transmitted nematode that infects at least 279 30-100 million people in rural communities without proper sanitation [\(32\)](#page-19-3). Strongyloidiasis is $_{280}$ often asymptomatic, but can be life-threatening in immunocompromised individuals [\(33\)](#page-19-4). Our ²⁸¹ systematic review identified just three efforts to map this parasite—all national or community ₂₈₂ studies—highlighting an opportunity to consolidate existing surveillance data, and develop highresolution maps of endemicity and burden. One recent study takes an important step towards ²⁸⁴ filling this gap by developing a global ecological niche model for strongyloidiasis [\(34\)](#page-19-5), but data ²⁸⁵ remain limited and more systematic efforts are needed. 286

Dwarf tapeworm. Hymenolepis nana is one of the most common cestode parasites of humans. 288 These infections are generally asymptomatic in adults, but more severe in children, especially when ²⁸⁹ comorbid with malnutrition [\(35\)](#page-19-6). Estimates of regional H. nana prevalence vary substantially, $_{290}$ ranging from 0.2 to 28.4% in Asia and from 0.9 to 23% in the Americas [\(36\)](#page-19-7). Our literature $_{291}$ review found only two mapping studies on H. nana, both community-based studies in Angola $_{292}$ and Ghana [\(16;](#page-18-1) [37\)](#page-19-8). Future work could consolidate fine-scale surveillance datasets, and align ₂₉₃ them with other geospatial research on malnutrition and stunting $(e.g., 38)$.

It is made available under a [CC-BY-NC-ND 4.0 International license](http://creativecommons.org/licenses/by-nc-nd/4.0/) .

Opportunities for global distribution or risk mapping 295

For several other helminthiases with a global distribution, a baseline global map of endemicity—or ₂₉₆ a risk map of the zoonotic niche and the socioenvironmental risk factors for infection—might be ²⁹⁷ a substantial step forward. For example: 298

Angiostrongyliasis. More commonly called rat lungworm, Angiostrongylus cantonensis is a ₃₀₀ rare but emerging infection endemic to Asia and the Pacific that causes eosinophilic meningitis ₃₀₁ [\(39\)](#page-19-10). Some infections are self-limiting, but others may cause significant neurological damage or ³⁰² death. The geographic range of the parasite has expanded over time, potentially facilitated by $\frac{303}{20}$ climate change and human movement, with several thousand cases reported worldwide $(39; 40)$ $(39; 40)$ $(39; 40)$. Existing literature on the parasite's global distribution has worked from sparse data [\(40;](#page-19-11) [41\)](#page-19-12), and ³⁰⁵ future work could more directly address the parasite's zoonotic niche in both intermediate hosts ₃₀₆ $(\text{snails and slugs})$ and the ultimate host (rats) .

308

316

299

Mansonellosis. An infection that has been called "the most neglected human filariasis" (42) , $\frac{309}{200}$ *Mansonella perstans* alone is thought to infect over 100 million people (43) , yet there are currently $\frac{310}{2}$ no large-scale control programs targeting any *Mansonella* species. Our literature review identified $\frac{311}{200}$ nine studies mapping mansonellosis, including a map of global endemicity. Future research could $\frac{312}{2}$ aim to generate a high-resolution global risk map to guide vector control efforts, particularly given $\frac{313}{2}$ that its *Culicoides* midge vectors also transmit several emerging infections (including bluetongue $\frac{314}{2}$ virus, Oropouche virus, and African horse sickness). 315

Guinea worm disease. Unlike other infections on our shortlist, Guinea worm disease cannot ³¹⁷ be considered neglected. Decades of control efforts brought *Dracunculus medinensis* close to ₃₁₈ being the first globally-eradicated parasite, though canine reservoirs now jeopardize that progress $\frac{319}{2}$ $(44; 45)$ $(44; 45)$ $(44; 45)$. Despite the small number of remaining transmission foci, Guinea worm was once found $\frac{320}{20}$ throughout the tropics. Little geospatial data has been consolidated on this century-long range $\frac{321}{20}$ contraction; the best available maps of its original range are hand-drawn estimates from the $\frac{322}{20}$ 1950s [\(46\)](#page-20-2). Remapping the historical distribution of D. medinensis with modern technology and $\frac{323}{223}$ modeling methods could offer some insights into the previous successes of eradication campaigns, ³²⁴ clarify the ongoing role of zoonotic reservoirs (47) , and offer fresh motivation to eliminate Guinea $\frac{325}{2}$ worm disease on the last remaining continent.

Ω Opportunities for regional and community-based mapping Ω 327

For a handful of the rarest or most neglected helminthiases, more boots-on-the-ground studies $\frac{328}{26}$ of parasite prevalence in local communities are still needed, forming the quantitative basis of ³²⁹ broader estimates of parasite distribution and prevalence.

Carcinogenic food-borne trematodiases. Opisthorchis viverrini and Clonorchis sinensis ₃₃₂ are trematode parasites of fish [\(48\)](#page-20-4), both of which seriously increase the risk of bile duct can-cer (cholangiocarcinoma). [\(48\)](#page-20-4) The burden of O. viverrini is localized to southeast Asia and $\frac{334}{340}$ particularly Thailand, which has the highest incidence of cholangiocarcinoma worldwide [\(49\)](#page-20-5); ₃₃₅ opisthorchiasis prevalence reaches 70% in some communities, costing the country an estimated $\frac{336}{2}$ \$120 million USD annually [\(48\)](#page-20-4). C. sinensis has a much wider range throughout east Asia, $\frac{337}{20}$ infecting an estimated 35 million people [\(50\)](#page-20-6). Our systematic review found no community-based 338 mapping efforts for *C. sinensis*, and very few for *O. viverrini*. $\frac{339}{2}$

340

331

It is made available under a [CC-BY-NC-ND 4.0 International license](http://creativecommons.org/licenses/by-nc-nd/4.0/) .

Capillariasis. Capillaria hepatica and C. philippinensis cause hepatic and intestinal capillariasis, $\frac{341}{2}$ respectively. The former is believed to only infect humans rarely, while outbreaks of the latter $\frac{342}{2}$ have been sizable; both can be deadly, and are challenging to diagnose (51) . Human infections $\frac{343}{2}$ with both parasites are apparently rare but widespread: C. philippinensis can be found throughout Asia and parts of North Africa and the Middle East, and C. hepatica is found in wildlife $\frac{345}{2}$ worldwide [\(51;](#page-20-7) [52\)](#page-20-8). However, our literature search did not identify any efforts to map either species. 346

Gastrodiscoidiasis. Gastrodiscoides hominis is a poorly characterized food-borne zoonotic fluke 348 (53) , capable of causing diarrhea and malnutrition $(54; 55)$ $(54; 55)$ $(54; 55)$, and even death (54) . G. hominis is thought to be highly prevalent in India, but cases have been observed throughout Asia and parts $\frac{350}{2}$ of Africa [\(54\)](#page-20-10). Our literature search did not identify any efforts to map G . hominis infection. $\frac{351}{251}$

Broader opportunities for geospatial research 352

Infectious diseases are rarely a stationary target for mapping and modeling. While geospatial $\frac{353}{2}$ methods are already widely used to track the progress of elimination programs, we finally note ³⁵⁴ that these tools will also have value as climate change drives shifts in the geographic distribution $\frac{1}{355}$ and burden of helminthiases, their vectors, and their wildlife reservoirs. As temperatures rise, $\frac{356}{1000}$ the range of hookworm is expected to expand toward the southernmost regions of Africa (56) ; $\frac{357}{257}$ as *Anopheles* mosquitoes and other vectors undergo geographic range shifts [\(57\)](#page-20-13), they may ³⁵⁸ introduce parasites into new regions or undo progress towards elimination. In other cases, climate 359 change may make environmental conditions less hospitable for parasites (58) : angiostrongyliasis $\frac{360}{20}$ may lose range as China warms (59) , and the snail intermediate hosts of schistosomiasis may $_{361}$ begin to shrink as their habitats grow hotter and more arid (56) . Ecological modeling will $_{362}$ help triage the greatest climate-related risks to human health, while other mapping methods ₃₆₃ will be critical to document the impacts of climate change in real-time. In that light, One $_{364}$ Health data on parasitic infections in humans, livestock, domestic animals, and wildlife all become ³⁶⁵ even more valuable—particularly when shared openly with sufficient geospatial metadata for reuse. ₃₆₆

367

347

It is made available under a [CC-BY-NC-ND 4.0 International license](http://creativecommons.org/licenses/by-nc-nd/4.0/) .

\sum_{368}

It is made available under a [CC-BY-NC-ND 4.0 International license](http://creativecommons.org/licenses/by-nc-nd/4.0/) . perpetuity. medRxiv preprint doi: [https://doi.org/10.1101/2020.10.30.20223529;](https://doi.org/10.1101/2020.10.30.20223529) this version posted August 8, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted m

Figures 384

A 60 Number of studies Number of studies 40 20 0 1990 2000 2010 2020 Year B 150 Number of studies Number of studies 100 50 0 - Schistosomiasis Lymphatic filariasis Hookworm Food-borne trematodiasis Dwarf tapeworm Ascariasis Trichuriasis Onchocerciasis Soil-transmitted (misc.) Alveolar echinococcosis Pulmonary dirofilariasis Cystic echinococcosis Dirofilariasis Guinea worm disease Mansonellosis Angiostrongyliasis **Strongyloidiasis** loxocariasis Dicrocoeliasis Thelaziasis Trichinellosis Anisakiasis Hymenolepiasis Oesophagostomiasis Schistosomiasis Lymphatic filariasis Hookworm Food−borne trematodiasis Ascariasis Trichuriasis Onchocerciasis Taeniasis Soil−transmitted (misc.) Loiasis Alveolar echinococcosis Pulmonary dirofilariasis Cystic echinococcosis Dirofilariasis Guinea worm disease Mansonellosis Angiostrongyliasis Strongyloidiasis Toxocariasis Dicrocoeliasis Dwarf tapeworm Thelaziasis Trichinellosis Anisakiasis Hymenolepiasis Oesophagostomiasis Taeniasis

Figure 1: (A) Efforts to map the human helminthiases have increased over time. (B) Spatial data for a few helminthiases makes up the majority of all human helminth spatial data. The 45 helminth species with spatial data were grouped together by the conditions they cause (e.g. Wuchereria bancrofti and Brugia malayi grouped as lymphatic filariasis).

Figure 2: Existing human helminth spatial data predominantly comes from small-scale prevalence mapping studies. Studies containing spatial data on human helminthiases were characterized by spatial scale and methodology, with several studies employing more than one methodology.

It is made available under a [CC-BY-NC-ND 4.0 International license](http://creativecommons.org/licenses/by-nc-nd/4.0/) .

Figure 3: Most published spatial research on human helminthiases describes incidence and burden in Sub-Saharan Africa, China, and Brazil.

It is made available under a [CC-BY-NC-ND 4.0 International license](http://creativecommons.org/licenses/by-nc-nd/4.0/) . perpetuity. medRxiv preprint doi: [https://doi.org/10.1101/2020.10.30.20223529;](https://doi.org/10.1101/2020.10.30.20223529) this version posted August 8, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted m

Figure 4: Among studies that map other helminth hosts or helminth vectors, studies mapping less mobile hosts and vectors predominate. Baboons, antelope, and wild boar were classified as wildlife hosts; some studies mapped multiple non-human hosts

It is made available under a [CC-BY-NC-ND 4.0 International license](http://creativecommons.org/licenses/by-nc-nd/4.0/) .

Box 1. An (incomplete) list of high-priority helminthiases for geospatial research.

- 1) Angiostrongyliasis (Angiostrongylus cantonensis)
- 2) Hepatic and intestinal capillariasis (Capillaria hepatica, Capillaria philippinensis)
- 3) Carcinogenic food-borne trematodiases (Clonorchis sinensis, Opisthorchis viverrini)
- 4) Guinea worm disease* (Dracunculus medinensis) (*see text)
- 5) Echinococcosis (Echinococcus granulosus, E. multilocularis)
- 6) Gastrodiscoidiasis (Gastrodiscoides hominis)
- 7) Dwarf tapeworm (Hymenolepis nana)
- 8) Mansonellosis (Mansonella perstans, M. ozzardi, M. streptocerca)
- 9) Strongyloidiasis (Strongyloides stercoralis)
- 10) Taeniosis and cysticercosis (Taenia solium)

It is made available under a [CC-BY-NC-ND 4.0 International license](http://creativecommons.org/licenses/by-nc-nd/4.0/) . perpetuity. medRxiv preprint doi: [https://doi.org/10.1101/2020.10.30.20223529;](https://doi.org/10.1101/2020.10.30.20223529) this version posted August 8, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted m

Supporting Information 386

Supplementary Figure 1: Systematic review procedure, following PRISMA reporting guidelines.

It is made available under a [CC-BY-NC-ND 4.0 International license](http://creativecommons.org/licenses/by-nc-nd/4.0/) .

Supplementary Figure 2: Diagnostic method used to collect primary data in 357 studies that report new data from field surveillance.

It is made available under a [CC-BY-NC-ND 4.0 International license](http://creativecommons.org/licenses/by-nc-nd/4.0/) .

$References$ 387

It is made available under a [CC-BY-NC-ND 4.0 International license](http://creativecommons.org/licenses/by-nc-nd/4.0/) .

- [15] Wanji S, Ndongmo WP, Fombad FF, Kengne-Ouafo JA, Njouendou AJ, Tchounkeu YF, ⁴²⁶ et al. Impact of repeated annual community directed treatment with ivermectin on loiasis ⁴²⁷ parasitological indicators in Cameroon: Implications for onchocerciasis and lymphatic ⁴²⁸ filariasis elimination in areas co-endemic with Loa loa in Africa. PLoS Neglected Tropical 429 Diseases. $2018;12(9)$.
- [16] Adu-Gyasi D, Asante KP, Frempong MT, Gyasi DK, Iddrisu LF, Ankrah L, et al. Epidemi- ⁴³¹ ology of soil transmitted Helminth infections in the middle-belt of Ghana, Africa. Parasite ⁴³² Epidemiology and Control. $2018:3(3):e00071$.
- [17] Brooker SJ, Pullan RL, Gitonga CW, Ashton RA, Kolaczinski JH, Kabatereine NB, et al. ⁴³⁴ Plasmodium–helminth coinfection and its sources of heterogeneity across east Africa. Journal ⁴³⁵ of Infectious Diseases. 2012;205(5):841–852. ⁴³⁶
- [18] Kabatereine NB, Standley CJ, Sousa-Figueiredo JC, Fleming FM, Stothard JR, Talisuna A, ⁴³⁷ et al. Integrated prevalence mapping of schistosomiasis, soil-transmitted helminthiasis and ⁴³⁸ malaria in lakeside and island communities in Lake Victoria, Uganda. Parasites and Vectors. ⁴³⁹ $2011;4(1):232.$ 440
- [19] Doumbo S, Tran TM, Sangala J, Li S, Doumtabe D, Kone Y, et al. Co-infection of long-term ⁴⁴¹ carriers of Plasmodium falciparum with Schistosoma haematobium enhances protection ⁴⁴² from febrile malaria: a prospective cohort study in Mali. PLoS Neglected Tropical Diseases. ⁴⁴³ $2014;8(9):e3154.$
- [20] Stensgaard AS, Vounatsou P, Onapa AW, Simonsen PE, Pedersen EM, Rahbek C, et al. ⁴⁴⁵ Bayesian geostatistical modelling of malaria and lymphatic filariasis infections in Uganda: ⁴⁴⁶ predictors of risk and geographical patterns of co-endemicity. Malaria Journal. $2011;10(1):298$.
- [21] Bergquist R, Elmorshedy H. Artemether and Praziquantel: Origin, Mode of Action, Impact, ⁴⁴⁸ and Suggested Application for Effective Control of Human Schistosomiasis. Tropical Medicine ⁴⁴⁹ and Infectious Disease. $2018;3(4)$.
- [22] Derua YA, Kisinza WN, Simonsen PE. Differential effect of human ivermectin treatment on ⁴⁵¹ blood feeding Anopheles gambiae and Culex quinquefasciatus. Parasites and Vectors. 2015;8. ⁴⁵²
- [23] Mekuriaw W, Balkew M, Messenger LA, Yewhalaw D, Woyessa A, Massebo F. The effect 453 of ivermectin $\mathbb R$ on fertility, fecundity and mortality of Anopheles arabiensis fed on treated \mathbb{Z}_4 men in Ethiopia. Malaria Journal. 2019;18(357). ⁴⁵⁵
- [24] Donahue RE, Cross ZK, Michael E. The extent, nature, and pathogenic consequences of ⁴⁵⁶ helminth polyparasitism in humans: A meta-analysis. PLoS Neglected Tropical Diseases. ⁴⁵⁷ $2019;13(6).$
- [25] Adegnika AA, Kremsner PG. Epidemiology of malaria and helminth interaction: a review 459 from 2001 to 2011. Current Opinion in HIV and AIDS. $2012:7(3)$.
- [26] Wen H, Vuitton L, Tuxun T, Li J, Vuitton DA, Zhang W, et al. Echinococcosis: Advances ⁴⁶¹ in the 21st Century. Clinical Microbiology Reviews. $2019:32(2)$.
- [27] World Health Organization. Ending the neglect to attain the sustainable development goals: ⁴⁶³ A roadmap for neglected tropical diseases 2021-2030. 2020;
- [28] Deplazes P, Rinaldi L, Alvarez RC, Torgerson P, Harandi M, Romig T, et al. Global ⁴⁶⁵ Distribution of Alveolar and Cystic Echinococcosis. Advances in Parasitology. 2017;95:315. ⁴⁶⁶

It is made available under a [CC-BY-NC-ND 4.0 International license](http://creativecommons.org/licenses/by-nc-nd/4.0/) .

Research and Reports in Tropical Medicine. 2018;9:9-24. 505

It is made available under a [CC-BY-NC-ND 4.0 International license](http://creativecommons.org/licenses/by-nc-nd/4.0/) .

- [44] Molyneux D, Sankara DP. Guinea worm eradication: Progress and challenges—should we $_{506}$ beware of the dog? PLoS Neglected Tropical Diseases. $2017:11(4):e0005495$.
- [45] Wilson-Aggarwal JK, Goodwin CE, Swan GJ, Fielding H, Tadesse Z, Getahun D, et al. Ecol- ⁵⁰⁸ ogy of domestic dogs (Canis familiaris) as a host for Guinea worm (Dracunculus medinensis) ⁵⁰⁹ infection in Ethiopia. Transboundary and Emerging Diseases. 2020;
- [46] May JM. Map of the world distribution of helminthiases. Geographical Review. 1952;42(1):98– ⁵¹¹ $101.$ 512
- [47] Boyce MR, Carlin EP, Schermerhorn J, Standley CJ. A One Health approach for Guinea $_{513}$ worm disease control: scope and opportunities. Tropical medicine and infectious disease. ⁵¹⁴ $2020:5(4):159.$ 515
- [48] Sripa B, Bethony JM, Sithithaworn P, Kaewkes S, Mairiang E, Loukas A, et al. Opisthorchi- ⁵¹⁶ asis and Opisthorchis-associated cholangiocarcinoma in Thailand and Laos. Acta Tropica. ⁵¹⁷ 2010;120(Supplement 1):S158–S168. 518
- [49] Banales JM, Cardinale V, Carpino G, Marzioni M, Andersen JB, Invernizzi P, et al. Expert 519 consensus document: Cholangiocarcinoma: current knowledge and future perspectives ⁵²⁰ consensus statement from the European Network for the Study of Cholangiocarcinoma ⁵²¹ (ENS-CCA). Nature Reviews Gastroenterology and Hepatology. 2016;13(5):261–280. ⁵²²
- [50] Kim TS, Pak JH, Kim JB, Bahk YY. Clonorchis sinensis, an oriental liver fluke, as a human ⁵²³ biological agent of cholangiocarcinoma: a brief review. BMB Reports. 2016;49(11):590–597. ⁵²⁴
- [51] Li CD, Yang HL, Wang Y. Capillaria hepatica in China. World Journal of Gastroenterology. ⁵²⁵ $2010;16(6):698-702.$
- [52] Saichua P, Nithikathkul C, Kaewpitoon N. Human intestinal capillariasis in Thailand. World ⁵²⁷ Journal of Gastroenterology. $2008:14(4):506-510$.
- [53] Chai JY, Shin EH, Lee SH, Rim HJ. Foodborne Intestinal Flukes in Southeast Asia. The ⁵²⁹ Korean Journal of Parasitology. 2009;47:S69–S102.
- [54] Mas-Coma S, Bargues M, Valero M. Gastrodiscoidiasis, a plant-borne zoonotic disease caused ⁵³¹ by the intestinal amphistome fluke Gastrodiscoides hominis (Trematoda: Gastrodiscidae). ⁵³² Revista Ibérica de Parasitología. 2005;66:75–81. 533
- [55] Dada-Adegbola H, Falade C, Oluwatoba O, Abiodun O. Gastrodiscoides hominis infection ⁵³⁴ in a Nigerian-case report. West African Journal of Medicine. 2004;23(2):185–186. ⁵³⁵
- [56] Blum AJ, Hotez PJ. Global "worming": Climate change and its projected general impact on 536 human helminth infections. PLoS Neglected Tropical Diseases. 2018;12(7). 537
- [57] Carlson CJ, Bannon E, Mendenhall E, Newfield T, Bansal S. Rapid range shifts in African ⁵³⁸ Anopheles mosquitoes over the last century. bioRxiv. 2019;p. 673913. $\frac{539}{200}$
- [58] Carlson CJ, Burgio KR, Dougherty ER, Phillips AJ, Bueno VM, Clements CF, et al. Parasite 540 biodiversity faces extinction and redistribution in a changing climate. Science Advances. ⁵⁴¹ $2017;3(9):e1602422.$ 542
- [59] York EM, Butler CJ, Lord WD. Global decline in suitable habitat for Angiostrongylus (= ⁵⁴³ Parastrongylus) cantonensis: the role of climate change. PLoS One. 2014;9(8):e103831. ⁵⁴⁴