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Abstract 

Background - The wide spread of COVID-19 in the US has placed 

the country as the most infected population worldwide. This paper aims 

to forecast the number of confirmed cases and mortalities from 12 April 

to 21 May, 2020. There has been a large body of literature in 20 

forecasting epidemic outbreaks such as C algorithms with shortfall of 

predicting for long periods and autoregressive integrated moving 

average models with the limited flexibility. However, the US COVID-

19 data shows great variety in the relative increments of confirmed 

cases. This requires a reproductive time series.  25 
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Method – This paper suggests a time series based on the relative 

increments of confirmed cases. The proposed time series assumes the 

changes in the time series and provides flexibility. The suggested model 

was applied on the data observed from 27 February to 11 April 2020 

and its objective is forecasting 40 days from 12 April to 21 May 2020.   30 

Results - It is expected that by May 21, 2020, the accumulative 

number of confirmed cases of COVID-19 in the US rises to 1,464,729, 

with 80% confidence interval. Our analysis also shows that by the 21st 

of May, the cumulative number of mortalities caused by COVID-19 in 

the US from 18747 cases on 11 April increases to around 73250 cases 35 

on 21 May, 2020.  

Conclusion - Our results highlight the value of reproductive 

strategies in time series modelling of COVID-19. Our model benefits 

from a reproductive strategy from a time point in which the US 

COVID-19 data demonstrates a sudden fall. 40 
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1. Introduction 

An epidemic disease of unknown cause, now called COVID-19, 

found in Wuhan, China was first reported to the World Health 

Organization Office in China on 31 December 2019. Shortly after, it 

was found that the ongoing pandemic is an infectious disease caused by 50 

the coronaviruses, a large family of viruses that cause illness ranging 

from the common cold to more severe diseases such as MERS and 

SARS. The outbreak was declared as a Public Health Emergency 

worldwide on 30 January 2020. Based on its geographic spread, 

severity of illnesses it causes, and also its impact on society, on March 55 

11, 2020, COVID-19 was declared as a pandemic outbreak (WHO, 

2020a). As of the 8th of April, 2020, the disease has spread to over 210 

countries and infected 1,353,361 cases when causes the total Mortalities 

of 79,235 worldwide (WHO, 2020b). 

The first confirmed case in the US was reported on 21 January, 2020 60 

and on the 22nd February the first death was reported (WHO, 2020c).  On 

the17th of March, the US reported the arrival of the disease to all the 

states (CDC, 2020). In one month, this number is multiplied by over 

10000. As of 11 April 2020, about one-third of all confirmed cases 
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infected by COVID-19 in the US belongs to New York. New York by 65 

almost 160 K confirmed cases, has reported the number of confirmed 

cases more than all countries (other than the US) (CDC, 2020). It is 

noticeable that up to now, USA has faced the greatest new mortalities 

(2035) and new confirmed cases (34196) in one day on 10 and 4 April, 

respectively. In addition, Active cases in USA on 11 April were 481849 70 

which is approximately equal to active cases of the other eight countries 

with the most confirmed cases (Spain, Italy, France, Germany, China, 

United Kingdom, Iran, Turkey) (WHO, 2020c) 

We use the US recent COVID-19 data from 27 February to 11 April 

2020 to model and forecast the development of the outbreak in the US 75 

for the period of April 12th – May 21st, 2020 predicting the relative 

increment of the confirmed cases and Mortalities using two-part time 

series. The first part represents the propagation of the disease in the first 

period in which the rate of transition is high. The second part models an 

irreversible fall in the relative increment and continues the extinction of 80 

the disease.  

There has been a body of research presenting forecasting trends in 

fields such as epidemiology (Chretien et al., 2014; Paul et al., 2014; 

Talaei-Khoei et al., 2019), economics (Baltagi and Baltagi, 2001; Scott 
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and Varian, 2015), weather (Kumar and Jha, 2013; Radzuan et al., 85 

2013; Voyant et al., 2013). Forecasting epidemic outbreaks plays a 

significant role in the success of epidemiology and public health 

systems to effectively respond to the epidemic situations. As such, there 

are several attempts suggesting methods for forecasting the confirmed 

cases in outbreaks. Chretien et al. (2014) reviews the methods in 90 

forecasting influenzas in human populations. From theoretical 

standpoint, forecasting methods are provided with time series data from 

previous stages of an outbreak and predicts surveillance attributes of a 

disease such as the confirmed cases in future. In order to do so, there 

have been several statistical methods (Reis and Mandl, 2003; Rounds et 95 

al., 2017; Zeger et al., 2006; Zhang et al., 2014) suggested by literature. 

Accordingly, there have been several attempts by professional bodies. 

For example, The Centres for Disease Control and Prevention initiated 

a challenge to forecast the 2013-2014 United States influenza season 

(Biggerstaff et al., 2016). Similar challenges was also organized for 100 

Ebola (Viboud et al., 2018), and Dengue (NOAA, 2016). The literature 

in time series forecasting has used  aberrancy-detection algorithms to 

identify temporal changes in the data. These temporal changes may be 

the indicator of epidemic outbreaks (Murphy and Burkom, 2008). The 
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Early Aberration Reporting Systems from Centres for Disease Control 105 

and Prevention utilizes C algorithms. However, C algorithms suffer 

from short-term prediction capabilities (Tokars et al., 2015). General 

speaking, aberrancy-detection algorithms focuses on a single time point 

in a given time when the outbreaks occurs and they are limited to be 

used to forecast the number of confirmed cases in the future of outbreak 110 

(Kass-Hout et al., 2012). Zhang (2003) suggests the use of 

Autoregressive Integrated Moving Average (ARIMA) to address the 

shortfall of aberrancy-detection algorithms. ARIMA models have been 

largely used in forecasting infectious diseases such as dengue 

(Wongkoon et al., 2012) and tuberculosis (Rios et al., 2000). ARIMA 115 

models are committed to the assumption that in the Autoregressive 

model under the study, the present value of the time series is a linear 

function of the past values and random noise (Akaike, 1969). Second, 

the present value of the time series is a linear function of present and 

past residuals in the moving average model (Haining, 1978). Third, 120 

ARIMA is based on both Autoregressive and moving average as well 

as the past values and residuals (Rojas et al., 2008). These assumptions 

limit the flexibility of ARIMA models to reproduce the different stages 

of time series.  
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Looking at data from COVID-19, it appears that the 125 

outbreak has demonstrated decreasing relative increment 

in the number of new cases. Since ARIMA models focuses 

on the linear relationships between the present values 

with past data and results, the forecasting ability of 

ARIMA models for COVID-19 would be limited. 130 

Addressing the shortfall of ARIMA models, this paper, 

using a novel model to reproduce the time series of 

COVID-19, aims to forecast the number of new cases in 

the US. The present paper adopts a stochastic approach 

due to two main reasons. Firstly, there are several sources 135 

of uncertainty in a pandemic outbreak (Chowell et al., 

2020) such as COVID-19. Randomness is a major player 

particularly at the beginning of an outbreak. Secondly, 

the stochastic approach used in our model promotes the 

flexibility of the model. The proposed method commits us 140 

to three assumptions. Firstly, the relative increase in the 

number of confirmed cases are increasing at the 

beginning, then it experiences a sudden fall and it 

decreases thereafter. Looking at the data from COVID-19 
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in the US, we can confirm that this is the case, See Day 0: 145 

27 February 2020, Day 45: 12 April 2020. 

Figure 1. Secondly, at any time, the time series of relative increase in 

the confirmed cases holds a normal distribution. The COVID-19 in the 

US demonstrates a normal distribution for the relative increase of the 

confirmed cases. Third, over time, the ratio of variance to mean 150 

remains constant, which is the case for COVID-19 in the US.      

The present paper relates to the recent articles attempting to model 

the spread of the COVID-19 19 (Berger et al., 2020; Kucharski et al., 

2020; Read et al., 2020). The present study differs from these papers 

from Data and Method perspectives.  Berger et al. (2020) study the data 155 

from the United States and it investigates the role of testing and 

quarantine as two effective practices to contain the disease. The article 

does not use time series analysis. Kucharski et al. (2020) look into 

cases  in Wuhan and internationally exported cases from Wuhan. The 

article addresses uncertainty of COVID-19 by using some outside 160 

databases, while in this study we only utilize data from the US. Read et 

al. (2020) explores the early data from Wuhan and focuses on 

epidemiological parameter estimates. However, the present paper 
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mainly looks at time series analysis to forecast the newly confirmed 

cases.  165 

 

The rest of this paper is organized in the following way, Section 2 

presents the proposed method. Section 3 presents the results of our 

forecast. Section 0 discusses the paper and provides some limitations as 

well as directions for future research.  170 

2. Methods 

In this section, we will discuss the proposed model, and the 

estimations. We will also simulate the model and the estimation on the 

data from the US to forecast for the next 40 days. The calculations, 

simulations have been conducted in MatLab R2015b. In addition, 175 

we have opted five output forecasting variables to compare, namely 

the average curve and 80% upper bound, 80% lower lower bound 

and two realizations. All these outputs are computed based on 100 

times simulations of the fitted models.  

The data in this section is obtained from WHO situations reports 180 

(WHO, 2020c) where we collected the data for the US from 27 
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February to 11 April 2020  and the paper forecasts from 12 April to 

21May, 2020.  

2.1 Definition of Relative Increment of Confirmed Cases and Mortality 

Rate 185 

Relative Increment of Confirmed Cases: Let ��  is a time series of the 

number of confirmed cases up to time �. We aim at studying  �� �
����

��
� 1, called the daily relative increment of confirmed cases. 

Mortality Rate: In order to define the mortality rate of COVID-19 in 

the US, we define 190 

�� �  ��� ��	�
���
� ��	��� �� ����� �� ��� ��� �

��� ��	�
���
� ��	��� �� ������	�� ����� �� ��� �����
.  

2.2 Proposed Time Series  

The model we applied has five positive parameters 	
, �
, �, �, � �; 

For � � 1, … , 
             ��~������	�
, �����

�
� which confirms the 

second assumption of our time series, See Section 1.  195 
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1. For � 
 � 1, 
 � 2, …                
��~������	� ��� , �� ����� �, where; 

• 
: The length of the first periods of the spread of the 

disease, 

2. �
: The geometric mean of the relative increment in the first 200 

periods of the spread of the disease, 

3. �: The acceleration of falling of the relative increments after 

the first days of spreading (�� � ���   ��� � � 
 � 1, 
 �
2, …), 

4. �: The fixed ratio of the mean to the variance (√� �205 

� !"#$%$&'(

)$%(*%+* *",&%$&'(
 ), which confirms the third assumption of our 

time series, See Section 1.  

5. �: The adjusting coefficient for the curve ��� to fit the time 

series of the relative increment after the first period of the 

spread.  210 
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The estimation of the proposed time series for the US Data of COVID-19 would be 

discussed in the next subsection.  

2.3 Estimation for Increment of Confirmed Cases of COVID-19 in the US 

In this section, we discuss on how the time series explained 

above will fit to the COVID-19 data from the US. To estimate the 215 

parameters of the model, the following practices must be taken:  

• take 
 as the first point that the geometric mean of the 

relative increments in the previous points exceeds 3/2 

times the geometric mean of the next three points.  


 � min $%|'(�. �(�% 	��-., ��-�, ��-/�
* 23 '(�. �(�% 	�., ��, … , ���+ 

which can be computed as  220 


 � min $%|,	1 � ��-.�	1 � ��-��	��-/�� � 1
* 23 ,	1 � �.�	1 � ��� … 	���� � 1+ 

Graphically, this time can be identified as the time when 

the plot of relative increments falls irreversibly, see Day 0: 

27 February 2020, Day 45: 12 April 2020. 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 4, 2020. ; https://doi.org/10.1101/2020.10.30.20223412doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.30.20223412
http://creativecommons.org/licenses/by-nd/4.0/


Figure 1.   

Day 0: 27 February 2020, Day 45: 12 April 2020. 225 

Figure 1 presents the relative increment in time series of the 

COVID-19 confirmed cases for the US. The figure 

demonstrates that the time series has a time point in which the 

first stationary period ends, and the second decreasing period 

starts. In this case, it is resulted that 
 � 24. This confirms 230 

our first assumption for the proposed time series, See 

Section 1.   

<Insert Figure 1, here> 

• calculate the geometric mean of the ratio cumulative 

numbers in the previous points 	1 � ��� from � � 1 to 235 

� � 
 as the estimation of the parameter �
 as 

�
. � ,	1 � �.�	1 � ��� … 	��0��� � 1. For the US COVID-19 

data, �
. � 0.3755. 

 

• estimate the parameters � and � due to the following 240 

linear relation  
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�� 2 � ��� 3 1 ��
� 2 �� �� 3 ln 51 ��

� 6 2 � ln	�� � ln	�� 3

ln	��� 2 �� ln	�� � ln 	�� 3 ln	��� 2 � ln 5.

�
6 � ln 	��. 

For the US COVID-19 data, the calculations lead in 

� �  2.6609and �9 � 1539.972, See Figure 2.  245 

<Insert Figure 2 , here> 

• Multiply all the observations after � � 
  by 
�	

1
 to have an 

identical mean and variance for all the newly obtained 

data (:�)  

��~������ ;� ��� , �� ����� < 3 :� � ��

� ��~ ������=1, 1 �� > 

Therefore, the variance of the newly recorded data is a 250 

good candidate for estimating 1 �� . Accordingly, 

�? � .

2

� � 0.0532.   

All in all, the US COVID-19 data from 27 February to 11 April 2020 

generates the estimation  of  

=
 , �
., �9, � , �? > � 	24, 0.3755, 1539.972, 2.6609, 0.0532� to simulate 255 

and predict the US confirmed cases using the time series introduced 

in Section 2.2.  Day 0: 22 March 2020, Day 20: 12 April 2020. 
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Figure 3 demonstrates that our model has an appropriate fitting 

power to the relative increments of the of the confirmed COVID-19 

cases in the US. Based on the model, the relative increment is 260 

decreasing from around 7% to about 1% (its 80% confidence 

interval is 0.88% - 1.56%). 

<Insert Figure 3, here> 

2.4 Estimation for Mortality Rate of COVID-19 in the US 

We utilize the morality rate of 5% to estimate the number of deaths 265 

in the US from 28 February to 11 April.  

3. Forecasting Results 

In this section, we first forecast the relative increments of 

confirmed COVID-19 cases in the US from 12 April to 21 May, 2020. 

Accordingly, we will forecast the accumulative number of conformed 270 

cases in the next 40 days in the US. Second, we forecast the COVID-19 

mortality rate and accordingly the accumulative number of Mortalities 

from 12 April to 21 May, 2020.  In our forecast, as mentioned earlier, 
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we use five different forecasting output variables, namely 80% lower 

bound, 80% upper bound, average and two possible realizations.  275 

3.1 Forecasting relative increment and accumulative number of 

confirmed cases 

Day 0: 11 April 2020, Day 40: 21 May 2020.  

Figure  presents our five forecasting variables for the relative 

increment of confirmed cases of COVID-19 in the US  from 12 April to 280 

21 May, 2020, presented on the model as day 0 to day 40.  

<Insert Figure 4, here> 

Figure  presents the forecast of the newly confirmed cases of 

COVID-19 in the US from 12 April to 21 May, 2020. As demonstrated 

by Figure , based on the decreasing trend of daily relative increments, 285 

despite the increasing cumulative number of confirmed cases, the new 

confirmed cases infected by the pandemic follows a decreasing pattern. 

In the first 10 days of April, the variable is fluctuate around 30000 

while our prediction says that this variable decreases to [12801   22578] 

with the probability of 80% (the point prediction is equal to 17551) on 290 

21 May 2020. 
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<Insert Figure 5, here> 

Figure  presents the forecast of cumulative confirmed cases for 

the studied period. The forecast predicts that over the period of 12 

April to 21 May, 2020, the cumulative number of cases rises from 295 

502876 on 11 April to 1464729 cases on 21 May 2020, with 80% 

confidence interval equal to [1375362    1540424]. 

<Insert Figure 6, here> 

3.1 Forecasting accumulative number mortalities 

According to Figure , the number of Mortalities caused by COVID-300 

19 in the US increases from18747 cases on 11 April to around 73000 

cases on 21 May, with 80% confidence interval equal to [69      77] 

K. It means we will encounter with about 1350 daily Mortalities on 

average over the studied period. The slope of the increasing graph for 

the cumulative number of Mortalities is falling as well as the graph of 305 

the cumulative number of confirmed cases.  

<Insert Figure 7, here> 
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4. Conclusions, Discussion and Limitations 

The relative increments in confirmed cases of COVID-19 in the US 

has shown in the beginning an increase in the rate of its growth, 310 

then it has experienced a sudden fall and continued to decrease in a 

relaxer rate. This demonstrates a great variety and presents 

different stages of COVID-19 in the US. This paper aims to forecast 

the number of confirmed  as well as the Mortalities of COVID-19 in 

the US from 12 April to 21 May, 2020. Given the shortfall of C 315 

algorithms to forecast in longer terms and limited flexibility of 

ARIMA to model different stages of time series in an outbreak like 

COVID-19, we suggested the use of relative increment measure for 

the confirmed cases and the mortality rate for the number of 

Mortalities caused by COVID-19. The model presented in Section 2 320 

is able to model COVID-19 data in the US because the proposed 

structure takes variety of different stages in the data.  

Applying the model to the US COVID-19 data from (WHO, 2020c), 

the paper predicts 1464729 confirmed cases on the 21st of May, 

2020. The forecast illustrates that the US can be considered the first 325 

country to face the problem of the explosion of the pandemic for 
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COVID-19. Although the accumulative number of confirmed cases 

in the US will be increasing to the 21st of May, the forecasting 

exercise presented in this paper found some evidence that the 

relative increment of the cases is falling. This shows the growth 330 

rate of confirmed cases of COVID-19 in the US will be dropping. The 

estimated drop in the relative increments is driven by the changes 

in behaviours of population or specific social distancing measures 

that the US has implemented.  

Our results highlight the value of reproductive strategies in 335 

time series modelling of COVID-19. For instance, the rapid 

growth of COVID-19 confirmed cases in the US at the 

beginning of the outbreak would result into inaccurate 

forecasts, while Day 0: 27 February 2020, Day 45: 12 April 

2020. 340 

Figure 1 demonstrates a sudden fall followed by a relaxer 

decreasing rate of growth. This problem has been also reported by 

Kucharski et al. (2020). Our model benefits from a reproductive 

strategy from a time point in which the US COVID-19 data 

demonstrates a sudden fall.  345 
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The model presented in this paper is limited to three 

assumptions on the relative increments. Firstly, similar to Italian 

COVID-19 it must rapidly grow with a dramatic increasing rate, 

experiences a sudden fall and then decreases in a smaller rate. 

Second, it must follow a normal distribution and third, over time, 350 

the ratio of variance to mean remains constant. Although holding 

these assumptions is an advantage of the proposed method to 

model the US COVID-19, it may limit the generalizability of the 

model fitting to other outbreaks.   

Researchers in this area are recommended to apply the method 355 

to COVID-19 data from other regions. Our initial analysis shows the 

model fits to Iranian. UK and Italian data. From operational 

perspective, in order to simplify the proposed model for quicker 

implementation of forecasts, the model can be simplified by 

removing the two first parameters suitable to describe the gradual 360 

decrease of the relative increments (�=
,
+1,…).  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 4, 2020. ; https://doi.org/10.1101/2020.10.30.20223412doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.30.20223412
http://creativecommons.org/licenses/by-nd/4.0/


References 

Akaike, H., 1969. Fitting autoregressive models for prediction. Annals of the institute 

of Statistical Mathematics 21, 243–247. 

Baltagi, B.H., Baltagi, B.H., 2001. A companion to theoretical econometrics. Wiley 365 

Online Library. 

Berger, D.W., Herkenhoff, K.F., Mongey, S., 2020. An seir infectious disease model 

with testing and conditional quarantine. National Bureau of Economic 

Research. 

Biggerstaff, M., Alper, D., Dredze, M., Fox, S., Fung, I.C.-H., Hickmann, K.S., 370 

Lewis, B., Rosenfeld, R., Shaman, J., Tsou, M.-H., Velardi, P., Vespignani, 

A., Finelli, L., Influenza Forecasting Contest Working Group, 2016. Results 

from the centers for disease control and prevention’s predict the 2013-2014 

Influenza Season Challenge. BMC Infect. Dis. 16, 357. 

https://doi.org/10.1186/s12879-016-1669-x 375 

CDC, 2020. Coronavirus Disease 2019 (COVID-19) [WWW Document]. Centers for 

Disease Control and Prevention. URL 

https://www.cdc.gov/coronavirus/2019-ncov/index.html (accessed 4.15.20). 

Chowell, G., Luo, R., Sun, K., Roosa, K., Tariq, A., Viboud, C., 2020. Real-time 

forecasting of epidemic trajectories using computational dynamic ensembles. 380 

Epidemics 30, 100379. 

Chretien, J.-P., George, D., Shaman, J., Chitale, R.A., McKenzie, F.E., 2014. 

Influenza Forecasting in Human Populations: A Scoping Review. PLOS 

ONE 9, e94130. https://doi.org/10.1371/journal.pone.0094130 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 4, 2020. ; https://doi.org/10.1101/2020.10.30.20223412doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.30.20223412
http://creativecommons.org/licenses/by-nd/4.0/


Haining, R.P., 1978. The moving average model for spatial interaction. Transactions 385 

of the Institute of British Geographers 202–225. 

Kass-Hout, T.A., Xu, Z., McMurray, P., Park, S., Buckeridge, D.L., Brownstein, J.S., 

Finelli, L., Groseclose, S.L., 2012. Application of change point analysis to 

daily influenza-like illness emergency department visits. J Am Med Inform 

Assoc 19, 1075–1081. https://doi.org/10.1136/amiajnl-2011-000793 390 

Kucharski, A.J., Russell, T.W., Diamond, C., Liu, Y., Edmunds, J., Funk, S., Eggo, 

R.M., Sun, F., Jit, M., Munday, J.D., 2020. Early dynamics of transmission 

and control of COVID-19: a mathematical modelling study. The Lancet 

Infectious Diseases. 

Kumar, N., Jha, G.K., 2013. A time series ann approach for weather forecasting. Int J 395 

Control Theory Comput Model (IJCTCM) 3, 19–25. 

Murphy, S.P., Burkom, H., 2008. Recombinant Temporal Aberration Detection 

Algorithms for Enhanced Biosurveillance. J Am Med Inform Assoc 15, 77–

86. https://doi.org/10.1197/jamia.M2587 

NOAA, 2016. Forecasting the Next Dengue Outbreak | National Centers for 400 

Environmental Information (NCEI) formerly known as National Climatic 

Data Center (NCDC) [WWW Document]. URL 

https://www.ncdc.noaa.gov/news/forecasting-next-dengue-outbreak 

(accessed 4.9.20). 

Paul, M.J., Dredze, M., Broniatowski, D., 2014. Twitter Improves Influenza 405 

Forecasting. PLoS Curr. 

https://doi.org/10.1371/currents.outbreaks.90b9ed0f59bae4ccaa683a39865d9

117 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 4, 2020. ; https://doi.org/10.1101/2020.10.30.20223412doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.30.20223412
http://creativecommons.org/licenses/by-nd/4.0/


Radzuan, N.F.M., Othman, Z., Bakar, A.A., 2013. Uncertain Time Series in Weather 

Prediction. Procedia Technology, 4th International Conference on Electrical 410 

Engineering and Informatics, ICEEI 2013 11, 557–564. 

https://doi.org/10.1016/j.protcy.2013.12.228 

Read, J.M., Bridgen, J.R., Cummings, D.A., Ho, A., Jewell, C.P., 2020. Novel 

coronavirus 2019-nCoV: early estimation of epidemiological parameters and 

epidemic predictions. MedRxiv. 415 

Reis, B.Y., Mandl, K.D., 2003. Time series modeling for syndromic surveillance. 

BMC Medical Informatics and Decision Making 3, 2. 

Rios, M., Garcia, J.M., Sanchez, J.A., Perez, D., 2000. A statistical analysis of the 

seasonality in pulmonary tuberculosis. European Journal of Epidemiology 

16, 483–488. 420 

Rojas, I., Valenzuela, O., Rojas, F., Guillén, A., Herrera, L.J., Pomares, H., Marquez, 

L., Pasadas, M., 2008. Soft-computing techniques and ARMA model for 

time series prediction. Neurocomputing 71, 519–537. 

Rounds, J., Charles-Smith, L., Corley, C.D., 2017. Soda Pop: A Time-Series 

Clustering, Alarming and Disease Forecasting Application. Online journal of 425 

public health informatics 9. 

Scott, S.L., Varian, H.R., 2015. Bayesian Variable Selection for Nowcasting 

Economic Time Series, in: NBER Chapters. National Bureau of Economic 

Research, Inc, pp. 119–135. 

Talaei-Khoei, A., Wilson, J.M., Kazemi, S.-F., 2019. Period of Measurement in Time-430 

Series Predictions of Disease Counts from 2007 to 2017 in Northern Nevada: 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 4, 2020. ; https://doi.org/10.1101/2020.10.30.20223412doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.30.20223412
http://creativecommons.org/licenses/by-nd/4.0/


Analytics Experiment. JMIR Public Health Surveill 5, e11357. 

https://doi.org/10.2196/11357 

Tokars, J.I., Burkom, H., Xing, J., English, R., Bloom, S., Cox, K., Pavlin, J.A., 2015. 

Enhancing Time-Series Detection Algorithms for Automated 435 

Biosurveillance. Emerging infectious diseases - CDC 15. 

https://doi.org/10.3201/eid1504.080616 

Viboud, C., Sun, K., Gaffey, R., Ajelli, M., Fumanelli, L., Merler, S., Zhang, Q., 

Chowell, G., Simonsen, L., Vespignani, A., 2018. The RAPIDD ebola 

forecasting challenge: Synthesis and lessons learnt. Epidemics 22, 13–21. 440 

Voyant, C., Paoli, C., Muselli, M., Nivet, M.-L., 2013. Multi-horizon solar radiation 

forecasting for Mediterranean locations using time series models. Renewable 

and Sustainable Energy Reviews 28, 44–52. 

https://doi.org/10.1016/j.rser.2013.07.058 

WHO, 2020a. Coronavirus Disease (COVID-19) - events as they happen [WWW 445 

Document]. URL https://www.who.int/emergencies/diseases/novel-

coronavirus-2019/events-as-they-happen (accessed 4.6.20). 

WHO, 2020b. Coronavirus disease 2019 (COVID-19) Situation Report – 79 

(Situation Report No. 79). 

WHO, 2020c. Novel Coronavirus (COVID-19) situation reports [WWW Document]. 450 

URL https://www.who.int/emergencies/diseases/novel-coronavirus-

2019/situation-reports (accessed 4.6.20). 

Wongkoon, S., Jaroensutasinee, M., Jaroensutasinee, K., 2012. Development of 

temporal modeling for prediction of dengue infection in Northeastern 

Thailand. Asian Pacific journal of tropical medicine 5, 249–252. 455 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 4, 2020. ; https://doi.org/10.1101/2020.10.30.20223412doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.30.20223412
http://creativecommons.org/licenses/by-nd/4.0/


Zeger, S.L., Irizarry, R., Peng, R.D., 2006. On time series analysis of public health 

and biomedical data. Annu. Rev. Public Health 27, 57–79. 

Zhang, G.P., 2003. Time series forecasting using a hybrid ARIMA and neural 

network model. Neurocomputing 50, 159–175. 

Zhang, X., Zhang, T., Young, A.A., Li, X., 2014. Applications and Comparisons of 460 

Four Time Series Models in Epidemiological Surveillance Data. PLOS ONE 

9, e88075. https://doi.org/10.1371/journal.pone.0088075 

 

  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 4, 2020. ; https://doi.org/10.1101/2020.10.30.20223412doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.30.20223412
http://creativecommons.org/licenses/by-nd/4.0/


Summary Points 465 

1. The study aims to forecast the number of confirmed cases of 

COVID-19 in the US.   

2. The paper builds a time series model based on COVID-19 data 

from 27 Feb to 11 April 2020.  

3. The study forecasts 1,464,729 confirmed cases of COVID-19 by 470 

the 21st of May, 2020.   

4. The paper forecasts the accumulative number of mortalities of 

COVID-19 to around 47000 on the 21st of May, 2020.   

5. The proposed method is based on relative increments of 

confirmed cases.    475 
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Day 0: 27 February 2020, Day 45: 12 April 2020. 

Figure 1 The time series of relative increments and the 480 

time of passing from the first stationary period to the new 

decreasing period.  
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Figure 2 Estimating the linear regression for fitting the 485 

association between relative increment and the inverse of time to 

obtain estimations of the parameters θ and K. 
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Day 0: 22 March 2020, Day 20: 12 April 2020. 

Figure 3 Fitting Power of the model to the relative increments of 490 

confirmed COVID-19 cases in the US  

 
 
 
 495 

 
 
 
 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 4, 2020. ; https://doi.org/10.1101/2020.10.30.20223412doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.30.20223412
http://creativecommons.org/licenses/by-nd/4.0/


 500 

Day 0: 11 April 2020, Day 40: 21 May 2020.  

Figure 4 Forecast of the relative increments of the COVID-19 

cases in the US, from 12 April to 21 May, 2020. 

 
  505 
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Day 0: 11 April 2020, Day 40: 21 May 2020.  

Figure 5 Forecast of the newly confirmed cases of COVID-19 in 

the US, from 12 April to 21 May, 2020. 

 510 
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Day 0: 11 April 2020, Day 40: 21 May 2020.  

Figure 6 Forecast of the cumulative number of confirmed cases 515 

of COVID-19 in the US, from 12 April to 21 May, 2020. 
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 530 

Day 0: 11 April 2020, Day 40: 21 May 2020.  

Figure 7 Forecast of the cumulative number of mortalities 

caused by COVID-19 in the US, from 12 April to 21 May, 2020. 
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