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ABSTRACT 24	

Classification and early detection of severe COVID-19 patients is urgently 25	

required to establish an effective treatment.  Here, we tested the utility of matrix-26	

assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-27	

TOF MS) to classify and predict the severity of COVID-19 in a clinical setting. 28	

We used this technology to analyse the mass spectra profiles of the sera from 29	

80 COVID-19 patients, clinically classified as mild (33), severe (26) and critical 30	

(21), and 20 healthy controls. We found a clear variability of the serum 31	

peptidome profile depending on COVID-19 severity. Seventy-eight peaks were 32	

significantly different and 12 at least four fold more intense in the set of critical 33	

patients than in the mild ones. Analysis of the resulting matrix of peak 34	

intensities by machine learning approaches classified severe (severe and 35	

critical) and non-severe (mild) patients with a 90% of accuracy. Furthermore, 36	

machine learning predicted correctly the favourable outcome of the severe 37	

patients in 85% of the cases and the unfavourable in 38% of the cases. Finally, 38	

liquid chromatography mass spectrometry analysis of sera identified five 39	

proteins that were significantly upregulated in the critical patients. They included 40	

serum amyloid proteins A1 and A2, which probably yielded the most intense 41	

peaks with m/z 11,530 and 11,686 detected by MALDI-TOF MS. 42	

In summary, we demonstrated the potential of the MALDI-TOF MS as a bench 43	

to bedside technology to aid clinicians in their decisions to classify COVID-19 44	

patients and predict their evolution. 	  45	
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INTRODUCTION  46	

Coronavirus infectious disease 19 (COVID-19) was first reported in Wuhan, 47	

Hubei province, China as a new coronavirus disease caused by a positive-48	

strand RNA virus designated as severe acute respiratory syndrome coronavirus 49	

2 (SARS-CoV-2) (1). This virus is responsible of a pandemic of unprecedented 50	

dimensions. Approximately 80% of COVID-19 cases are asymptomatic or 51	

present mild symptoms, such as fever, cough, fatigue, and dyspnea. 52	

Conversely, about 20% of patients with COVID-19 develop viral pneumonia, 53	

with an exaggerated host inflammatory response and hypoxia, requiring 54	

intubation and mechanical ventilation (2,3). These patients, classified as 55	

clinically severe or critical life threatening infections, are mainly diagnosed 56	

empirically based on a set of clinical characteristics. However, patients with 57	

these symptoms have already evolved to a serious clinical condition that 58	

requires specialized intensive care. Therefore it is essential to set up novel and 59	

rapid approaches to identify biomarkers for symptom onset and disease 60	

progression to facilitate triage of patients and establish appropriate treatments. 61	

Peptidome-based studies using serum from patients and high-throughput 62	

spectrometric techniques promise to be valuable for the identification of COVID-63	

19-associated biomarkers. Serum may contain proteins induced by the 64	

systemic effects or released to the lung as a result of the viral infection. Thus, 65	

patient serum can reflect the physiological or pathological state. Indeed, a 66	

proteomic and metabolomic analysis of serum from 46 COVID-19 patients 67	

performed by Shen et al demonstrated that using serum proteins and 68	

metabolite biomarkers it is possible, not only classify patients according to their 69	

grade of severity, but also predict the progression to severe COVID-19 (4). 70	
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More recently, Messner et al re-designed a high-throughput mass spectrometry 71	

platform that enabled the identification of up to 27 potential biomarkers that 72	

were differentially expressed depending on the severity grade of COVID-19 (5). 73	

Although the technologies used in both studies are highly sensitive and provide 74	

robust results, they are time consuming, requires specialized personnel and 75	

most importantly, they are not available in most of the hospitals, so their 76	

translation bench to bedside is limited.  77	

In the present study, we used MALDI-TOF MS, a simple and fast technology, 78	

available in most of the hospitals, to conduct a comparative analysis of serum 79	

from 80 COVID-19 patients. Our results demonstrate the value and power of 80	

MALDI-TOF to classify and predict the progression of COVID-19 in a clinical 81	

setting. 82	

  83	
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MATERIALS AND METHODS 84	

Ethics Statement 85	

The study was conducted in accordance with the Declaration of Helsinki. All 86	

human samples were taken after written consent of the participants. They were 87	

informed of the purposes of the study, which was approved by the Ethics 88	

Review Board of the Illes Balears (CEI). 89	

 90	

Participants 91	

This study included a total of 80 COVID-19 patients who attended Hospital Son 92	

Espases, the reference hospital of the Balearic Islands, between March 2020 93	

and June 2020. COVID-19 cases were confirmed based on the Chinese 94	

management guideline for COVID-19 (6). Only patients with a positive RT-PCR 95	

test were enrolled.  96	

The severity grade of COVID-19 was defined based on the abovementioned 97	

guideline (6). Accordingly, COVID-19 patients were classified into three 98	

subgroups: mild, severe, or critical. Mild included non-pneumonia and mild 99	

pneumonia cases. Severe was characterized by dyspnea, respiratory frequency 100	

≥30/minute, blood oxygen saturation ≤93%, PaO2/FiO2 ratio <300, and/or lung 101	

infiltrates >50% within 24–48 hours. Critical cases were those that exhibited 102	

respiratory failure, septic shock, and/or multiple organ dysfunction/failure. 103	

Twenty healthy volunteers, including 13 recovered from COVID-19 were also 104	

included in the study.  105	

Sample collection 106	

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.30.20223057doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.30.20223057


	 6 

Blood samples were collected into anticoagulant free-tubes. The tubes were 107	

centrifuged at 2,500 rpm at 20ºC for 10 min within a 30-min time frame. Serum 108	

from each patient sample was then collected, aliquoted and stored at –80ºC. 109	

Each serum sample was heat inactivated a 56ºC for 90 min prior to analysis.  110	

 111	

MALDI-TOF serum sample preparation 112	

The preparation of the serum and the analysis of the samples by MALDI-TOF 113	

MS were performed as previously described (7). Serum samples were purified 114	

and concentrated using reversed phase C18 tip, Pierce™ C18, following the 115	

manufacture instructions. In brief, 20 µl of serum were mixed with 15 µl of 116	

trifluoroacetic acid (TFA) 2%. Samples were passed through the Pierce™ C18 117	

tip by pipetting up and down repeatedly (20 times), followed by the separation 118	

of the unbound protein solution. After washing the Pierce™ C18 tip with 10 µl of 119	

0.1% TFA, the bound proteins/peptides were eluted with 4 µl of 0.1% 120	

TFA:CH3CN (1:1, v/v). The solution was passed through the Pierce™ C18 tip 121	

repetitively (8-10 times). The eluted protein/peptide solution was mixed with 4 µl 122	

of a-cyano-4-hydroxycinnnamic acid (CHCA) matrix solution (10 mg of CHCA in 123	

1 ml of 5% TFA:CH3CN, 1:1, v/v) and 1.5 µl of this mixture were spotted onto a 124	

MTP 384 target plate ground steel (Bruker Daltonics, Leipzig, Germany) and 125	

overlaid with 2 µl of CHCA matrix and allowed to air-drying. The analysis of 126	

each sample was conducted in triplicate. 127	

 128	

MALDI-TOF analysis 129	

Measurements were performed on an Autoflex III MALDI-TOF mass 130	

spectrometer (Bruker Daltonics, Leipzig, Germany) equipped with a 200 Hz 131	
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smart beam laser. Spectra were generated by averaging 1000 single laser 132	

shots (100 shots at 10 different spot positions) at a laser frequency of 200 Hz 133	

and detected in linear positive mode. The IS1 voltage was 20.1 kV, the IS2 134	

voltage was maintained at 18.7 kV, the lens voltage was 8.4 kV, and the 135	

extraction delay time was 140 ns. Peaks between 2,000 and 25,400 Da were 136	

selected for analysis. Mass accuracy was calibrated externally using the Bruker 137	

Bacterial Test Standard. Triplicates of each sample were obtained.  138	

 139	

MALDI-TOF mass data processing 140	

Raw mass spectra obtained by MALDI-TOF MS was analysed using the 141	

MALDIquant R package (8). Square root transformation, peak smoothing, 142	

baseline correction, and intensity normalization were performed on each mass 143	

spectrum. The average spectrum from the triplicates was obtained. Peaks were 144	

detected and binned across all average spectra with a signal to noise ratio of 5 145	

and a tolerance of 0.002. Peaks presents in less than 25% of the spectra were 146	

rejected. All spectra from the groups under study were pre-processed, and peak 147	

detection was applied to obtain an intensity matrix. The resulting matrix of peak 148	

intensities was used for Principal Component Analysis (PCA) (9) and Machine 149	

learning (ML) approaches (10). To set up ML, the radial basis function was used 150	

as the kernel function and ANOVA was used to select the 45 most relevant 151	

peaks. 152	

 153	

Liquid chromatography-mass sample preparation 154	

Three microliters of serum were diluted to 1 ml with 50 mM Ammonium 155	

bicarbonate (0.2 µg/µl taking the average of plasma proteins as 80 mg/ml). One 156	
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hundred µL of the dilution were reduced with 11 µl of 50 mM dithiothreitol for 30 157	

minutes at 56°C and were alkylated with 12.5 µl of indole-3-acetic acid 20 mM 158	

for 20 minutes in the dark at 37 °C. Total volume 123.5  µl, containing likely 24 159	

µg of plasma protein, were digested with 10 µL of trypsin 100 ng/µl at 37°C 160	

overnight. Ten microliters of formic acid (FA) 5% were added to stop the 161	

digestion. 162	

 163	

Liquid chromatography-mass setup 164	

The digested peptides were analysed by liquid chromatography mass 165	

spectrometry (LC-MS/MS) with a nanoflow Agilent series 1200 LC system 166	

(Agilent Technologies, Waldbronn, Germany), with an autosampler equipped 167	

with an 8 µl capillary loop, coupled to a Q-Exactive Plus Hybrid Quadrupole-168	

Orbitrap mass spectrometer (ThermoFisher®Scientific) in data dependent 169	

acquisition mode. For each acquisition, peptides were loaded onto a precolumn 170	

(ZORBAX 300 SB-C18, 5 µm, 5 mm *0.3 mm i.d.) at a flow rate of 15 µl/min for 171	

2 min and then analysed using a 235 min LC gradient (from 3% to 97% buffer 172	

B) at a flow rate of 250 nl/min (analytical column, ZORBAX 300 SB-C18, 3.5 173	

µm, 150 mm *0.075 mm i.d.). Buffer A was H2O containing FA 0.1%, and buffer 174	

B was acetonitrile with 0.1% FA. All reagents were MS grade. The m/z range of 175	

MS1 was 350-1,650 with the resolution at 140,000 (at 200 m/z), automatic gain 176	

control (AGC) target of 3e6, and maximum ion injection time (max IT) of 250 ms. 177	

Top 10 precursors were selected for MS/MS experiment, with a resolution at 178	

17,500 (at 200 m/z), AGC target of 5e4, and max IT of 200 ms. The isolation 179	

window of selected precursor was 4 m/z. 180	

 181	
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Liquid chromatography-mass data processing 182	

The resultant mass spectrometric data were analysed using Proteome 183	

Discoverer (Version 2.2.0.388, Thermo Fisher Scientific) using a protein 184	

database composed of the Homo sapiens fasta database downloaded from 185	

UniProtKB on 12 Jul 2020, containing 20,304 reviewed protein sequences, and 186	

the SARS-CoV-2 virus fasta downloaded from UniProtKB on 20 May 2020, 187	

containing 13 protein sequences. Enzyme was set to trypsin with four missed 188	

cleavage tolerance. Static modifications were set to carbamidomethylation 189	

(+57.02146) of cysteine and variable modifications were set to oxidation 190	

(+15.99492) of methionine and dimethylation (+28.03075) of peptides N-termini. 191	

Precursor ion mass tolerance was set to 10 ppm, and product ion mass 192	

tolerance was set to 0.6 Da. The peptide-spectrum-match allowed 1% target 193	

false discovery rate (FDR) (strict) and 5% target FDR (relaxed). Normalization 194	

was performed against the total peptide amount. The other parameters followed 195	

the default setup. 196	

  197	
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RESULTS 198	

We acquired MALDI mass spectra of 82 serum samples obtained from 80 199	

different COVID-19 patients (from two patients, we analysed two samples 200	

(109/144 and 143/141) collected at different severity grades); 34 samples were 201	

collected from mild COVID-19 patients, 26 from severe patients and 22 from 202	

critical patients. We also analysed 20 serum samples obtained from healthy 203	

people, including 13 samples collected from individuals recovered from COVID-204	

19. The relevant characteristics of each group are shown in Table 1. 205	

All spectra from the four groups under study were processed and peak 206	

detection was applied to obtain an intensity matrix of 135 peaks in the mass 207	

range of 2,000 to 25,000 daltons using MALDIquant. To select the most 208	

characteristic peaks distinguishing the groups classified according to COVID-19 209	

severity, we applied Post hoc Turkey's HSD analysis, which identified 78 peaks 210	

with a FDR (False Discovery Rate) value ≤ 0.05. Figure 1A illustrates the 211	

quantitative variability of those peaks, significantly different, that exhibited a log 212	

fold change ≥ 2 for COVID-19 severity on a heatmap. We found clear 213	

differences between critical and mild patients. Twelve peaks were significantly 214	

different and at least four fold more intense in the set of critical patients than in 215	

the mild ones (Figure 1B). However, only two peaks (m/z 11,530 and 11,686) 216	

were significantly different between severe and critical patients (Figure 1B).  217	

These results encouraged us to apply ML approaches to classify and predict 218	

COVID-19 severity. We built two support vector machine learning models using 219	

the 135 peaks (m/z) obtained from each sample by MALDI-TOF MS. In the first 220	

model, patients were classified as severe and non-severe. Severe patients 221	

group included those that required oxygen support (severe and critical patients), 222	
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while non-severe were those without oxygen support (mild patients). Seventy-223	

five percent of the samples from each group were randomly selected to form 224	

the training set, while the remaining 25% of the samples were used for 225	

validation as an independent test cohort. This process was repeated five 226	

independent times, every time ML was tested through fivefold cross-validation. 227	

This model reached an average area under curve (AUC) of 0.911 for Receiver 228	

Operating Characteristic (ROC) curve (8).  229	

Using this model, 90 % of the samples were correctly classified with only a 5% 230	

of false positives and 5% of false negatives. PCA separated individuals 231	

according to the severity of COVID-19 (Figure 2) and helped to identify some 232	

outliers (samples 4, 11, 30, 34 from mild patients) previously detected in the 233	

heatmap and in the bloxplots.  234	

Next, we assessed whether ML would be able to predict clinical evolution of 235	

severe patients (grade 2). For this model, a database constructed using the 236	

mass spectra of samples from mild (grade 1) and critical (grade 3) patients, 237	

excluding outliers samples, was challenged with the mass spectra of samples 238	

from severe patients (grade 2). As above, this process was repeated five 239	

independent times, every time ML was tested through fivefold cross-validation. 240	

This model reached an AUC of 0.956 for ROC curve. Green and red brackets 241	

below heatmap panel in figure 1A indicate those clinically severe (grade 2) 242	

patients that were clustered by ML as mild or critical, respectively. All severe 243	

patients that were classified by ML as mild had a good clinical evolution except 244	

patients of samples 108 and 144, which worsened to critical 8 days later, 245	

suggesting that this technology is quite accurate to predict favourable 246	

prognostics. On the other hand, five patients (samples 111, 143, 101, 118 and 247	
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137) classified as clinically severe (grade 2) when the samples were collected, 248	

which 48-96 h later evolved to critical (grade 3), were clearly clustered in the 249	

group of critical patients using machine learning, while the remaining 8 patients 250	

(70, 73, 66, 67, 62, 59, 53, 58) did not worsen to grade 3.  251	

Most of the discriminating peaks identified by MALDI-TOF MS analysis had a 252	

low molecular weight (< 5,000 Da). They probably resulted from the 253	

fragmentation of proteins upregulated in severe and critical patients. 254	

Interestingly, the most substantial intensity difference were exhibited by the 255	

peaks with m/z of 11,530 and 11,686, which might correspond to unfragmented 256	

proteins of the acute phase induced by the virus. To investigate this hypothesis, 257	

we performed a proteomic analysis of the samples by LC MS/MS. We identified 258	

five proteins that were significantly upregulated according to the severity of the 259	

disease; the serum amyloid A2 protein (SAA2), the C reactive protein (CRP), 260	

the serum amyloid protein A1 (SAA1), the lipopolysaccharide binding protein 261	

(LBP) and the gamma chain of the fibrinogen (FGG). Figure 3A illustrates the 262	

quantitative variability of these proteins on a heatmap. Only the serum level of 263	

SAA2 exhibited significant increments between mild and severe patients and 264	

between severe and critical patients (Figure 3B). In addition, SAA1, CRP, LBP 265	

and FGG were increased in the serum from the critical patients compared with 266	

to mild patients, while only CRP and SAA1 were increased in the severe 267	

patients compare to mild patients (Figure 3B). Given that the molecular weight 268	

of SAA1 and SAA2 is approximately 11.7 kDa, depending on the isoform (11), 269	

and that we found a good correlation between the level of both proteins and the 270	

intensity of the peaks with m/z of 11,530 and 11,686, we suggest that these 271	

peaks might correspond to the serum amyloid proteins A1 and A2.  272	
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DISCUSSION  273	

In this study we demonstrate that the molecular changes that occur in the sera 274	

of COVID-19 patients may be detected by MALDI-TOF MS analysis generating 275	

peptidome profiles that may be used as clinical classifiers. In addition, we show 276	

that it is possible to predict the progression of the disease using the peptidome 277	

signatures obtained with this technology. Finally, we provide strong evidences 278	

that serum amyloid A2 protein is one of the major biomarkers of severe COVID-279	

19 disease. 280	

To our knowledge, only two previous studies reported the use of mass 281	

spectrometry analysis of serum from COVID-19 patients to classify disease 282	

severity (4, 5). However, both studies were performed using sophisticated 283	

technologies, which are not available in most of the hospitals. Our challenge 284	

was to test whether MALDI-TOF MS analysis, a simpler technology available in 285	

most of the clinical microbiology laboratories for identification of microbial 286	

species, was able to achieve similar results. Our study classified severe 287	

patients with a high accuracy (90%), very similar to that obtained in a previous 288	

report (93%) (4), with a very low number of false results.  289	

We represented the changes of those peaks that exhibited major changes upon 290	

grouping the patients according to CDC Chinese severity criteria, ranging from 291	

scale 1 to scale 3 in a heatmap, which graphically illustrated how level changes 292	

in these peaks reflected a progression from mild to critical COVID-19. 293	

Interestingly, our peptidome profile data identify the most important changes 294	

within the severe patients, upon which a patient is put on oxygen supply. This 295	

observation is consistent with the proteome analysis conducted by Messner et 296	

al, who found that at molecular level the requirement of oxygen supply 297	

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.30.20223057doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.30.20223057


	 14 

coincided with the progression to severe disease (5). In contrast, mild patients 298	

have a peptidome signature virtually identical to the healthy controls suggesting 299	

that in non-severe patients changes are restricted to the site of infection, the 300	

respiratory tract, without significant molecular systemic alterations. Bloxplot 301	

representation also identified outlier samples that were confirmed by PCA. As 302	

occurred in the study by Messner et al. (5), it is likely that these samples were 303	

collected from patients with certain underlying pathologies o under specific 304	

treatments that altered the peptidome signature.  305	

Case studies demonstrated the clinical utility of the peptidome profiles to 306	

classify and predict COVID-19 evolution. First, five samples from patients 307	

classified as clinically severe, presented a profile very similar to the group of 308	

critical patients in the heatmap and clustered in this group using ML 48-96 h 309	

before they clinically progressed to critical. Second, sample 141 obtained from 310	

the same patient as sample 143, which evolved from severe to critical, was 311	

collected two days before it was discharged and presented a peptidome profile 312	

clustered as mild by ML and in the heatmap. On the other hand, samples from 313	

patients completely recovered of COVID-19 (blue bracket in figure 1A) or those 314	

that evolved from severe to mild had peptidome signatures similar to those 315	

observed in the healthy control patients. Conversely, peptidome profile of 316	

sample 144, obtained from the same patient as sample 109, but eight days 317	

before he progressed to critical, was not able to predict the clinical trajectory of 318	

this patient. 319	

Overall, these results suggest that peptidome profiles obtained by MALDI-TOF 320	

MS may represent a good prognostic tool to support clinical decisions. 321	

However, it would be interesting to conduct a longitudinal study with sequential 322	
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daily samples from a cohort of patients at different grades of severity until their 323	

recovery to assess the anticipation time of prediction. 324	

One of the potential limitations of our study is that due to the rapid response 325	

required in the initial stages of the pandemic situation, we collected samples 326	

from the patients that were admitted in our hospital using as unique criteria that 327	

they were hospitalized due to a SARS-CoV-2 infection. Therefore our study did 328	

not take in account some confounding factors, like age. Nonetheless, the 329	

change of the intensity of the peaks between groups substantially exceeded the 330	

variability observed within each group with ages ranging from 33 to 89, 331	

suggesting that differences in the peptidomes profiles of different groups are 332	

poorly influenced by confounding factors.  333	

Two of the most intense peaks detected in the sera from critical patients had 334	

m/z of 11,530 and 11,686 that might correspond to two different isoforms of the 335	

serum amyloid A protein (11). This acute phase markers, induced by the 336	

proinflammatory cytokine IL-6, were two of the predominant proteins detected 337	

by both Shen et al and Messner et al in their respective studies (4,5).  As in our 338	

study, they also detected CRP, LBP and FGG as clear protein biomarkers for 339	

COVID-19 severity. 340	

In conclusion, our study supports the potential of the MALDI-TOF MS as a fast 341	

and clinically available technology to aid clinicians in their decisions on COVID-342	

19 patients and identifies serum amyloid protein A2 as an excellent biomarker 343	

to monitor COVID-19 patients. 344	
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Table 1. Relevant characteristics of the individuals included in this study 411	
 412	

 
Healthy 
(n=20) 

COVID-19 patients 
Mild 

(n=33) 

Severe 

(n=26) 

Critical 

(n=21) 

Sex      

Male 11 11 16 21 

Female 9 22 10 0 

Age     

Mean ± SD 50±12.3 55.2±16.7 63.2±9.9 63.2±10.1 

Median 50.5 49 65 65.5 

Range 27-73 34-89 47-81 33-76 
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FIGURE LEGENDS 414	

Figure 1. MALDI mass spectra of serum indicate clinical severity in 415	

COVID-19.  416	

(A) Heatmap illustrates peptidome profiles that inform on COVID-19 severity. 417	

Heatmap was generated using the ComplexHeatmap package (8). Groups were 418	

classified according to COVID-19 severity following the Chinese management 419	

guideline for COVID-19. Blue bracket below heatmap indicates healthy 420	

individuals recovered of COVID-19, while green and red brackets indicate 421	

samples from patients classified by ML as mild or critical, respectively. 422	

(B) Peaks with increased intensity depending on COVID-19 severity. The boxes 423	

show the first and third quartiles as well as the median (middle), the mean 424	

(cross), and the outliers (circles outside the whiskers). 425	

426	
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Figure 2. PCA of the mass spectra of the samples from the non-severe (mild) 429	

(green dots) and severe (severe and critical) (red dots) patients. Arrows indicate 430	

outlier samples. 431	

 432	

 433	
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Figure 3. Upregulated proteins according to COVID-19 severity.  435	

(A) Heatmap illustrates proteins that inform on COVID-19 severity. Heatmap 436	

was generated using the ComplexHeatmap package (8). Only proteins that 437	

were present in more than 70% of the samples identified by at least 5 peptides 438	

and significantly increased (P< 0.05) by a log-2 fold change >2 were included in 439	

the figure. Groups were classified according to COVID-19 severity following the 440	

Chinese management guideline for COVID-19. SAA2 (serum amyloid A2 441	

protein), CRP (C reactive protein), SAA1 (serum amyloid protein A1), LBP 442	

(lipopolysaccharide binding protein) and FGG (gamma chain of the fibrinogen). 443	

(B) Upregulated proteins depending on COVID-19 severity. The boxes show the 444	

first and third quartiles as well as the median (middle), the mean (cross), and 445	

the outliers (circles outside the whiskers).  446	

 447	

 448	

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.30.20223057doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.30.20223057

