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ABSTRACT  

Objective 

A challenge in hypertension-related risk management is identifying which people are likely to develop 

future complications. To address this, we present administrative-claims based predictive models for 

hypertension-related complications. 

Materials and Methods 

We used a national database to select 1,767,559 people with hypertension and extracted 112 features 

from past claims data based on their ability to predict hypertension complications in the next year. 

Complications affecting kidney, brain, and heart were grouped by clinical severity into three stages. 

Extreme gradient boosting binary classifiers for each stage were trained and tuned on 75% of the data, 

and performance on predicting outcomes for the remaining data and an independent dataset was 

evaluated.  

Results 

In the cohort under study, 6%, 17%, and 7% of people experienced a hypertension-related complication 

of stage 1, stage 2, or stage 3 severity, respectively. On an independent dataset, models for all three 

stages performed competitively with other published algorithms by the most commonly reported 

metric, area under the receiver operating characteristic curve, which ranged from 0.82-0.89. Features 

that were important across all models for predictions included total medical cost, cost related to 

hypertension, age, and number of outpatient visits. 

Discussion  

The model for stage 1 complications, such as left ventricular hypertrophy and retinopathy, is in contrast 

to other offerings in the field, which focus on more serious issues such as heart failure and stroke, and 

affords unique opportunities to intervene during earlier stages. 

Conclusion 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.30.20169615doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.30.20169615


3 | P a g e  
 

Predictive analytics for hypertension outcomes can be leveraged to help mitigate the immense 

healthcare burden of uncontrolled hypertension.  
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LAY SUMMARY  

As the leading preventable risk factor for morbidity and mortality in the world, identifying which people 

with hypertension are likely to exacerbate is critically important for development of effective 

intervention strategies. Here we present a suite of predictive models that can predict future risk of 

development of hypertension-related complications. To have utility for triaging as well as identifying 

mild cases before they progress to critical end phases, the models predict three different stages of 

severity of hypertension-related complications. Our algorithms utilize variables calculated for the most 

recent 12 months, and predict probability of a hypertension-related complication for the next 12 

months using administrative claims as the data source. Because the types of complications that have 

been analyzed can also result from comorbidities besides hypertension, such as diabetes and 

hyperlipidemia, these diagnoses are included as variables. Other variables pertain to demographic 

characteristics, prescription information, relevant procedures, and utilization patterns. Overall, all three 

models exhibited strong predictive performance. The ability to use straightforward variables found in 

claims data to predict future risk of disease-related complications, complemented with targeted clinical 

intervention strategies, has the potential to reduce cost of care and improve health outcomes for the 

many people living with hypertension.
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BACKGROUND AND SIGNIFICANCE 

Hypertension (HTN) is the chronic elevation of blood pressure due to changes in cardiac output and/or 

systemic vascular resistance, which can lead to organ damage and mortality if left unmanaged. The 

overall prevalence of HTN is high, nearly a third of the global adult population, making HTN one of the 

basic cost drivers in healthcare systems [1]. Despite continuing advances in treatment options, HTN 

remains uncontrolled in more than half of the population on medication [2]. As a result of its high 

prevalence and difficulty to adequately manage, HTN is the leading preventable risk factor globally for 

premature death and disability [3].  

 The contribution of HTN to morbidity and mortality is due to the long term effects of chronic, 

unmanaged high blood pressure. HTN itself is without symptoms, but left uncontrolled, will lead to 

systemic organ damage over time [4]. Initial stages of damage such as microalbuminuria and left 

ventricular hypertrophy are subtle and may go unrecognized until they’ve progressed to more serious 

complications such as chronic kidney disease and heart failure [5]. Estimates suggest that preventing 

hypertension could reduce cardiovascular death by 38% in females and 30% among males [6]. Another 

study found that 48% of population risk for stroke could be attributed to HTN, the highest of all factors 

examined [7]. After diabetes, HTN is the second leading cause of end-stage renal disease [8]. Therefore, 

the ability to predict who with HTN is likely to exacerbate, or present with HTN-related complications, 

before such events occur is a powerful opportunity to mitigate some of this morbidity and mortality 

burden. 

 We found a number of studies that used machine learning algorithms to predict various 

complications associated with HTN. Diverse data sources, including EHR, clinical trial data, and national 

healthcare databases from the US, Korea, China, and Europe were utilized to predict complications such 

as cardiovascular disease, dementia, myocardial infarction, acute coronary syndrome, cerebrovascular 

disease, stroke, kidney disease, heart failure, coronary heart disease, ischemic heart disease, and 
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cardiovascular death [9-17]. In general, the number of people included in these cohorts ranged from 

3,395 to 133,176; only three included people below the age of 40 and one did not report age ranges [9, 

10, 16, 17]. The area under the receiver operating characteristic (AUROC) was the most commonly 

reported evaluation metric, ranging from 0.56-0.84, with an average of 0.71 across seven studies [9-13, 

15, 17]. 

From this, we saw an opportunity to contribute to this strong predictive modeling work by 

exploiting a larger dataset, a national collection of administrative claims from commercially-insured 

individuals, with hypertensive members in the millions. We refer to this source as the CCAE (Commercial 

Claims and Encounters) database within this manuscript. Including people in the age range of 18-64 

represents a lower risk population for complications, but more opportunities for targeted intervention 

before the risks may become unmanageable. Our independent test set did include people over 65 to 

assess the model’s generalizing ability to this demographic. In addition, rather than focusing on a 

specific type of complications, a specific organ system, or a composite of severe complication outcomes 

as has been done in previous studies, we chose to build separate models to predict the complications 

that reflect the progression of chronic HTN. Composite outcomes across organ systems were grouped 

into three stages of increasing clinical severity as described by Messerli and colleagues [18]. 

Interventions during earlier signs and symptoms of HTN complications are more likely to be successful 

than interventions at later stages and may help to prevent later stage HTN complications as well [19]. 

Features thought to correlate directly or indirectly with HTN-related complications were calculated for 

the intake window, a 12-month period before the year for prediction, and extreme gradient boosting 

(XGBoost) classifiers were trained to predict the likelihood of these outcomes in the following year. 

Overall, model performance was strong on the independent dataset (AUROC = 0.82-0.89), comparable 

or better than the previously published algorithms mentioned above, in addition to having the benefits 

of providing early intervention opportunities. These models exhibit practical utility from a care 
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management perspective to triage and manage hypertensive populations, which are inherently large, 

for different levels of HTN complication severity. 

 

MATERIALS AND METHODS 

Study design and sample data 

We used administrative claims data generated between January 1, 2016 to December 31, 2017 from 

commercially-insured individuals in the CCAE database. The cohort of study was selected based on data 

from 2016 and HTN-related complication events were identified in 2017 data. To be included in the 

cohort, members were presumed to have HTN based on their medical and pharmacy claims: they either 

had to have at least two claims 14 or more days apart with a HTN diagnosis or at least one claim with a 

HTN diagnosis and at least two pharmacy claims with anti-HTN medications (for medical codes used see 

Supplementary Table S1). They also had to be continuously enrolled in 2016 and 2017 in medical and 

pharmacy benefits and be at least 18 years old. We also explored cohorts that did and did not include 

members that had complication events during the intake window of 2016. 

Features for each cohort member were then calculated for 2016 to use for predicting 

hypertension complications in 2017. An independent dataset of administrative claims from an 

independent payer not in the CCAE database was used to process data in the exact same manner and 

validate final model performance. 

 

Outcome variable: Defining a hypertension complication 

Outcomes were identified during the prediction window of January 1, 2017 to December 31, 2017. In 

order to maximize applications and utility, we chose to build three different models predicting different 

levels of complication severity across different target organ systems (Figure 1). Stage 1 complications 

are the least severe, and include proteinuria, left-ventricular hypertrophy, and retinopathy. Stage 2 
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complications, the next step in progression of unmanaged hypertension, include chronic kidney disease, 

coronary artery disease, and transient ischemic attack. The most severe complications, stage 3, include 

end-stage renal disease, heart failure, and stroke. As a result, stage 1 and stage 2 models can be used to 

target people in the early stages of HTN progression, while predictions for stage 3 complications can be 

used to triage for likelihood of severe HTN exacerbations for those that have already progressed to an 

advanced disease state. ICD-10-CM diagnosis codes [20] used to identify these complication events can 

be found in Supplementary Table S2. These labels were treated as non-mutually exclusive when training 

each model. In other words, the same cohort was used to fit all three models and members were not 

excluded if they had multiple stages of complications during the prediction window. 

 

Feature candidates 

We compiled 112 different features based on previous literature and clinical information, all during the 

intake window of January 1, 2016 to December 31, 2016. To ascertain the feature of whether each 

member was taking anti-hypertensives for the first time in 2016, what we call a “progressor” [21], 

pharmacy data from 2015 was also used, but we allowed for progressor status as unknown if they were 

not enrolled in 2015. Demographic features were age and gender. Diagnoses included comorbidities 

common with hypertension and known to contribute to increased likelihood of disease exacerbation, 

such as diabetes and hyperlipidemia, as well as other conditions that could contribute to the 

complication set. For example, heart valve disorders could also lead to arrhythmias. The Charlson 

Comorbidity Index was calculated as well [22]. Prescription features pertained to anti-hypertensive drug 

classes: diuretics, calcium channel blockers, agents acting on the renin-angiotensin system, beta 

blockers, vasodilators, and adrenergic antagonists. Mono- and polytherapies as well as medication 

changes were evaluated [21]. Medications indicative of comorbidities, such as metformin for diabetes, 

were included, as well as medications known to interfere with anti-hypertensives, like steroids [23]. In 
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the absence of clinical data, counts of unique dates with particular procedure codes were used in place 

of laboratory results, including tests for HbA1c and creatinine levels. Finally, utilization was assessed as 

counts of unique visit dates in different care settings: outpatient (OP), inpatient (IP), and emergency 

department (ED), as well as two cost features: total medical spending for the year and spending for 

claims with hypertension diagnoses.  

 

Machine learning approaches and prediction performance evaluation 

Several algorithm architectures were tested, and we decided to use the XGBoost classifier [24], which 

had the best performance during initial data exploration phases. Three separate models were 

constructed for each stage to allow flexibility in fine-tuning for the most accurate predictions of each 

stage of complication. For model training and evaluation, data were split 75%-25% for training and test 

sets using stratified sampling. Model hyperparameters tuned with random grid search and cross 

validation were learning rate, maximum depth, minimum child weight, and subsample rate. 

Model performance was evaluated with several metrics, including area under the receiver 

operating characteristic (AUROC), area under the precision-recall curve (AUPRC) [25], sensitivity, 

specificity, negative predictive value (NPV), positive predictive (PPV) value, F1 score, and number 

needed to evaluate (NNE) – or the number of people needed to evaluate to get one person with the true 

outcome – on the test set and an independent dataset. The optimal threshold for prediction cutoff was 

chosen to balance sensitivity and specificity as identified by the Youden index [26]. We also report 

feature importance for the top 20 most important predictors for each model.  

Analyses and visualizations were done using Python, version 2.7, with the scikit-learn, numpy, 

pandas, and seaborn libraries (Python Software Foundation). 

 

RESULTS 
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Descriptive statistics of the case population 

There were 1,767,559 members in the cohort of study; of these, 396,607 (22.4%) had at least one HTN-

related complication of any stage. Stage 2 complications were most common with 303,150 members 

(17.1% of cohort), while stage 1 (99,829) and stage 3 (131,126) were less so (5.6% and 7.4%, 

respectively). Some members experienced complications from two or all three stages (6.5%) during the 

prediction window. There was a lower percentage of females (41.3% vs. 49.0%) as well as a higher 

average age (54.7 vs. 51.6 years old) among those that experienced a HTN-related complication versus 

those that did not (Figure 2). Because more than half the people who experienced a stage 1 

complication also experienced a stage 2 and/or stage 3 complication, and more than a quarter of people 

who had a stage 2 complication also had a stage 3 complication, the summary statistics for the features 

below pertain to mutually exclusive roll-up categories where a person was counted for his or her most 

severe complication stage. 

 Select diagnosis and prescription features as they relate to HTN complication stages are shown 

in Figure 3. These were chosen as they are among the top 20 most important features for one or more 

of the models. Summary statistics of all diagnosis- and prescription-related features are in Tables 1 and 

2, respectively. Charlson Comorbidity Index [22], a discrete risk score, increased as complication severity 

increased (Figure 3B). For diagnosis-related features scored categorically by the presence of at least one 

code (n=60), all but anxiety disorder and hemochromatosis were proportionally higher in all three of the 

complication stage groups compared to those that did not have any complications. Thirty-one of these 

diagnoses increased proportionally with increasing complication severity (Table 1). Discrete prescription 

features, such as number of different anti-hypertensive classes and number of anti-hypertensive 

treatment adjustment rounds, positively correlated with complication severity (Figure 3C). For 

prescription features scored categorically by the presence of at least one code (n=35), 20 were 
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proportionally higher in all complication stage groups compared to those without any hypertension-

related complications. Six prescription predictors decreased with complication severity (Table 2). 

 Counts of relevant procedure codes (n=6 predictors) and utilization visits and costs (n=5 

predictors) were all discrete features, and means and SDs of these predictors by complication stage can 

be found in Table 3. The mean for all of these features was lowest in the complication group versus all 

other complication stages. Mean utilization across all categories positively correlated with complication 

stage severity, as did all procedure code counts except for HbA1c and at home blood pressure monitor 

(Table 3, Figure 4). 

 Reducing the overall feature space to two dimensions with principal component analysis for 500 

randomly selected cases shows some clustering of no complication cases, with greater spread for stage 

2 and stage 3 complications (Supplemental Figure 1). 

 As some of the complications we are trying to predict, such as chronic kidney disease and 

dementia, are chronic, we evaluated their presence in our cohort during the intake window and how 

that may affect model performance. We found that 298,774 (17%) of the cohort had a diagnosis for one 

of the chronic complication events during the intake year, 216,817 of whom had a complication during 

the prediction year, accounting for 55% of members of the total cohort that experienced a HTN-related 

complication during this time. One concern is that the models are benefitting from predicting continued 

presence of chronic complications; however, not everyone from this group had a complication during 

the prediction window. Furthermore, models trained on cohorts with and without complication events 

during the intake window performed less well than when both groups are combined (Supplemental 

Table S3), so we elected to continue with the latter. 

 

Prediction performance of ML algorithms 
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After calculating the features and labels, the data were split randomly into train and test sets with 

stratified sampling. XGBoost models were fitted and tuned on the training data, and the performance 

evaluated on the test set, summarized in Supplemental Figure 2. On the independent dataset 

(Supplemental Figure 3), the model to predict stage 2 complications exhibited the best performance 

across thresholds (AUROC of 0.89, AUPRC of 0.76). The model to predict stage 3 complications was next 

best (AUROC of 0.87, AUPRC of 0.58), outperforming the model to predict stage 1 complications (AUROC 

of 0.81, AUPRC of 0.36) (Figure 5).  

 At the optimized threshold for specificity and sensitivity as determined by the Youden index, the 

model for stage 1 complications had a specificity of 66.8%, sensitivity of 79.5%, NPV of 97.2%, PPV of 

18.4%, F1 score of 0.30, and NNE of 5.5. Meanwhile, the model for stage 2 complications exhibited a 

specificity of 81.4%, sensitivity of 93.1%, NPV of 92.5%, PPV of 63.4%, F1 score of 0.72, and NNE of 1.6. 

Finally, the model for stage 3 complications had a specificity of 71.0%, sensitivity of 84.4%, NPV of 

96.4%, PPV of 33.2%, F1 score of 0.48, and NNE of 3.0 (Table 4). 

 Feature importances were extracted from the XGBoost classifier attributes and the top 20 for 

each model are shown in Figure 6. The top four predictors across models for all three complication 

stages were total medical cost, medical cost related to hypertension, outpatient visits, and age, although 

order varied depending on stage. Other features common to all three models were Charlson 

Comorbidity Index, count of anti-hypertensive drug classes, count of anti-hypertensive drugs, ED visits, 

IP visits, EKG count, round of treatment changes, and HbA1c count. Meanwhile, serum uric acid count 

(stages 1 and 2); valvular disorders and anticoagulants (stages 1 and 3); and sex, statins, beta blockers, 

breathing difficulties, and thiazide diuretics (stages 2 and 3) were common in two of the three models. 

Uniquely in the top 20 most important features for predicting stage 1 complications was previous stage 

2 and stage 3 complications, edema, diabetes, and atherosclerosis. Unique to stage 2’s top 20 was 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.30.20169615doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.30.20169615


13 | P a g e  
 

hyperlipidemia and previous stage 1 complications. For stage 3, dizziness was a top 20 predictor not 

found for the other two models. 

 

DISCUSSION 

There is already a substantial body of literature predicting HTN onset (see [27] for a review), but there 

remains much value to be added from forecasting HTN-related complications, of which there are more 

limited studies [9-17]. This would serve the substantial already-diagnosed population, and serve to 

mitigate the HTN morbidity and mortality burden due to complications. While HTN is associated with 

major complications such as chronic kidney disease, heart failure, and stroke [28-30], one area that has 

not been explored to our knowledge is algorithms to predict earlier stage complications. These subtler, 

sometimes non-specific symptoms, such as microalbuminuria and cognitive dysfunction, may not be 

recognized as signs of HTN progression like the later stage major complications will be, and yet it is a 

more effective time to intervene and review treatment and management options. 

 

Findings 

To the above end, we built three separate models to predict different stages of complications that 

reflect the severity of HTN progression across the target organs of brain, heart, and kidney. On a large 

commercial population of medical and pharmacy administrative data, we identified prevalence rates of 

6%, 17%, and 7%, for stage 1, stage 2, and stage 3 complications, respectively. We trained three 

XGBoost classifiers using 112 features to predict these different complication stages and found they 

performed as well or better on an independent dataset than previously published models by AUROC in 

predicting outcomes most similar to our stage 2 and stage 3 composites [9-13, 15, 17]. The precision or 

PPV of the models for stages 1 and 3 is low at the threshold chosen to optimize specificity and 

sensitivity, and could be improved by adjusting the threshold at the sacrifice of other metrics. PPV will 
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always be inherently low for imbalanced datasets, but the NNE of 5.5 and 3.0 for these models is 

encouraging from an implementation perspective as they reflect a low number of people needed to 

evaluate to detect one outcome [31].  

 When looking at the most important features for these models, we found that all five utilization 

calculated pertaining to cost and visit types (IP, ED, OP) were in the top 20 across models, perhaps 

because they are good proxies for overall health status. Diagnosis-related features seemed more 

important in discriminating stage 1 complications (7 features in top 20) than for stage 2 and stage 3 

complications (4 features each in the top 20). Conversely, predictors related to medications featured 

more heavily in the top 20 for stage 2 and stage 3 models (6 and 7 predictors, respectively) than for 

stage 1 (4 predictors in top 20). A feature to incorporate in the future for all of these models is to look at 

medication adherence, which has previously been found to increase odds of HTN complications 

(ischemic heart disease and cerebrovascular disease) [32]. 

 

Care management use cases 

Care management for HTN involves educational programs encouraging self-management, including 

checking blood pressure regularly, understanding the importance of medication adherence even in the 

absence of symptoms, managing weight and diet, and recognizing signs indicative of HTN-related 

complications. Should a member become unstable, care managers can coordinate with physicians to 

schedule appointments, adjust medications, and recommend further lifestyle modifications. Because of 

the time needed to assess each patient’s unique case, identify and eliminate his or her barriers to care, 

organize education and resources, and build a trusting relationship, care management assets must be 

allocated wisely. 

 Because the number of people with HTN is large and likelihood for HTN-related disease 

exacerbation is variable, these models can be leveraged to help identify and stratify risk for individuals 
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of a HTN population for care management. People can be rank-sorted by the algorithms’ prediction 

probability for each complication stage and integrated with other clinical information to assess overall 

acuity. These predicted complication probabilities could add additional layers for prioritization of 

outreach in terms of surfacing unique members that may be lower risk by other assessments. The 

models can also identify patients without previous complication events. Stratification of care 

management resources could include identifying candidates for remote monitoring programs at home 

[33, 34], and designating outreach resources ranging from digital strategies to personalized contact with 

a population health consultant, an engagement specialist, or a clinician. In this way, leveraging these 

predicative models can help improve the financial and health outcomes impact of care management. 

 

Limitations 

In addition to prevalence issues, part of improving the performance of the stage 1 complication model 

could entail specialized cohort selection. These models, which were intended to be applied to a 

hypertension population at large, utilized cohort selection criteria that would have included people at 

any stage of HTN progression. Since 58% of people that experienced a stage 1 complication also 

experienced a stage 2 and/or stage 3 complication, the model to predict these early complications is not 

necessarily fine-tuned to identify progression to these early signs and symptoms. In fact, the presence of 

stage 1 complications could be continued reporting of these symptoms as people progress to stages 2 

and 3. Future iterations of the model will include longer longitudinal data to ensure selection of newly 

diagnosed HTN patients to improve stage 1 complication detection.  

 Another limitation of this study is that outside of the diagnoses codes pertaining specifically to 

hypertension complications (hypertensive heart disease, hypertensive retinopathy, and hypertensive 

kidney disease), other complication labels selected as part of the composite outcomes cannot 

necessarily be attributed directly to a person’s hypertension using only administrative data. While using 
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only claims data could be another limitation, even in a clinical setting, determining whether one’s heart 

attack was due to hypertension or hyperlipidemia or any other combination of factors is not always 

possible, and why these comorbidities were included as features for prediction. We maintain these 

models predict risk of events, and their relation to hypertension is important. 

 

CONCLUSION 

Hypertension is a highly prevalent chronic disease, which left unmanaged can progress through 

increasingly severe complication outcomes, resulting in significant morbidity and mortality. We 

developed algorithms that could accurately predict different stages of HTN-related complications, 

grouped by severity level. The ability to predict severity of these outcomes rather than a single 

composite as most previous models have done allows for more nuanced use cases when these 

algorithms are utilized in clinical settings. 
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TABLES AND FIGURES 
 No Complications Stage 1 Complications Stage 2 Complications Stage 3 Complications 

 N % N % N % N % 

Total 1,370,952 100 41,956 100 223,525 100 131,126 100 
Alcohol abuse 16,917 1.2 574 1.4 3,504 1.6 2,902 2.2 
Amyloidosis 239 0.0 15 0.0 93 0.0 135 0.1 
Anemia 66,306 4.8 3,337 8.0 19,293 8.6 16,479 12.6 
Aneurysm 6,100 0.4 593 1.4 4,000 1.8 3,392 2.6 
Angina 9,810 0.7 455 1.1 12,593 5.6 7,016 5.4 
Anxiety disorder 184,467 13.5 5,336 12.7 28,377 12.7 19,686 15.0 
Arterial dissection 389 0.0 22 0.1 166 0.1 353 0.3 
Atherosclerosis 9,368 0.7 2,417 5.8 8,263 3.7 7,532 5.7 
Atrial fibrillation 6,453 0.5 259 0.6 26,320 11.8 15,139 11.5 
Breathing difficulties 130,555 9.5 6,175 14.7 43,155 19.3 37,101 28.3 
Cardiomyopathy 3,283 0.2 211 0.5 2,617 1.2 20,335 15.5 
Cardiovascular disease 35,115 2.6 1,755 4.2 81,314 36.4 40,488 30.9 
CCI, mean (SD) 0.7 (1.2) 1.4 (1.7) 1.6 (1.9) 2.3 (2.3) 
Chronic kidney disease 13,926 1.0 1,118 2.7 34,209 15.3 18,219 13.9 
Congenital heart defects 4,006 0.3 330 0.8 2,130 1.0 2,206 1.7 
COPD 144,678 10.6 5,858 14.0 31,518 14.1 24,745 18.9 
Coronary artery disease 23,120 1.7 1,189 2.8 74,911 33.5 34,880 26.6 
Diabetes 324,832 23.7 17,060 40.7 79,750 35.7 50,041 38.2 
Dizziness 92,532 6.7 3,936 9.4 24,779 11.1 22,668 17.3 
Drug use 15,563 1.1 535 1.3 3,484 1.6 2,959 2.3 
Edema 52,900 3.9 2,817 6.7 15,229 6.8 13,910 10.6 
Electrolyte imbalance 49,444 3.6 2,467 5.9 15,412 6.9 16,402 12.5 
Embolism 18,113 1.3 1,097 2.6 7,177 3.2 6,755 5.2 
Fatty liver 43,063 3.1 1,913 4.6 9,086 4.1 5,639 4.3 
Glomerulonephritis 1,731 0.1 479 1.1 2,621 1.2 1,857 1.4 
Gout 38,489 2.8 1,423 3.4 10,773 4.8 6,220 4.7 
Heart attack 2,437 0.2 120 0.3 6,397 2.9 7,928 6.0 
Heart failure 5,942 0.4 467 1.1 5,146 2.3 25,011 19.1 
Hemochromatosis 2,685 0.2 82 0.2 555 0.2 380 0.3 
Hemolysis 211 0.0 9 0.0 83 0.0 121 0.1 
Hyperlipidemia 749,727 54.7 26,734 63.7 166,048 74.3 92,899 70.8 
Ischemic cardiomyopathy 411 0.0 20 0.0 2,414 1.1 4,739 3.6 
Kidney cancer 2,411 0.2 140 0.3 1,387 0.6 736 0.6 
Kidney infarction 153 0.0 19 0.0 98 0.0 106 0.1 
Kidney stones 37,068 2.7 1,657 3.9 10,162 4.5 5,557 4.2 
Left ventricular hypertrophy 15,268 1.1 2,769 6.6 9,208 4.1 13,215 10.1 
Lung disease 572,315 41.7 19,491 46.5 100,830 45.1 66,791 50.9 
Lupus 5,704 0.4 565 1.3 2,058 0.9 1,505 1.1 
Mood disorder 147,162 10.7 4,712 11.2 24,613 11.0 17,896 13.6 
Myocarditis 112 0.0 7 0.0 38 0.0 126 0.1 
Nicotine use 105,604 7.7 3,923 9.4 26,750 12.0 19,183 14.6 
Nutritional deficiencies 216,138 15.8 8,823 21.0 42,806 19.2 26,241 20.0 
Obesity 288,107 21.0 11,176 26.6 55,485 24.8 35,526 27.1 
Pericardial effusion 1,135 0.1 108 0.3 811 0.4 1,388 1.1 
Periodontal disease 995 0.1 47 0.1 206 0.1 144 0.1 
Polycystic kidney disease 2,686 0.2 162 0.4 1,903 0.9 1,109 0.8 
Pulmonary hypertension 3,416 0.2 338 0.8 1,972 0.9 4,067 3.1 
Renal dysfunction 26,951 2.0 1,767 4.2 13,462 6.0 12,753 9.7 
Renal sclerosis 953 0.1 279 0.7 768 0.3 819 0.6 
Renal structural abnormalities 172 0.0 26 0.1 163 0.1 99 0.1 
Rheumatoid arthritis 19,875 1.4 928 2.2 4,815 2.2 3,299 2.5 
Sarcoidosis 3,603 0.3 202 0.5 963 0.4 878 0.7 
Sick sinus 1,391 0.1 67 0.2 1,787 0.8 1,693 1.3 
Sleep disorder 232,941 17.0 8,813 21.0 52,839 23.6 35,515 27.1 
Stage 1 complication (previous) 38,774 2.8 13,355 31.8 27,432 12.3 24,505 18.7 
Stage 2 complication (previous) 81,649 6.0 4,472 10.7 151,273 67.7 66,790 50.9 
Stage 3 complication (previous) 36,134 2.6 2,161 5.2 24,613 11.0 68,829 52.5 
Tachycardia 24,916 1.8 1,054 2.5 6,999 3.1 6,919 5.3 
Thyroid disorder 213,054 15.5 7,578 18.1 39,218 17.5 25,608 19.5 
Valve disorder 34,748 2.5 2,639 6.3 19,083 8.5 20,260 15.5 
Vasculitis 937 0.1 59 0.1 393 0.2 347 0.3 
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Table 1. Diagnosis-related features for four groups: those that experienced no hypertension-related 

complications, stage 1, stage 2, or stage 3 complications. Member counts and proportions for people in 

each group are shown for most features, scored as presence or absence of at least one code, unless the 

feature is discrete, in which case mean and standard deviation are presented. CCI, Charlson Comorbidity 

Index; COPD, chronic obstructive pulmonary disease; SD, standard deviation. 
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 No Complications Stage 1 Complication Stage 2 Complication Stage 3 Complication 
 N % N % N % N % 

Total 1,370,952 100 41,956 100 223,525 100 131,126 100 
ACE/ARB 936,143 68.3 30,750 73.3 156,592 70.1 91,565 69.8 
ACE/ARB only 304,165 22.2 8,554 20.4 29,172 13.1 13,185 10.1 
Anti-adrenergics 37,652 2.7 2,064 4.9 12,224 5.5 12,471 9.5 
Anti-adrenergics only 3,365 0.2 89 0.2 315 0.1 241 0.2 
Anticoagulants 45,699 3.3 2,433 5.8 55,357 24.8 36,144 27.6 
Anti-hypertensive class count, mean (SD) 1.7 (1.0) 1.9 (1.1) 2.0 (1.1) 2.2 (1.2) 
Anti-hypertensive type count, mean (SD) 1.7 (1.1) 1.9 (1.2) 2.1 (1.2) 2.2 (1.4) 
Anti-hypertensive types - dual therapy 469,607 34.3 13,539 32.3 74,251 33.2 40,725 31.1 
Anti-hypertensive types - monotherapy 500,500 36.5 13,249 31.6 61,739 27.6 30,688 23.4 
Anti-hypertensive types - polytherapy 276,604 20.2 11,719 27.9 70,968 31.7 49,479 37.7 
Aspirin 24,980 1.8 1,429 3.4 37,823 16.9 23,317 17.8 
Beta blockers 348,493 25.4 12,835 30.6 115,874 51.8 76,909 58.7 
Beta blockers only 85,039 6.2 1,941 4.6 20,768 9.3 10,037 7.7 
Ca channel blockers 359,827 26.2 13,858 33.0 73,141 32.7 44,267 33.8 
Ca channel blockers + ACE/ARB combo 239,059 17.4 10,215 24.3 53,147 23.8 31,658 24.1 
Ca channel blockers only 62,952 4.6 1,650 3.9 7,223 3.2 3,549 2.7 
Diuretics 620,183 45.2 19,734 47.0 93,836 42.0 65,100 49.6 
Diuretics only 71,943 5.2 1,499 3.6 4,704 2.1 2,997 2.3 
Meds interfering with anti-hypertensives 607,320 44.3 20,587 49.1 103,251 46.2 62,874 47.9 
Metformin 243,835 17.8 12,269 29.2 50,932 22.8 27,248 20.8 
No anti-hypertensive meds 103,649 7.6 2,689 6.4 12,691 5.7 7,417 5.7 
NSAID 375,651 27.4 12,875 30.7 59,838 26.8 34,562 26.4 
Oral contraceptives 59,036 4.3 1,354 3.2 4,020 1.8 2,710 2.1 
Progressed to anti-HTN meds before 2016 1,016,718 74.2 32,393 77.2 176,985 79.2 102,279 78.0 
Progressed to anti-HTN meds in 2016 109,019 8.0 2,836 6.8 12,609 5.6 8,066 6.2 
Progressor status unknown 245,215 17.9 6,727 16.0 33,931 15.2 20,781 15.8 
Refractory HTN 5,653 0.4 509 1.2 3,558 1.6 3,891 3.0 
Resistant HTN 244,403 17.8 10,935 26.1 69,768 31.2 52,287 39.9 
ROTO = 1 866,770 63.2 23,093 55.0 106,513 47.7 54,022 41.2 
ROTO = 2 299,919 21.9 11,035 26.3 69,450 31.1 41,276 31.5 
ROTO ≥ 3  80,022 5.8 4,379 10.4 30,995 13.9 25,594 19.5 
ROTO, mean (SD) 1.3 (0.7) 1.4 (0.9) 1.6 (0.9) 1.7 (1.1) 
Statins 532,174 38.8 20,171 48.1 141,506 63.3 78,458 59.8 
Steroids 396,730 28.9 13,785 32.9 73,061 32.7 46,318 35.3 
Thiazide diuretics 553,945 40.4 16,750 39.9 72,761 32.6 37,667 28.7 
Vasodilators 5,900 0.4 259 0.6 2,874 1.3 1,520 1.2 
Vasodilators only 505 0.0 20 0.0 129 0.1 70 0.1 
Vitamin K antagonists 7,743 0.6 462 1.1 6,309 2.8 6,649 5.1 

 

Table 2. Predictors pertaining to pharmacy claim data. An anti-hypertensive “type” refers to its 5 digit 

ATC4 hierarchy code, whereas “class” refers more broadly to beta blockers, diuretics, calcium channel 

blockers, etc., or its 3 digit ATC4 hierarchy code. Predictors are scored categorically and presented as 

proportions of total number of members in that complication class, unless denoted with “mean (SD),” in 

which case they are discrete features and summary statistics of mean and SD are reported. 

Abbreviations: ACE, angiotensin converting enzyme inhibitor; ARB, angiotensin II receptor blocker; Ca, 

calcium; HTN, hypertension; NSAID, nonsteroidal anti-inflammatory drug; ROTO, rounds of treatment 

options; SD, standard deviation.   
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 No Complications Stage 1 Complications Stage 2 Complications Stage 3 Complications 

 Mean SD Mean SD Mean SD Mean SD 

At home BP monitor 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 
Creatinine 0.1 0.4 0.1 0.6 0.1 0.6 0.2 1.0 
EKG 0.5 1.0 0.8 1.3 1.3 2.1 1.9 2.9 
HbA1c 0.7 1.1 1.2 1.4 1.0 1.3 1.1 1.4 
Heart surgery  0.0 0.1 0.0 0.2 0.0 0.3 0.1 0.5 
Serum uric acid 0.1 0.5 0.2 0.7 0.2 0.8 0.2 0.9 
ED visits 2.3 4.6 3.2 6.0 3.8 6.8 5.7 10.6 
IP visits 0.3 2.1 0.5 3.5 0.8 4.1 2.2 8.0 
OP visits 11.2 11.6 14.8 13.8 15.5 14.5 21.0 27.0 
Pay related to HTN 340.41 182-767 461.43 234-1230 528.95 247-1717 699.43 283-2824 
Total medical pay 1979.16 753-5704 3254.31 1250-9083 4133.37 1436-12,990 6772.36 2157-25,654 

 

Table 3. Features related to utilization and procedure counts. For each complication group, mean and 

standard deviation are reported, except for pay features, where median and interquartile range are 

reported. For the procedures and visit types listed, unique claim dates were counted per person during 

the intake window. BP, blood pressure; EKG, electrocardiogram; HbA1c, hemoglobin A1c; ED, 

emergency department; IP, inpatient; OP, outpatient; HTN, hypertension. 
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 Stage 1 Complications Stage 2 Complications Stage 3 Complications 

Specificity 0.668 0.814 0.710 
Sensitivity 0.795 0.831 0.844 
NPV 0.972 0.925 0.964 
PPV 0.184 0.634 0.322 
F1 score 0.298 0.719 0.476 
NNE 5.445 1.576 3.014 

 

Table 4. Model performance metrics on independent dataset. Numbers calculated based on threshold 

cutoffs to optimize specificity and sensitivity on training data. NNE, number needed to evaluate; NPV, 

negative predictive value; PPV, positive predictive value. 
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Figure 1. Hypertension complications. Target organs affected are kidney, heart, and brain. Complications 

progress with increasing severity and can ultimately result in mortality. Adapted from [18]. 
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Figure 2. Hypertension complication prevalence and demographic summary. (A) Member counts by 

complication stage during prediction window. Members can experience complications from multiple 

stages, but are only counted as ‘no complication’ status if they do not experience complications of any 

stage. (B) Distribution of ages by complication status shows people that do not experience a 

complication tend to be slightly younger. This study design did not include people below the age of 18, 

and because it utilized administrate data from commercially insured individuals, does not include 

anyone over the age of 65. (C) Proportion of males and females by complication status shows roughly 

equal percentages of both sexes in the no complication group, but higher proportions of males in all 

three complication stage groups. Comp, complications; HTN, hypertension. 
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Figure 3. Selected diagnosis and medication features. (A) Features during intake year (2016) shown as 

proportion of members in each group with the presence of at least one diagnosis or drug code belonging 

to that category. A person is grouped according to his or her most severe complication stage 

experienced in 2017. (B) The Charlson Comorbidity Index, a composite weighted risk score of 19 

different chronic diseases, increases with increasing complication severity. (C) The count of different 

anti-hypertensive drug classes (diuretics, calcium channel blockers, agents acting on the renin-

angiotensin system, beta blockers, vasodilators, and adrenergic antagonists) increases with increasing 

complication severity. Bars represent 95% confidence intervals. 
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Figure 4. Selected procedure and utilization features. A person is grouped according to his or her most 

severe complication stage experienced in 2017. (A) Count of procedures for hemoglobin-A1c tests is 

higher if HTN-related complications experienced in the following year, particularly stage 1 complications. 

(B-C) Count of procedures for serum uric acid and electrocardiogram procedures increase with 

increasing complication severity. (D) Total medical spending in previous year increases with 

complication severity the follow year, particularly for stage 3 complications. (E-F) Number of outpatient 

visits and inpatient admissions, counted by unique dates of service per member, also increase as HTN-

related complications become more serious. Bars represent 95% confidence intervals.  
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Figure 5. Model performance metrics on independent dataset. (A) Receiving operating characteristic and 

(B) precision-recall curves for models predicting stage 1, stage 2, and stage 3 complications across 

thresholds. Dashed lines indicate baseline random guess performance. (C) Confusion matrices based on 

optimized threshold cutoffs for stage 1, stage 2, and stage 3 models. AUC, area under curve; comp, 

complication. 
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Figure 6. Top 20 most important features for predicting (A) stage 1, (B) stage 2, and (C) stage 3 

complications. CCI, Charlson Comorbidity Index; ED, emergency department; EKG, electrocardiogram; 

HbA1c, hemoglobin A1c; HTN, hypertension; IP, inpatient; OP, outpatient. 
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SUPPLEMENTARY MATERIAL 

Supplementary Table S1: HT diagnosis codes and HT medications 

Code type Code Description 

ICD-10-CM I10 Essential (primary) hypertension 

ICD-10-CM I110 Hypertensive heart disease with heart failure 

ICD-10-CM I119 Hypertensive heart disease without heart failure 

ICD-10-CM I120 Hypertensive chronic kidney disease with stage 5 chronic kidney disease or end stage renal disease 

ICD-10-CM 
I129 

Hypertensive chronic kidney disease with stage 1 through stage 4 chronic kidney disease, or unspecified chronic 
kidney disease 

ICD-10-CM 
I130 

Hypertensive heart and chronic kidney disease with heart failure and stage 1 through stage 4 chronic kidney 
disease, or unspecified chronic kidney disease 

ICD-10-CM 
I1310 

Hypertensive heart and chronic kidney disease without heart failure, with stage 1 through stage 4 chronic kidney 
disease, or unspecified chronic kidney disease 

ICD-10-CM 
I1311 

Hypertensive heart and chronic kidney disease without heart failure, with stage 5 chronic kidney disease, or end 
stage renal disease 

ICD-10-CM 
I132 

Hypertensive heart and chronic kidney disease with heart failure and with stage 5 chronic kidney disease, or end 
stage renal disease 

ICD-10-CM I150 Renovascular hypertension 

ICD-10-CM I151 Hypertension secondary to other renal disorders 

ICD-10-CM I152 Hypertension secondary to endocrine disorders 

ICD-10-CM I158 Other secondary hypertension 

ICD-10-CM I159 Secondary hypertension, unspecified 

ICD-10-CM I160 Hypertensive urgency 

ICD-10-CM I161 Hypertensive emergency 

ICD-10-CM I169 Hypertensive crisis, unspecified 

ATC C02 Antihypertensives 

ATC C03 Diuretics 

ATC C04 Peripheral vasodilators 

ATC C07 Beta blocking agents 

ATC C08 Calcium channel blockers 

ATC C09 Agents acting on the renin-angiotensin system 
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Supplementary Table S2: Complication diagnosis codes 

Stage Target 
organ 

Broad category ICD-10-CM 
code 

Description 

Stage 1 Kidney Proteinuria R800 Isolated proteinuria 

R801 Persistent proteinuria, unspecified 

R802 Orthostatic proteinuria, unspecified 

R803 Bence Jones proteinuria 

R808 Other proteinuria 

R809 Proteinuria, unspecified 

Nephrosclerosis N269 Renal sclerosis, unspecified 

I701 Atherosclerosis of renal artery 

Heart LVH I517 Cardiomegaly 

Atherosclerosis I70_ Atherosclerosis 

Brain Retinopathy H35031 Hypertensive retinopathy, right eye 

H35032 Hypertensive retinopathy, left eye 

H35033 Hypertensive retinopathy, bilateral 

H35039 Hypertensive retinopathy, unspecified eye 

Binswanger 
lesions I673 Progressive vascular leukoencephalopathy 

Stage 2 Kidney Chronic kidney 
disease 

N181 Chronic kidney disease, stage 1 

N182 Chronic kidney disease, stage 2 (mild) 

N183 Chronic kidney disease, stage 3 (moderate) 

N184 Chronic kidney disease, stage 4 (severe) 

N19 Unspecified kidney failure 

I129 Hypertensive chronic kidney disease, stage 1-4 or unspecified 

I1310 
Hypertensive heart and chronic kidney disease without heart failure with stage 1 
through stage 4 chronic kidney disease, or unspecified chronic kideny disease 

Heart Angina I200 Unstable angina 

I201 Angina pectoris with documented spasm 

I208 Other forms of angina pectoris 

I209 Angina pectoris, unspecified 

CAD I2510 Atherosclerotic heart disease of native coronary artery without angina pectoris  

I25110 
Atherosclerotic heart disease of native coronary artery with unstable angina 
pectoris 

I25111 
Atherosclerotic heart disease of native coronary artery with angina pectoris with 
documented spasm 

I25118 
Atherosclerotic heart disease of native coronary artery with other forms of angina 
pectoris 

I25119 
Atherosclerotic heart disease of native coronary artery with unspecified angina 
pectoris 

I739 Peripheral vascular disease, unspecified 

I119 Hypertensive heart disease without heart failure 

Atrial 
fibrillation 

I480 Paroxysmal atrial fibrillation 

I481 Persistent atrial fibrillation 

I482 Chronic atrial fibrillation 

I483 Typical atrial flutter 

I484 Atypical atrial flutter 

I4891 Unspecified atrial fibrillation 

I4892 Unspecified atrial flutter 

Other 
arrhythmias 

I498 Other specified cardiac arrhythmias 

I499 Cardiac arrhythmia, unspecified 

Brain TIA G450 Vertebro-basilar artery syndrome 

G451 Carotid artery syndrome (hemispheric) 

G452 Multiple and bilateral precerebral artery syndromes 

G453 Amaurosis fugax 

G454 Transient global amnesia 

G458 Other transient cerebral ischemic attacks and related syndromes 

G459 Transient cerebral ischemic attack, unspecified 

Dementia F0150 Vascular dementia without behavioral disturbance 

F0151 Vascular dementia with behavioral disturbance 

Stage 3 Kidney ESRD N185 Chronic kidney disease, stage 5 

N186 End stage renal disease 
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I120 Hypertensive chronic kidney disease, stage 5 or ESRD 

I1311 
Hypertensive heart and chronic kidney disease without heart failure with stage 5 
chronic kidney disease or end stage renal disease 

I132 
Hypertensive heart and chronic kidney disease with heart failure with stage 5 
chronic kidney disease or end stage renal disease 

Heart Ventricular 
arrhythmias 

I4901 Ventricular fibrillation and flutter 

I4902 Ventricular flutter 

I491 Atrial premature depolarization 

I492 Junctional premature depolarization 

I493 Ventricular premature depolarization 

I4940 Unspecified premature depolarization 

I4949 Other premature depolarization 

Myocardial 
infarction 

I2101 ST elevation (STEMI) myocardial infarction involving left main coronary artery 

I2102 
ST elevation (STEMI) myocardial infarction involving left anterior descending 
coronary artery 

I2109 
ST elevation (STEMI) myocardial infarction involving other coronary artery of 
anterior wall 

I2111 ST elevation (STEMI) myocardial infarction involving right coronary artery 

I2119 
ST elevation (STEMI) myocardial infarction involving other coronary artery of 
inferior wall 

I2121 
ST elevation (STEMI) myocardial infarction involving left circumflex coronary 
artery 

I2129 ST elevation (STEMI) myocardial infarction involving other sites 

I213 ST elevation (STEMI) myocardial infarction of unspecified site 

I214 Non-ST elevation (NSTEMI) myocardial infarction 

I219 Acute myocardial infarction, unspecified 

I21A1 Acute myocardial infarction type 2 

I21A9 Other myocardial infarction type 

I220 Subsequent ST elevation (STEMI) myocardial infarction of anterior wall 

I221 Subsequent ST elevation (STEMI) myocardial infarction of inferior wall 

I222 Subsequent non-ST elevation (NSTEMI) myocardial infarction 

I228 Subsequent ST elevation (STEMI) myocardial infarction of other sites 

I229 Subsequent ST elevation (STEMI) myocardial infarction of unspecified site 

I230 Hemopericardium as current complication following acute myocardial infarction 

I231 Atrial septal defect as current complication following acute myocardial infarction 

I232 
Ventricular septal defect as current complication following acute myocardial 
infarction 

I233 
Rupture of cardiac wall without hemopericardium as current complication 
following acute myocardial infarction 

I234 
Rupture of chordae tendineae as current complication following acute myocardial 
infarction 

I235 
Rupture of papillary muscle as current complication following acute myocardial 
infarction 

I236 
Thrombosis of atrium, auricular appendage, and ventricle as current 
complications following acute myocardial infarction 

I237 Postinfarction angina 

I238 Other current complications following acute myocardial infarction 

I462 Cardiac arrest due to underlying cardiac condition 

I468 Cardiac arrest due to other underlying condition 

I469 Cardiac arrest, cause unspecified 

CHF I420 Dilated cardiomyopathy 

I421 Obstructive hypertrophic cardiomyopathy 

I422 Other hypertrophic cardiomyopathy 

I423 Endomyocardial (eosinophilic) disease 

I424 Endocardial fibroelastosis 

I425 Other restrictive cardiomyopathy 

I426 Alcoholic cardiomyopathy 

I427 Cardiomyopathy due to drug and external agent 

I428 Other cardiomyopathies 

I429 Cardiomyopathy, unspecified 

I501 Left ventricular failure, unspecified 

I5020 Unspecified systolic (congestive) heart failure 

I5021 Acute systolic (congestive) heart failure 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.30.20169615doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.30.20169615


33 | P a g e  
 

I5022 Chronic systolic (congestive) heart failure 

I5023 Acute on chronic systolic (congestive) heart failure 

I5030 Unspecified diastolic (congestive) heart failure 

I5031 Acute diastolic (congestive) heart failure 

I5032 Chronic diastolic (congestive) heart failure 

I5033 Acute on chronic diastolic (congestive) heart failure 

I5040 Unspecified combined systolic (congestive) and diastolic (congestive) heart failure 

I5041 Acute combined systolic (congestive) and diastolic (congestive) heart failure 

I5042 Chronic combined systolic (congestive) and diastolic (congestive) heart failure 

I5043 
Acute on chronic combined systolic (congestive) and diastolic (congestive) heart 
failure 

I5081 Right heart failure 

I50810 Right heart failure, unspecified 

I50811 Acute right heart failure 

I50812 Chronic right heart failure 

I50813 Acute on chronic right heart failure 

I50814 Right heart failure due to left heart failure 

I5082 Biventricular heart failure 

I5083 High output heart failure 

I5084 End stage heart failure 

I5089 Other heart failure 

I509 Heart failure, unspecified 

I130 
Hypertensive heart and chronic kidney disease with heart failure and stage 1 
through stage 4 chronic kidney disease, or unspecified chronic kidney disease 

I110 Hypertensive heart disease with heart failure 

Brain Stroke I60-I66 Cerebrovascular disease 

 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.30.20169615doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.30.20169615


34 | P a g e  
 

Supplementary Table S3: Model performance on holdout data for cohorts with and without 

complications during the intake window 

 Combined 
stage 1 

With 
intake 
stage 1 
chronic 
comp 

Without 
intake 
stage 1 
chronic 
comp 

Combined 
stage 2 

With 
intake 
stage 2 
chronic 
comp 

Without 
intake 
stage 2 
chronic 
comp 

Combined 
stage 3 

With 
intake 
stage 3 
chronic 
comp 

Without 
intake 
stage 3 
chronic 
comp 

Member 
count 

1,767,559 65,300 1,702,259 1,767,559 240,035 1,527,524 1,767,559 61,534 1,706,025 

% with 
comp 
during 
prediction 
window 

5.6 30.0 4.7 17.1 72.6 8.4 7.4 66.4 5.3 

AUROC 0.791 0.670 0.757 0.879 0.749 0.759 0.850 0.757 0.787 

Specificity 0.817 0.679 0.752 0.906 0.715 0.783 0.855 0.717 0.821 

Sensitivity 0.628 0.569 0.624 0.728 0.659 0.596 0.703 0.660 0.613 

NPV 0.973 0.786 0.976 0.942 0.442 0.955 0.973 0.516 0.974 

PPV 0.170 0.431 0.111 0.616 0.860 0.202 0.279 0.822 0.161 

F1 score 0.268 0.491 0.189 0.667 0.746 0.302 0.400 0.732 0.255 

 

Combined refers to cohort including people both with and without complications during the intake 

window. AUROC, area under the receiver operating characteristic curve; comp, complication; NPV, 

negative predictive value; PPV, positive predictive value. 
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SUPPLEMENTAL FIGURES 

 

 

Figure S1. Two dimensional representation of 112 feature inputs with principal component analysis.  
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Figure S2. Model performance on Truven holdout dataset. (A) Receiving operating characteristic and 

(B) precision-recall curves for models predicting stage 1, stage 2, and stage 3 complications across 

thresholds. Dashed lines indicate baseline performance. (C) Other performance metrics and confusion 

matrices for stage 1, stage 2, and stage 3 models. AUC, area under curve; comp, complication; NNE, 

number needed to evaluate; NPV, negative predictive value; PPV, positive predictive value. 
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Figure S3. Demographic characteristics of independent dataset population 
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