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Abstract 27 

Differentiating between homozygous (disease) and heterozygous (trait) sickle cell patients is the 28 
key to ensuring appropriate long-term disease management. Well-equipped labs needed to perform 29 
confirmatory diagnostic tests are not available in endemic areas of most low- and medium-income 30 
countries. As a consequence of hemoglobin polymerization, red blood cells (RBCs) become sickle 31 
shaped and stiff under hypoxic conditions in sickle cell anemia patients. A simple test such as 32 
microscopy, using RBC shape as a biophysical marker, cannot conclusively differentiate between 33 
homozygous (disease) and heterozygous (trait) sickle blood. Here, we establish a new paradigm 34 
of microscopic diagnosis of sickle cell disease by exploiting differential polymerization of 35 
hemoglobin in disease and trait RBCs under controlled, chemically-induced hypoxia in a 36 
microfluidic chip. We use a portable smartphone microscope to compare the RBC shape 37 
distributions in blood treated with high and low concentrations of the hypoxia-inducing agent to 38 
correctly identify 35 blood samples as healthy, sickle cell disease or trait. Finally, we demonstrate 39 
our test in remote field locations to enable fast and confirmed diagnosis of sickle cell anemia in 40 
resource-limited areas. 41 
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Introduction 44 

Sickle cell anemia is a genetic disorder caused by a glutamine to valine mutation in the β-globin 45 
gene1. It results in partial or complete replacement of normal adult hemoglobin (HbA) with 46 
mutated sickle hemoglobin (HbS).  HbS polymerizes under hypoxic conditions and forms rigid 47 
and misshapen red blood cells (RBCs). The loss of deformability of RBCs leads to frequent vaso-48 
occlusive crisis, joint pain, spleen damage, increased susceptibility to infection and anemia. While 49 
there is no cure available for sickle cell anemia, early diagnosis can prevent child mortality and 50 
improve the quality of life of the affected individuals.  51 

Sickle cell disease is widely prevalent in several parts of the world including western Africa, Latin 52 
America, the Arab peninsula, and India2. More than 500 children die of sickle cell anemia every 53 
day due to lack of comprehensive newborn screening programs in low- and medium-income 54 
countries (LMIC). Distinguishing between sickle cell disease (homozygous) and trait 55 
(heterozygous) individuals is crucial to ensure appropriate clinical and non-clinical interventions. 56 
The current two-step diagnosis protocol involves a solubility test to screen for HbS-positive 57 
individuals, followed by hemoglobin electrophoresis or high-performance liquid chromatography 58 
(HPLC) to distinguish between homozygous and heterozygous individuals3. The laboratory 59 
infrastructure and trained personnel required for these tests are not always available in LMICs to 60 
sustain countrywide screening programs4.  61 

Preparation of blood smear slides and their microscopic examination are diagnostic techniques that 62 
are relatively easier to administer in LMICs. Despite the widespread use of microscopy to study 63 
sickle blood in the early days2–5, it is no longer a technique preferred by the clinicians. Sickle blood 64 
has only 5% - 25% irreversibly sickled cells (ISCs)6, requiring extensive scanning of each smear 65 
slide by a technician. While use of a chemical oxygen scavenger, such as sodium dithionate or 66 
sodium metabisulphite, allows more RBCs to sickle in vitro, the process can take as long as 24 67 
hours for trait blood samples. Most importantly, it is not possible to conclusively distinguish 68 
between sickle cell disease and trait blood by simple visual inspection of RBC shapes.  69 

Several research groups have explored image processing or machine learning techniques to study 70 
RBC morphologies7–18. These techniques have focused on classification of individual RBC shapes 71 
into normal (biconcave), sickle or abnormal (i.e. having any shape other than biconcave or sickle). 72 
None of these reports have used RBC shape as a sole biophysical marker to classify sickle blood 73 
samples into disease or trait. Recently, Javidi and others classified blood samples into healthy and 74 
sickle based on membrane fluctuation analysis of individual RBCs19. De Haan et al developed a 75 
mobile phone microscope to image blood smears, followed by automated identification of ISCs in 76 
these images20. As a shortcoming of their method, the authors stated that blood smears cannot be 77 
used to identify sickle cell genotypes, i.e. to discriminate between trait and disease blood samples. 78 
There is currently no test that uses RBC shape as a sole biophysical marker to classify sickle blood 79 
samples into disease or trait. 80 
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 82 
 83 

Figure 1. An assay to induce controlled sickling of RBCs inside a microfluidic chip, followed by imaging 84 
and analysis of RBC shapes. (A) A drop of blood is added to an oxygen scavenger (Na2S2O5), introduced 85 
into a microfluidic chamber and sealed. We image the sample after 30 min and analyze the RBC shapes to 86 
obtain a characteristic roundness distribution. (B) Exploded view of the microfluidic chamber. The 87 
thickness of the spacer determines the height of the chamber. RBCs inside a 30 µm high chamber are 88 
oriented flat, while they are stacked and randomly oriented when the height is 80 µm. (C) A photo of the 89 
portable smartphone microscope designed and fabricated by us. (D) Number of healthy RBCs in the field 90 
of view (𝑛!"#) inside imaging chambers of different heights (N =7). (E) The time taken (𝑡$) for the first 91 
RBC in the field of view to start sickling inside chips of different heights (N =6). (F) The percentage of 92 
sickle cells (𝑛%&'()*) at t = 30 min inside chips of different heights (N = 6). The horizontal lines indicate the 93 
mean values in panels D-F.  94 

 95 

Here, we combine microfluidics, smartphone microscopy and image processing techniques (figure 96 
1) to develop a method that accurately distinguishes between disease and trait sickle blood based 97 
on the differential shape changes of RBCs when treated with two different concentrations of an 98 
oxygen scavenger, sodium metabisulphite. As shown in figure 1A, the method consists of mixing 99 
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a drop of blood with a specific concentration of sodium metabisulphite, loading it into a 100 
microfluidic chip and imaging the sickled RBCs in real time using a smartphone microscope. The 101 
roundness distributions of RBCs after 30 min are used to classify the blood sample as healthy, 102 
disease or trait. The use of a microfluidic chip (figure 1B) as an imaging chamber instead of a 103 
smear slide enables fast sickling and tracking of RBC shapes in real time. The chip is made of 104 
glass to facilitate brightfield imaging of unstained RBCs using a mobile phone microscope and to 105 
maintain hypoxic conditions inside the chamber for the duration of the experiment. We optimized 106 
the height of the chamber to be 30 µm to avoid stacking of RBCs. We also designed and fabricated 107 
a portable smartphone microscope (figure 1C) to conduct our experiments outside the laboratory 108 
at sickle cell screening camps.  109 

Methods 110 

Blood samples. All studies using human blood samples were approved by the Institute Ethics 111 
Committee (IEC), IIT Bombay, with approval numbers IITB-IEC/2016/016, IITB-IEC/2017/020 112 
and IITB-IEC/2018/042. Leftover de-identified blood samples were collected from adults and 113 
older children with a mix of genders during sickle cell screening camps organized by Shirin and 114 
Jamshed Guzder Regional Blood Centre (Valsad, Gujarat) and Dayanand Hospital (Talasari, 115 
Maharashtra). Written informed consent to use leftover blood samples was taken from all 116 
participants. The ages of the participants ranged from 10 to 60 years. We excluded those 117 
individuals who (i) were under treatment with folic acid or hydroxyurea, or (ii) received blood 118 
transfusion within three months prior to blood collection. Blood samples from self-reported 119 
healthy volunteers from IIT Bombay and Dayanand Hospital were used as healthy samples during 120 
development and validation of the classifier. All known sickle blood samples (D = 23 and T = 92) 121 
were first screened by the hospital personnel using a standard solubility test. Their hemoglobin 122 
profiles were then confirmed using HPLC to conclusively identify them as disease or trait.  123 

Experiment protocol. Blood samples collected in K3/EDTA vacutainer tubes were stored at 4oC. 124 
All tests were performed either at IIT Bombay or in field locations within 48 h of blood collection. 125 
Sodium metabisulphite solutions were freshly prepared in cell culture media (RPMI-1640) before 126 
each experiment and discarded after 3 h. A drop of blood was added to 0.1% and/or 0.3% sodium 127 
metabisulphite to dilute it by 20X, irrespective of hematocrit value. The average pH of blood mixed 128 
with 0.1% and 0.3% sodium metabisulphite solution was 6.05 ± 0.2 and 5.83 ± 0.1 respectively. A 129 
10 µl volume of 20X diluted blood mixed with an appropriate concentration of sodium 130 
metabisulphite was introduced into the imaging chamber and the chip was sealed with quick-131 
drying transparent nail lacquer. This step was repeated if air bubbles got trapped in the sealed chip 132 
or significant crenation occurred in RBCs immediately after loading. The chip was placed on the 133 
sample stage of a smartphone microscope and images of RBCs were captured at 0 min and 30 min. 134 
We also captured real-time videos of sickling for 30 min at 30 fps to understand the sickling 135 
kinetics. While the ambient temperature in the lab ranged from 29oC to 31oC, the temperature 136 
during field testing varied between 25°C and 32°C. High performance liquid chromatography 137 
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(HPLC) was performed at Shirin and Jamshed Guzder Regional Blood Centre on all sickle blood 138 
samples to obtain their hemoglobin profiles (HbA, HBA2, HbS and HbF). 139 

Mobile phone microscope. We developed a battery-operated inverted transmission microscope to 140 
capture images of unstained RBCs in the field. The microscope has a 1W white LED, fitted with 141 
a collimating lens, as the illumination source and a single 40X (0.65 NA) air objective. The image 142 
is focussed on the mobile phone camera by vertically moving the sample stage. We used Xiaomi 143 
Mi3 or Samsung A10 mobile phones to capture images of RBCs with a minimum resolution of 144 
2368 pixels ´ 4208 pixels. These phone models were chosen to balance performance, cost and 145 
availability in developing countries. We developed one microscope model with a fixed phone 146 
holder and another where the phone holder can be tilted by any angle for viewing comfort. The 147 
sample stage and the base of the microscope are made of aluminium for increased stability, while 148 
the remaining parts, including the outer body, are 3D-printed using PLA. Exploded images of the 149 
mechanical and optical parts of the microscope can be seen in figure S1 in supplementary 150 
information. 151 

Image analysis and classification. Brightfield images of unstained RBCs were analyzed by 152 
ImageJ following a process flow shown in figure S2 in the supporting information21. We measured 153 
roundness and solidity of each RBC. RBCs with solidity <0.8 were excluded from analysis as these 154 
corresponded to partially focused RBCs. Roundness values of remaining ~ 150 - 200 RBCs in the 155 
field of view were binned into 10 groups with 0.1 width to obtain the roundness distribution. Each 156 
distribution was normalized by dividing by the total number of RBCs included in the analysis. We 157 
used R programming language22 to calculate connectivity and Dunn index for all 16 P1 and P2 158 
combinations.  The connectivity was calculated with 10 nearest neighbors. By applying a support 159 
vector machine (SVM) model with a linear kernel and a cost of 10 on the raw data, we obtained a 160 
classifier given by the equation: y = –1.527x + 0.633. 161 

Results and discussion 162 

The optimized height the microfluidic imaging chamber is 30 µm 163 

We fabricated our imaging chambers using glass due to its non-permeability to oxygen and good 164 
optical properties. We obtained different chamber heights (10 µm, 20 µm, 30 µm, 40 µm, 80 µm 165 
and 100 µm) using double-sided adhesive films of specific thicknesses as spacers. An increase in 166 
microfluidic confinement increased crenation of healthy RBCs. A chamber height of 80 µm or 167 
above reduced crenation and promoted sickling, but led to stacking of RBCs. Therefore, we 168 
focussed on chips of intermediate heights, e.g. 10, 20, 30 and 40 µm. 169 

As shown in figure 1D, we counted the number of RBCs in the field of view (𝑛!"# ) inside 170 
chambers of different heights. Relatively fewer RBCs were present inside 10 µm (110 ± 10; mean 171 
± SEM) and 20 µm (165 ± 23) high chambers. In contrast, the image processing algorithm detected 172 
more than 200 RBCs inside chambers with 30 µm (268 ± 27) and 40 µm (213 ± 21) heights. The 173 
number of RBCs detected inside the chamber increases with an increase in the chamber height. As 174 
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there are more densely packed RBCs inside the 40 µm high chamber, these are eliminated as 175 
clusters by the image processing algorithm. This results in a decrease in the number of RBCs 176 
counted by the algorithm inside the 40 µm high chamber. 177 

As shown in figure 1E, we treated six sickle cell disease blood samples with 0.1% sodium 178 
metabisulphite. From real time videos of sickling, we measured the time (𝑡$) it takes for the first 179 
RBC in the field of view to sickle inside imaging chambers of different heights. A detailed 180 
discussion on the delay time is given elsewhere in the paper. The values of 𝑡$ are 10.6 ± 0.5 min 181 
(mean ± SEM), 6.0 ± 1.2 min, 3.9 ± 0.6 min and 2.3 ± 0.5 min for chip heights of 10, 20, 30 and 182 
40 µm respectively.  183 

We also measured the percentage of sickled RBCs (𝑛%&'()*)	at	t	 = 	30	min	inside these chambers. 184 
As shown in figure 1F, the mean value of 𝑛%&'()* ranged from 58% to 75% with a large variability 185 
in the data. We found that RBCs inside a 30 µm chamber do not crenate much and sickle relatively 186 
fast (𝑡$ = 3.9 ± 0.6 min). On an average, there are > 250 RBCs in the field of view. Therefore, all 187 
further experiments in this study were conducted inside 30 µm chambers. 188 

Difference in polymerization of sickle hemoglobin in disease and trait blood leads to different 189 
RBC shapes 190 

I. J. Sherman first connected the shapes of sickled RBCs to the rate of oxygen removal by noting 191 
that slow deoxygenation resulted in RBCs with sickle shapes, while sudden deoxygenation made 192 
them granular. He reported that disease blood had more sickled RBCs in it compared to trait blood6. 193 
A relation between RBC shapes and polymerization kinetics of sickle hemoglobin (HbS) was later 194 
proposed by Eaton and Hofrichter. Based on extensive in vitro studies on HbS, they predicted that 195 
sickle shapes of RBCs are likely to result from the growth of a single polymer domain during slow 196 
polymerization. Presence of multiple small polymer domains with shorter fibers should lead to 197 
holly leaf cell shapes. When there are many more randomly oriented and very short fibers, RBCs 198 
become granular23. Direct experimental evidence of this prediction using linear dichroism 199 
microscopy was provided by Mickols et al24 and by Corbett et al25. They measured the distribution 200 
and orientation of aligned hemoglobin polymer domains inside RBCs and related it to different 201 
cell shapes.  202 

Figure 2 schematically illustrates different HbS polymerization mechanisms in disease and trait 203 
blood and the associated RBC shapes. The total hemoglobin in homozygous sickle blood consists 204 
of 95% - 98% HbS, 2% - 3% HbA2 (another variant of normal hemoglobin) and 2% HbF (fetal 205 
hemoglobin). Heterozygous sickle cell blood contains 35% - 45% HbS, 50% - 65% HbA, 2% - 3% 206 
HbA2 and ~ 2% HbF26. As shown in figure 2A, blood from healthy individuals has HbAA 207 
homodimers (a2b2), sickle cell disease blood has HbSS homodimers (a2bS

2), and trait blood 208 
contains a mix of HbAA homodimers (a2b2), HbSS homodimers (a2bS

2) and HbAS heterodimers 209 
(a2 bbS).  210 
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According to the double nucleation model proposed by Ferrone et al, hemoglobin polymerization 211 
can proceed by homogenous or heterogeneous nucleation (figure 2B)27. Homogeneous nucleation 212 
involves growth of independent polymer chains from HbS molecules in solution, whereas 213 
heterogeneous nucleation involves formation of branches on already existing polymers. Even 214 
though homogeneous nucleation is thermodynamically less favorable, Ferrone and others  215 

 216 

Figure 2. Schematic diagram relating hemoglobin polymerization mechanism to the shapes of sickled RBCs. 217 
(A) Hemoglobin in healthy blood exists as homodimer AA (a2b2). This homodimer is also found in trait 218 
blood. Sickle hemoglobin can either form a homodimer SS (a2bS2), found in both trait and disease blood, 219 
or a heterodimer AS (a2 bbS) with normal hemoglobin, found only in trait blood. (B) During hemoglobin 220 
polymerization, homogeneous nucleation leads to one or more non-branched polymer chains, while 221 
heterogeneous nucleation leads to branched polymers. The kind of hemoglobin polymerization that takes 222 
place inside an RBC affects its shape. (C) A pictorial summary of how shapes of sickled RBCs depend on 223 
HbS concentration and deoxygenation rate. Green ‘up triangle’ symbol indicates a high HbS concentration 224 
or fast deoxygenation. Red ‘down triangle’ symbol indicates low HbS concentration or slow deoxygenation. 225 

suggested that it can be sustained in samples with high initial HbS concentration for a longer 226 
duration before heterogeneous nucleation takes over. Since sickle cell disease blood has high HbS 227 
concentration, it follows that these samples are likely to sustain homogeneous nucleation for longer. 228 
The authors further observed that fast deoxygenation leads to more homogeneous nucleation sites 229 
and formation of randomly oriented polymer chains. Hence, we expect that faster deoxygenation 230 
in disease samples would lead to more granular RBCs, and very few, if any, sickle-shaped RBCs. 231 
Slow deoxygenation in these samples would lead to sickle RBCs, resulting from sustained 232 
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homogeneous nucleation, as well as some holly leaf and granular RBCs formed due to 233 
heterogeneous nucleation.  234 

In addition to HbS concentration and the rate of deoxygenation, HbS polymerization in trait 235 
samples is also affected by the presence of HbAS heterodimers which can constitute as much as ~ 236 
49% mole fraction of the total hemoglobin28. HbS concentration in trait samples is too low to 237 
sustain homogeneous nucleation. Moreover, HbAS heterodimers have a lower probability to take 238 
part in polymerization compared to HbSS homodimers29. Under slow deoxygenation, due to a lack 239 
of nucleation sites, RBC morphology in trait blood appears to be unchanged. When deoxygenation 240 
is rapid, trait RBCs deform into primarily holly leaf shapes resulting from heterogeneous 241 
nucleation. Figure 2C summarizes the combined effect of HbS concentration and rate of 242 
deoxygenation on RBC shapes. Our shape-based classification method to identify unknown blood 243 
samples makes use of the variation in RBC shapes in disease and trait samples in response to slow 244 
and fast deoxygenation. 245 

Specific concentrations of sodium metabisulphite can lead to slow and fast deoxygenation 246 

247 
Figure 3. Optimization of sodium metabisulphite concentration to induce slow and fast deoxygenation in 248 
disease and trait blood samples. (A) Decrease in the dissolved oxygen in cell culture media (RPMI-1640) 249 
with time for different concentrations of sodium metabisulphite. (B) Schematic representation of the time 250 
(𝑡$) taken by the first unsickled RBC (enclosed by the black circle) in the field of view to sickle. Irreversibly 251 
sickled RBCs are encircled in dashed red. (C) 𝑡$ as a function of sodium metabisulphite concentration in 252 
three distinct disease and three distinct trait samples, represented as mean ± SEM (N = 3). (D) Number of 253 
sickled RBCs in disease (N = 4) and trait (N = 4) samples treated with 0.1% and 0.3% sodium 254 
metabisulphite respectively. The horizontal lines indicate the mean values in all the plots in (C) and (D). 255 
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We optimized the concentration (w/v) of sodium metabisulphite with the goal of identifying two 256 
specific concentrations at which disease and trait samples are likely to undergo slow and fast 257 
deoxygenation resulting in different RBC shapes. Figure 3A shows a plot of the dissolved oxygen 258 
content as a function of time for different concentrations of sodium metabisulphite. For the entire 259 
range of concentrations studied, the oxygen content decreased to <5% within 30 min, which is 260 
considered to be the physiological level of deoxygenation in blood30.  261 

We then mixed 0.1% to 0.5% sodium metabisulphite solutions with disease and trait blood samples 262 
(table S1 and figure S3 in supporting information). We recorded real time sickling videos in our 263 
smartphone microscope, and from the extracted frames, determined the instant (𝑡$) at which the 264 
first unsickled RBC in the field of view starts sickling. Figure 3B shows how 𝑡$ is measured for 265 
the RBC indicated by the solid black circle, with the first frame in the video taken as the timepoint 266 
𝑡 = 0 min. RBCs inside the dashed red circles are already sickled, and therefore, are not considered 267 
for this purpose.  268 

We then used 𝑡$ as a parameter to compare the sickling behavior of disease and trait RBCs treated 269 
with different sodium metabisulphite concentrations. Figure 3C shows how 𝑡$ varies with sodium 270 
metabisulphite concentration for three disease and three trait samples. For disease samples treated 271 
with 0.1%, 0.2% and 0.3% concentrations, 𝑡$ is 4.1 min ± 0.9 min (mean ± SEM), 1.7 ± 0.4 min 272 
and 1.3 ± 0.3 min respectively. The corresponding values for trait samples are 33.4 ± 4.8 min, 4.5 273 
± 1.5 min and 2.8 ± 1.3 min respectively. Since sickling occurs almost instantaneously at 0.4% and 274 
0.5% concentrations, making it difficult to accurately measure 𝑡$ , these two concentrations were 275 
not considered further.  276 

While 82 ±3 % (mean ± SEM) of RBCs in disease blood sickle within 30 min when treated with 277 
0.1 % concentration, only 21 ± 3% of RBCs in trait blood sickle at this concentration (figure 3D). 278 
In contrast, the average number of sickled RBCs in disease and trait blood samples treated with 279 
0.3% sodium metabisulphite for 30 min are 88 ± 3 % and 76 ± 5% respectively.  280 

Therefore, based on the differential sickling response of RBCs in our experiments, we chose 0.1% 281 
and 0.3% as the two sodium metabisulphite concentrations to induce slow and fast deoxygenation 282 
respectively in sickle blood samples. The experiments on quantifying the shape distribution of 283 
RBCs were performed with these two sodium metabisulphite concentrations. 284 

Deoxygenated healthy, disease and trait blood have characteristic roundness distributions 285 

We treated three samples each of healthy, disease and trait blood with 0.1% and 0.3% sodium 286 
metabisulphite and imaged the RBCs after 30 min. Images of RBCs in the same blood samples, 287 
without addition of the oxygen scavenger, were used as negative controls. Figure 4A shows 288 
snippets of representative images from healthy, disease and trait blood samples, while the shapes 289 
of individual sickled RBCs are shown in figure 4B. The complete raw images from which the 290 
snippets are taken are shown in figure S4 in the supporting information.  291 
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 292 
Figure 4. Roundness as a shape descriptor for quantifying RBC shapes in healthy and sickle blood. (A) 293 
Snippets of representative images of healthy, disease and trait samples treated with 0.1% and 0.3% sodium 294 
metabisulphite for 30 min are shown. Some crenated RBCs are seen in both the healthy samples and the 295 
trait blood sample treated with 0.1% sodium metabisulphite. (B) Sickle RBCs under hypoxia have a range 296 
of shapes which can be characterized by a roundness value. (C) Distribution of different kinds of RBC 297 
shapes in deoxygenated disease (N = 3) and trait (N = 3) treated with 0.1% and 0.3% sodium 298 
metabisulphite. The horizontal lines indicate the mean values. (D) Roundness distributions of RBCs in 299 
healthy (H; black square), disease (D; red circle) and trait (T; blue triangle) samples treated with 0%, 300 
0.1% and 0.3% sodium metabisulphite respectively are shown. Each distribution is generated by analysing 301 
three different blood samples (N =3) and then pooling the data to see the overall trend. Here, 𝑛 indicates 302 
the total number of RBCs in three samples used to generate each roundness distribution plot. Each plot is 303 
normalized by dividing it by the number of RBCs (𝑛).  304 
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An experienced user then manually annotated and counted the number of sickle-shaped, holly leaf-305 
shaped, granular, and unsickled RBCs in each of these disease and trait images. Figure S5 in 306 
supporting information shows a typical annotated image. Since we found that the presence of 307 
crenated RBCs leads to image artifacts, we also accounted for these RBCs in each sample. RBCs 308 
which could not be classified into any of these categories were marked as ‘uncategorised’. As 309 
shown in figure 4C, disease samples treated with 0.1% sodium metabisulphite have primarily a 310 
mix of sickle (34 ± 6%; mean ± SEM), holly leaf (37 ± 9%) and granular (18 ± 3%) RBCs. The 311 
same samples, when treated with 0.3% concentration, have primarily granular (80 ± 11%) and a 312 
few holly leaf (14 ± 7%) RBCs. Trait samples treated with 0.1% metabisulphite have (76 ± 4%) 313 
unsickled RBCs. These samples have (19 ± 2%) sickle, (60 ± 3%) holly leaf and (15 ± 3%) granular 314 
RBCs when treated with 0.3% metabisulphite concentration. 315 

Wheeless et al identified ‘form factor’ (𝐹𝐹), given by equation (1), to be the best image analysis 316 
feature to distinguish between sickle RBC shapes after comparing 42 shape descriptors31. As 317 
shown in figure S6 in the supporting information, ‘roundness’ (𝑅), given by equation (2), is a 318 
better measure of RBC shapes in our images than form factor. 319 

𝐹𝐹 = 	 +×-	×	/0*1
2*0&3*4*0!

 (1) 320 

𝑅 = 	 +×	/0*1
-×	51670	18&8!

 (2) 321 

Figure 4D shows the roundness distribution plots of RBCs in healthy (indicated by black square), 322 
disease (red circle) and trait (blue triangle) blood, where each curve has data pooled from three 323 
samples. Here, 𝑛 indicates the number of RBCs from these three samples used to generate each 324 
distribution plot. The left panel shows the control distributions in absence of the oxygen scavenger. 325 
The distribution corresponding to healthy blood peaks at 1.0 as healthy biconcave RBCs lying flat 326 
inside the imaging chamber appear circular in shape. The distributions for untreated trait and 327 
disease samples peak at 0.9 due to the presence of very few ISCs. The disease distribution has a 328 
broader peak compared to the trait distribution as disease samples have more ISCs than trait 329 
samples. 330 

The middle panel shows the roundness distributions of blood samples treated with 0.1% sodium 331 
metabisulphite. Healthy RBCs show a peak at 0.9 – 1.0 as these do not sickle when treated with 332 
an oxygen scavenger. Due to a combination of slower deoxygenation and high HbS concentration, 333 
RBCs in disease samples have a mix of sickle, holly leaf and granular shapes, resulting in a broad 334 
distribution with a peak at 0.5. The shapes of most RBCs in trait blood samples treated with 0.1% 335 
sodium metabisulphite remain unchanged owing to the combined effect of fewer nucleation sites, 336 
HbAS heterodimers, and slow deoxygenation. As a result, the roundness distribution peaks at 0.9, 337 
similar to healthy RBCs. 338 

The right panel shows roundness distributions of RBCs treated with 0.3% sodium metabisulphite. 339 
A combination of faster deoxygenation and higher HbS concentration in disease samples results in 340 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 21, 2020. ; https://doi.org/10.1101/2020.10.28.20221358doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.28.20221358


       

 

 
13 

granular RBCs, which is reflected in a broad distribution with a peak at 0.7. On the other hand, 341 
owing to faster deoxygenation and lower HbS concentration, RBCs assume holly leaf shapes in 342 
trait samples. This leads to a somewhat bimodal roundness distribution with peaks at 0.6 and 0.8 343 
respectively. As expected, the distribution for healthy RBCs has a peak at 0.9. The tails of the 344 
distributions for healthy RBCs at lower roundness values in all three panels result from certain 345 
analysis artifacts, as shown in figure S7 in the supporting information. 346 

As RBCs with holly leaf and granular shapes have similar roundness values, the roundness 347 
distributions of trait and disease samples treated with 0.3% sodium metabisulphite overlap with 348 
each other. Similarly, the peaks of roundness distributions corresponding to healthy and trait 349 
samples treated with 0.1% sodium metabisulphite overlap.  350 

A shape-based classifier distinguishes between healthy and sickle blood  351 

Figure 5. Derivation of two secondary shape parameters𝑃+ and 𝑃, from the roundness distributions. (A) 352 
Schematic diagram describing the process flow to choose a robust combination of 𝑃+ and 𝑃,. (B) A plot of 353 
Dunn index vs connectivity for 16 unique combinations of 𝑃+ and 𝑃, corresponding to 164 blood samples. 354 
The top-right quadrant of the plot indicates the most robust combinations (e.g. 10 and 12) with low 355 
connectivity and high Dunn index values. (C) Development of the classifier. 𝑃9 vs 𝑃: data for 164 distinct 356 
blood samples with known haemoglobin profiles are plotted. Two distinct clusters are seen, one for the 357 
normal samples (HbA), and one for the trait and diseased samples (HbS). The classifier (dotted line) 358 
separates the parameter space into two regions indicated in grey and white. 359 
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We derived two secondary shape parameters 𝑃: and 𝑃9 from each roundness distribution, using a 360 
process flow shown schematically in figure 5A. We identified two specific areas under each 361 
roundness distribution curve by placing two contiguous windows of equal width (left panel). We 362 
called these two areas parameter 1 (𝑃:; violet) and parameter 2 (𝑃9; green) respectively. Each 363 
roundness distribution is represented as a single point on a plot of 𝑃9 vs. 𝑃:. We then translated the 364 
pair of windows by increments of 0.1 over the entire range of roundness values, while also varying 365 
their widths from 0.2 to 0.5, and calculated all sixteen 𝑃: - 𝑃9	combinations resulting from this 366 
operation (middle panel). Widths <0.2 were not considered as they would contain information 367 
about very few RBCs. We then ran a k-means algorithm on each of these 16 datasets to distinguish 368 
between heathy and sickle (e.g. disease and trait) clusters. The optimal 𝑃: - 𝑃9	combination was 369 
identified using connectivity and Dunn index. Connectivity indicated how strongly two clusters 370 
were connected, while Dunn index indicated intra-cluster compactness and inter-cluster 371 
separation32. We finally plotted Dunn index vs. connectivity to identify the most robust 372 
combination with low connectivity and high Dunn index (right panel) lying in the top right 373 
quadrant of the plot. 374 

Figure 5B shows a plot of Dunn index vs. connectivity for 16 𝑃: − 𝑃9 combinations generated 375 
from the roundness distributions of 164 blood samples (H = 49, D = 23 and T = 92) with known 376 
hemoglobin profiles. The values of the parameters used in this plot are given in table S2 in the 377 
supporting information. For this experiment, we treated disease samples with 0.1% sodium 378 
metabisulphite as the roundness distributions of disease and trait samples are different at this 379 
concentration. Similarly, both trait and healthy samples were treated with 0.3% sodium 380 
metabisulphite to distinguish them from each other. 381 

There are two points in the top right quadrant corresponding to the roundness ranges of 0.2 – 0.8 382 
(combination #10; 𝑃:: 0.2 − 0.5;	𝑃9: 0.5 − 0.8 ) and 0.4 −  1.0 (combination #12, 𝑃:: 0.4 −383 
0.7;	𝑃9: 0.7 − 1.0 ) respectively that meet the selection criteria. Combination #10 includes 384 
information about sickle RBCs with 0.2<R<0.4 and excludes information about unsickled RBCs 385 
with R>0.8. Combination #12, with the highest Dunn index, lacks information about sickle RBCs 386 
with R<0.4, but includes information about unsickled RBCs with R>0.8. As combination #10 387 
contains information about RBCs that are physiologically more relevant to our study, we preferred 388 
it over combination #12.  389 

Figure 5C shows the 𝑃9	vs. 𝑃: plot of 164 known samples corresponding to the first combination. 390 
We used a support vector machine (SVM) model on this dataset to develop a classifier shown by 391 
the dotted line that distinguished between healthy and sickle (e.g., both disease and trait) blood. A 392 
point that lies in the grey parameter space below the classifier should correspond to a blood sample 393 
with unsickled RBCs, while a point that lies in the white parameter space above the classifier 394 
should correspond to a blood sample with sickled RBCs. 395 

 396 

 397 
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Distinguishing between disease and trait blood using our classifier 398 

Based on our analysis, we proposed the work flow shown in figure 6A to classify an unknown 399 
blood sample. As demonstrated in the previous sections, it is not possible to unambiguously 400 
identify an unknown blood sample as healthy, disease or trait by treating it with just a single 401 
concentration of sodium metabisulphite. Therefore, we treat each unknown sample with both 0.1% 402 
and 0.3% sodium metabisulphite and plot the corresponding 𝑃: and 𝑃9 values. As healthy RBCs 403 
do not sickle with either concentration, 𝑃: and 𝑃9 are low, and the corresponding points (hollow 404 
and solid black squares) lie in the grey region below the classifier. In contrast, more than 80% 405 
RBCs in disease samples sickle when treated with either 0.1% or 0.3% sodium metabisulphite, 406 
resulting in high P1 and P2 values. Hence, both points (hollow and solid red circles) corresponding 407 
to disease samples lie in the white region above the classifier. As very few RBCs in trait samples 408 
sickle when treated with 0.1% sodium metabisulphite, the corresponding point (solid blue triangle) 409 
lies below the classifier. The same trait sample has high P1 and P2 values when treated with 0.3% 410 
sodium metabisulphite. Therefore, the corresponding point (hollow blue triangle) lies above the 411 
classifier.  412 

 413 
Figure 6. A classification scheme to unambiguously distinguish between disease, trait and healthy blood 414 
samples. (A) Workflow to classify an unknown sample. Each unknown sample is treated with two different 415 
sodium metabisulphite concentrations (0.1% and 0.3%) and imaged after 30 min. (B) 𝑃9 vs. 𝑃: plots for 416 
healthy, disease and trait samples. Solid and hollow symbols correspond to 0.1% and 0.3% sodium 417 
metabisulphite respectively. For a healthy sample both points lie below the classifier (grey region). For a 418 
disease sample, both points lie above the classifier (white region). For a trait sample, the point 419 
corresponding to 0.1% sodium metabisulphite lies below the classifier, while the point corresponding to 420 
0.3% sodium metabisulphite lies above the classifier. (C) Our technique accurately classified 35 distinct 421 
unknown samples (H = 10; D = 10 and T = 15) as shown in the three plots. 422 
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As shown in figure 6B, we validated the classification scheme in a pilot study where we accurately 423 
identified thirty-five unknown blood samples (H = 10, D = 10 and T = 15) from adults and older 424 
children. We also compared the performance of this classifier with the other classifier (combination 425 
#12) identified from the connectivity-Dunn index plot. As shown in figure S8 in the supporting 426 
information, this classifier too could correctly identify all 35 unknown samples. This is the first 427 
proof of concept demonstrating RBC shape as the sole biophysical parameter to distinguish 428 
between sickle homozygous (disease) and heterozygous (trait) blood samples with high accuracy. 429 
However, this technique is yet to be validated with other hemoglobin variants or blood samples 430 
obtained from newborns with high levels of fetal hemoglobin.  431 

Conclusion 432 

We demonstrated a microscopy technique for confirmed diagnosis of sickle cell disease in less 433 
than an hour that could be a potential gamechanger in resource-challenged settings by 434 
distinguishing between sickle cell disease patients who need immediate clinical intervention (e.g., 435 
treatment) and carriers who need non-clinical intervention (e.g., counselling). This technique can 436 
change the paradigm of the current two-step diagnosis protocol by exploiting the differential 437 
polymerization of hemoglobin in disease and trait blood under controlled hypoxic conditions in a 438 
microfluidic chamber and using it to conclusively discriminate between these samples by 439 
microscopy alone. Using this technique, we correctly identified 35 blood samples as healthy, sickle 440 
cell disease or trait. We built an extremely robust portable smartphone microscope to perform our 441 
test in multiple remote field locations. The GPS feature of the smartphone can be utilized for 442 
recording the location of new patients. This feature also makes it the only diagnostic technique 443 
with built-in disease mapping. Due to faster confirmed results, our test can improve patient 444 
compliance to screening efforts and reduce the burden on HPLC systems. The test needs just a 445 
drop of blood instead of 2 - 4 ml of venous blood collected for HPLC. While this study was 446 
designed for testing blood samples from older children and adults, it is particularly suitable for 447 
newborns where only a small volume of blood from a heel-prick is available.  448 

 449 

Data availability statement 450 

The main data from which conclusions are drawn are included in the manuscript and the supporting 451 
information. Suitably de-identified images of blood samples are available for research and teaching 452 
purposes from the corresponding author on request. 453 

 454 

Code availability statement  455 

All codes used for analyzing images and processing the data can be found at the following link. 456 
https://github.com/ridz46/SickleCellDataAnalysis 457 
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Supporting information 

 

1. Design and development of an inverted portable smartphone microscope 

 

 
Figure S1. An inverted single-objective portable smartphone microscope. Photos of the microscope 
models with fixed viewing angle (A) and adjustable viewing angle (B). (C) Ray diagram showing the 
light path inside both microscopes. (D) and (E) show the exploded 3D schematic of the mechanical 
parts of (A) and (B) respectively, while (F) and (G) show the corresponding optical systems.  

 

Figure S1 shows the details of the portable and battery-operated single-objective microscope 
that we developed. Figure S1(A) shows the microscope model where the mobile phone holder 
is attached to the microscope body at a fixed angle, while the phone holder can be adjusted by 
any angle from 0o to 90o in the model shown in Figure S1(B). As shown in figure S1(C), a 1W 
white LED, fitted with a collimating lens, acts as the illumination source. The light transmitted 
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from the microfluidic chip passes through a 40X (0.65 NA) air objective and falls on a right-
angled prism (prism #1 in the figure), which bends the beam by 90o. Another right-angled prism 
(prism #2 in the figure) bends the beam by another 90o such that it falls on an eye-piece lens 
with 15X magnification. A total magnification of 600X (using a 40X objective and a 15X eye-
piece) is achieved in our microscope over a tube length of 160 mm. The smartphone can be 
removed by the user when the microscope is not in use. 

Figures S1(D) and S1(E) show the exploded views of the mechanical assembly inside (A) and 
(B) respectively. A microscope slide or a microfluidic chip is placed on the sample stage. The 
sample stage is attached to a second stage (called “Z-movement stage” in our diagram) capable 
of vertical movement in both models. This arrangement allows us to move the sample stage up 
or down by turning the focusing knob. Therefore, the sample stage, and not the objective, is 
moved while focusing the image in our design. The focusing knob has a pitch of 0.25 mm. The 
Z-movement stage is fixed to the base plate of the microscope. The entire focusing arrangement 
and the base plate are made of aluminium to make the microscope stable. The base plate also 
supports another metallic vertical arm containing the objective lens holder. While the mobile 
phone holder in (A) is fixed, a key feature of the mechanical system in (B) is the presence of a 
3D-printed rotating arm containing the optical components and the smartphone holder. This 
arm can be rotated by any angle from 0o to 90o to change the viewing angle of the smartphone. 
The outer casing of the microscope is 3D-printed in PLA. 

Figure S1(F) and S1(G) shows the optical components of (A) and (B) respectively. The system 
of two prisms makes the microscope design compact. In case of design (B), the rotating arm 
contains the second prism, the eye-piece and the mobile phone holder. The rotating arm is 
mounted in such a way that (i) the incident surface of the second prism always remains parallel 
to the emitting surface of the first prism during rotation, and (ii) the emitting surface of the 
second prism remains parallel to the eye-piece. The arm rotates in a plane orthogonal to the 
beam connecting the two prisms. The 3D-printed smartphone holder is detachable and we 
customized it to the specific mobile phone models. We used a 3D printed PLA cover for the 
eye-piece to have a fixed distance between the eye-piece and the smartphone camera such that 
a sharp and focused image forms on the phone screen. The smartphone holder slides onto a slot 
on the eye-piece cover and keeps the camera in perfect alignment with the rest of the optical 
system.  

2. Workflow for image analysis of RBCs 

RGB images captured by the smartphone are converted into 8-bit grayscale images. After 
background subtraction and automatic thresholding, morphological operations are performed 
to obtain the outlines of the RBCs. Using an area filter, we rule out RBCs with areas <500 
pixels (~2.5 µm2) as possible debris > 7500 pixels (~9.8 µm2) as clusters of RBCs. The detailed 
steps in ImageJ are described below. 

The captured image (1) is first cropped (2) to fit the field of view and converted into an 8-bit 
grayscale image (3). We then subtract the background with a rolling ball radius of 50 pixels 
(4). Next, we make the grayscale image into a binary one using the automatic thresholding 
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algorithm of ImageJ. The RBCs appear black on a white background (5). This binary image is 
them converted into a mask, to make the RBCs appear white against a black background (6). 

Figure S2. Steps involved in image analysis are shown. The original image (1) is opened in ImageJ and 
the area of interest is cropped (2). Then image is converted into an 8-bit grayscale image (3) and its 
background is subtracted to bring the RBCs in the foreground (4). The image is then binarized (5) and 
converted into a binary mask (6) to get the RBCs as white particles. The holes in the particles are filled 
to fill the center of the unfocused part of biconcave RBCs (7).  Then the RBCs are analyzed to get their 
solidity, roundness values and outlines. 8a shows the outlines of the RBCs when an area filter is applied 
to fit the RBC sizes, while 8b shows the outlines without an area filter. 

 

On the masked binary image, we perform the operation ‘fill holes’ (7). This is required as the 
central part of the biconcave RBCs remain out of focus, making these RBCs appear doughnut-
shaped in the binary image. We then analyze the particles (RBCs) to get a list of unique 
identifiers for each RBC and their shape descriptors including roundness and solidity. Next, we 
apply an area filter described earlier to exclude debris and connected cells (8a). The panel 8b 
shows the same cells without the area filter. We then apply a solidity cut-off, where all RBCs 
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with solidity <0.8 are excluded. The RBCs remaining after this step are used to plot the 
roundness distributions. 

3. Deoxygenation rate depends on oxygen scavenger concentration 

We plotted the dissolved oxygen concentration as a function of time for different sodium 
metabisulphite concentrations (figure 3A in the manuscript). We fitted each plot to an equation 

of the functional form 𝑦 = 	𝐴𝑒!
!
" +	B, where 𝑦 indicates the dissolved oxygen content (%) and 

𝑥 indicates time (min). Table S1 shows the fitting parameters for each concentration.  

 

4. Choice of diluent and dilution factor 

 

 

 

 

 

 

 

 

 

 

 

Figure S3. Images of RBCs with different dilutions. (A) Strong rouleaux formation is seen with undiluted 
blood. (B) There are too many RBCs at 5X dilution, making it difficult for an image processing program 
to distinguish individual cells. (C) A dilution of 20X gives a sufficient number of cells in the field of 
view. (D – F) Dilutions of 40X, 60X and 100X lead to very few cells in the field of view, making it 
difficult to obtain reliable statistical data. 

 

Table S1: Fitting parameters to extract the decay time constant (t) describing the 
decrease in dissolved oxygen present in RPMI-1640 for different concentrations of the 
oxygen scavenger sodium metabisulphite. 

Sodium metabisulphite  0.1% 0.2% 0.3% 0.4% 0.5% 

A 112.5 117.1 106.6 100.7 99.6 

B -  7.2 - 4.5 - 0.9 0.2 0.8 
t (min) 12.2 9.3 6.1 3.5 1.6 
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The buffer used to dilute blood must keep RBCs under minimal osmotic stress to avoid 
crenation, while the dilution factor should ensure that there is an adequate number of RBCs in 
the field of view. We first diluted healthy RBCs using 0.9% normal saline (NS), 5% dextrose, 
1X phosphate buffered saline (PBS) and cell culture media (RPMI-1640). 5% dextrose led to 
clumping of healthy RBCs and was discarded. Next, sodium metabisulfite solutions of 
appropriate concentrations as discussed in the manuscript were prepared in NS, PBS and 
RPMI-1640 and were added to whole blood from trait and disease patients. Compared to 
RPMI-1640, sickling in PBS and normal saline took 2-3 times longer. Therefore, we continued 
our study with RPMI-1640 as the diluent. 

The dilution was adjusted in such a way that the cells do not form stacks in the imaging 
chamber. As seen in figure S3, whole blood showed strong rouleaux formation. There were too 
many RBCs present in the field of view with 5X diluted blood, making it difficult for the image 
processing program to identify individual RBCs. The cells were sparsely distributed for 20X 
and 40X dilutions. However, there were too few cells in the field of view when blood was 
diluted by 40X, 60X or 100X. Dilutions higher than 40X also showed an increase in crenation. 
Therefore, we decided to continue our experiments with 20X dilution. 

 

5. Raw images of disease, trait and healthy samples treated with sodium metabisulphite 
for 30 min 
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Figure S4. Raw images of disease (A and B), trait (C and D) and healthy (E and F) samples treated 
with 0.1% (left column) and 0.3% (right column) sodium metabisulphite respectively. The red 
rectangles show the areas from which snippets were taken for figure 4A. 

Figure S4 shows some representative raw images of disease, trait and healthy blood samples. 
The red rectangles show the areas that were used as snippets in figure 4 of the manuscript. 
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6. RBC shapes in disease samples treated with 0.1% sodium metabisulphite 

When we treat a disease sample with 0.1% sodium metabisulphite, we see holly leaf and 
granular RBCs in addition to sickle RBCs, as discussed in the manuscript. An image of a 
representative disease sample was manually annotated by an experienced user in figure S5. We 
find that out of 282 RBCs in the field of view, there are 100 (35%) sickle, 76 (27%) holly leaf 
and 63 (22%) granular RBCs. There are also 33 unsickled (12%) RBCs and 10 (4%) RBCs that 
could not be categorized.  

 
Figure S5. Image of the disease sample (D126) shown in figure S4(A) after manual annotation by an 
experienced user. (A) We see sickle (red rectangles), holly leaf (green rectangles), granular (yellow 
rectangles), unsickled (blue rectangles) and uncategorized (white rectangles) RBCs. (B) Three 
examples of each cell type are shown. 

7. Choosing roundness (R) over form factor (FF) to characterize RBC shapes  

We explored both roundness and form factor for characterising individual RBC shapes in our 
study. We imaged healthy blood samples and measured both these parameters using ImageJ for 
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RBCs that are very close to circular in shape. Note that the parameter ‘form factor’ (FF) 
reported by Wheeless and others is the same as the parameter ‘circularity’ (C) measured by 
ImageJ. Both R and FF range from 0 for elongated objects to 1 for perfect circles.  

 
Figure S6: Comparing roundness and form factor for characterizing individual RBC shapes. An image 
of a healthy flood sample is shown. The circularity and roundness values of three apparently circular 
RBCs in this image are also shown. As expected, the roundness distribution of the healthy sample peaks 
at 0.9-1.0, while the form factor (measured as circularity by ImageJ) peaks at 0.8. 

Figure S6 shows the image of a healthy blood sample. Three individual RBCs (numbered 112, 
89 and 46) that appear circular in this image are shown separately with their corresponding 
shape parameters. While the roundness values of these RBCs are >0.9, the form factor is ~ 0.7. 
This is because the form factor formula uses the value of the measured perimeter, which is 
more sensitive to the pixels in the boundary of an object. Therefore, the use of form factor in 
our image analysis could introduce artifacts in the brightfield images of sickle cells that often 
have blurred boundaries. On the other hand, the formula for roundness uses the value of the 
major axis, which is not sensitive to the pixels at the boundary of an object. Therefore, we used 
roundness to describe the shapes of irregular objects such as sickle RBCs.  

8. Image artifacts in healthy blood samples leading to tails in roundness distributions 

Figure 4C of the manuscript shows that the roundness distributions of healthy samples have 
tails at values of R<0.8. As shown in figure S7, this is due to the presence of specific artifacts 
such as RBCs lying sideways (left panel), crenated RBCs (middle panel) or two or more RBCs 
overlapping in such a way that the area and solidity filters cannot exclude them (right panel). 
Our area filter during image processing is chosen to ensure that most sickle cells, which are 
somewhat larger in area compared to healthy biconcave RBCs, are included in our analysis. 
This area filter cannot exclude these artifacts when dealing with healthy blood samples. 
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However, the presence of the artifacts does not affect our workflow as seen from the data 
presented in figure 5 and figure 6 of the manuscript. 

 

 

 

 

 

Figure S7. Images of selected RBCs from a healthy sample (N03) showing RBCs lying sideways (left 
panel), crenated RBCs (middle panel) or overlapping RBCs (right panel). 

9.  𝑷𝟏 and 𝑷𝟐 combinations used to construct the Dunn index vs. connectivity plot 

Table S2: Parameters used to construct the Dunn index vs. connectivity plot. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S2 lists the parameters used to plot the Dunn index and connectivity values for sixteen 
different combinations of 𝑃$ and 𝑃%. We varied window widths from 0.2 to 0.5. Combination 
numbers 10 and 12 with window widths of 0.3 each indicate the most promising combinations 
and these were used to analyse the data of 35 unknown samples. 
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10. An alternate classification scheme  

Figure S8. An alternate classifier based on the parameter values of 𝑃!: 0.4 – 0.7 and 𝑃": 0.7 – 1.0. (A) 
In a plot of 164 known samples (H = 49, D = 23 and T = 92), the dotted line indicates the classifier 
that separates healthy and sickle blood samples. The white area in all the plots indicates the parameter 
space for healthy samples, while the grey area indicates the parameter space for sickle (disease and 
trait) samples. (B) Both points corresponding to a healthy sample treated with 0.1% and 0.3% sodium 
metabisulphite lie above the classifier, while the corresponding points for a disease sample lie below 
the classifier. The point corresponding to a trait sample treated with 0.1% sodium metabisulphite lies 
in the space (white area) for healthy samples. The point for a trait sample treated with 0.3% sodium 
metabisulphite lies in the sickle (grey) zone. (C-E) Validation data for healthy (H = 10), trait (T = 15) 
and disease (D = 10) samples. All 35 unknown samples were accurately identified by this classifier. 

 

Figure S8 shows an alternate classification scheme given by combination #12 of 𝑃$ and 𝑃% 
values. This classifier also classifies 35 unknown samples with 100% accuracy. 

 

12. Captions of movies uploaded as supporting information 

Movie 1: Sickling video of a disease sample treated with 0.1% sodium metabisulphite. The 30 
min video has been sped up 29.5 times. The sample ID is D188. 
Movie 2: Sickling video of a disease sample treated with 0.3% sodium metabisulphite. The 30 
min video has been sped up 29.8 times. The sample ID is D188. 
Movie 3: Sickling video of a trait sample treated with 0.1% sodium metabisulphite. The 30 
min video has been sped up 29.5 times. The sample ID is T187. 
Movie 4: Sickling video of a trait sample treated with 0.3% sodium metabisulphite. The 30 
min video has been sped up 29.5 times. The sample ID is T 
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