
Simple discrete-time self-exciting models can describe complex

dynamic processes: a case study of COVID-19

Raiha Browning1,2*, Deborah Sulem3, Kerrie Mengersen1,2‡, Vincent Rivoirard4‡, Judith Rousseau3,4‡

1 School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
2 Australian Research Council, Centre of Excellence for Mathematical and Statistical Frontiers
3 Department of Statistics, University of Oxford, Oxford, United Kingdom
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Abstract

Hawkes processes are a form of self-exciting process that has been used in numerous appli-
cations, including neuroscience, seismology, and terrorism. While these self-exciting processes
have a simple formulation, they are able to model incredibly complex phenomena. Traditionally
Hawkes processes are a continuous-time process, however we enable these models to be applied
to a wider range of problems by considering a discrete-time variant of Hawkes processes. We
illustrate this through the novel coronavirus disease (COVID-19) as a substantive case study.
While alternative models, such as compartmental and growth curve models, have been widely
applied to the COVID-19 epidemic, the use of discrete-time Hawkes processes allows us to gain
alternative insights. This paper evaluates the capability of discrete-time Hawkes processes by
retrospectively modelling daily counts of deaths as two distinct phases in the progression of
the COVID-19 outbreak: the initial stage of exponential growth and the subsequent decline
as preventative measures become e↵ective. We consider various countries that have been ad-
versely a↵ected by the epidemic, namely, Brazil, China, France, Germany, India, Italy, Spain,
Sweden, the United Kingdom and the United States. These countries are all unique concerning
the spread of the virus and their corresponding response measures, in particular, the types and
timings of preventative actions. However, we find that this simple model is useful in accurately
capturing the dynamics of the process, despite hidden interactions that are not directly modelled
due to their complexity, and di↵erences both within and between countries. The utility of this
model is not confined to the current COVID-19 epidemic, rather this model could be used to
explain many other complex phenomena. It is of interest to have simple models that adequately
describe these complex processes with unknown dynamics. As models become more complex, a
simpler representation of the process can be desirable for the sake of parsimony.

1 Introduction

The outbreak of the novel 2019 coronavirus disease (COVID-19) was declared a Global Health
Emergency of International Concern on 30th January 2020, and pronounced a Pandemic on 11th
March 2020. It has since spread rapidly with over 37 million confirmed cases and more than
1 million deaths as of 11th October 2020 [1]. Since the first reported case in December 2019,
countries around the world have fought to contain the virus. In the absence of a vaccine, countries
have implemented a range of non-pharmaceutical interventions and strategies to reduce the spread
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of the virus, from measures such as social distancing, mask-wearing and contact tracing, to complete
city lockdowns and stay at home orders. These recommendations are guided by mathematical and
statistical modelling to quantify the e�cacy of these measures [2–9].

There is now an expansive collection of research dedicated to understanding the virus from all
perspectives, including its biological, epidemiological, clinical, economic and social impacts. There
is also a wealth of knowledge around prevention strategies to control the outbreak. In all of these,
statistical and mathematical models are an essential aspect to gaining meaningful insights into
how the virus spreads and quantifying its various impacts. A popular choice is compartmental
models, with some considering the standard SIR (Susceptible-Infected-Recovered) model [10–12],
and further extensions in which additional states are introduced [13–18]. As an alternative to
compartmental models, others have used methods such as branching processes to capture the spread
of the virus through individual networks [2,3,5], log-linear Poisson autoregressive models [19], and
other probabilistic models of the infection cycle of the virus [20]. Various models based on growth
curves have also been proposed, for example [21], [22] and [23], who use logistic, exponential and
Richards growth curves respectively.

A Hawkes process [24] is a stochastic, self-exciting process in which past events influence the
short-term probability of future events occurring. They are often used to explain many phenomena
that exhibit self-exciting properties, including neuroscience [25–27], crime and terrorism [28–30],
seismic activity [31] and social media [32]. Similarly, due to their contagious nature it is also natural
to represent infectious diseases, such as the current COVID-19 pandemic, as a Hawkes process.

Hawkes processes have been successfully applied to model epidemics and infectious diseases. For
example, for the Ebola outbreaks in West Africa and the Democratic Republic of Congo [33, 34],
the Hawkes process is found to outperform the SEIR (Susceptible-Exposed-Infected-Recovered)
mechanistic model in terms of short term prediction. Another study employs an extension of the
multivariate Hawkes process to understand the transmission routes and regional connectivity for
the dengue fever outbreak across regions in Australia [35]. Rocky Mountain Spotty Fever has also
been modelled using a recursive Hawkes process, with the expected number of transmissions based
on the current conditional intensity of the Hawkes process [36]. Moreover, [37] model invasive
meningococcal disease using a spatiotemporal extension to the Hawkes process.

The spread of COVID-19 is an extremely complex process, with unknown disease dynamics and
huge variations in the preventative measures and responses of di↵erent countries. We propose a
parsimonious model for COVID-19 deaths, namely discrete-time Hawkes processes (DTHP) [28,
29, 38], to describe the complicated dynamics of the COVID-19 epidemic. In its original form, the
Hawkes process is a continuous-time point process; however, the DTHP observes the occurrence
of events at a discrete time resolution. Due to this construction, the DTHP can directly model
the available data (i.e. daily counts), without artificially imputing the data onto a continuous
timeline, as is generally done in studies using continuous-time Hawkes processes. We also introduce
a deterministic change point in this study, since the dynamics of the spread vary abruptly as the
pandemic progresses and preventative interventions are introduced.

Alternative models, such as the mechanistic and growth curve models discussed previously,
primarily focus on estimating the model parameters that govern the system. Hawkes processes,
however, are more detailed, as individual events and their respective occurrence times directly
influence the likelihood of future events occurring. Hawkes processes also provide additional insights
into the infection dynamics of diseases, through the estimation of the triggering kernel, which models
the decay in infectivity through time. Hawkes processes and compartmental models are based on
di↵erent mathematical principles and rely on di↵erent assumptions. However, their connection was
explored by [39], who show that, via a modified variant of the Hawkes model for a particular choice
of triggering kernel, the rate of events is equivalent to the infection rate in the SIR model.
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1.1 Related Work

An approach to modelling the COVID-19 pandemic using self-exciting branching processes has been
suggested by [40]. These authors employ a continuous-time Hawkes model with a nonparametric
estimate of the reproduction number, R(t), the average number of secondary cases produced by a
single case of the virus. Both death counts and the number of confirmed cases in the early stage of
the epidemic, before April 1st, are modelled in three states of the U.S., several European countries
and China. Compared to SIR and SEIR models with a fixed reproduction number, their Hawkes
model with a dynamic parameter leads to lower estimates of the basic reproduction number, R0.
In the same line of work, [41] consider several datasets for the state of Indiana in the early stage
of the epidemic. They also compare a nonparametric estimate of the reproduction number, R(t),
with an exponentially decreasing function and a step-function, and find that the estimation of R
is very sensitive to the type of input data (i.e. deaths or cases), the data source, and the model
choice. Similarly, [42] adopt a continuous-time Hawkes model with spatial covariates to model both
the number of confirmed COVID-19 cases and the number of deaths, for the U.S. at the county
level. This study also considers a time-varying reproduction number. Finally, [43], also use the
continuous-time Hawkes process to illustrate the severity of the virus in France if no preventative
action were to be taken.

Several approaches for modelling COVID-19 that incorporate change points have been proposed
to capture the dynamic nature of the pandemic. [44] and [45] find that using compartmental models
with time-varying infection rates, the estimated change points for Germany and South Africa,
respectively, align with various government interventions in these countries. [46] do not directly
estimate the change points; instead, they propose a compartmental model for Italy with piecewise
model parameters partitioned into regular time intervals. Alternatively, [47] consider a combination
of exponential and polynomial regression models to estimate the optimal change points for the
COVID-19 outbreak in India. While these studies consider only a single country, [48] examine
several countries and introduce a single stochastic change point into their compartmental model. [49]
present a widespread study across 55 countries using a partially observed Markov process with
piecewise transmission rates.

1.2 Contributions

In the current literature, the continuous-time Hawkes process requires artificial imputation of the
daily count data onto a continuous time resolution, adding a significant computational burden to
the implementation and adding additional, potentially unnecessary, noise to the model. We develop
a multi-phase approach for the DTHP to directly model the reported daily counts of the number
of deaths caused by the virus.

The dynamics of the process before and after the enactment of preventative measures and policy
interventions to reduce the spread of the virus are inherently di↵erent. To the authors’ knowledge,
the existing literature on the modelling of the COVID-19 pandemic using Hawkes processes consider
only the early stages of the pandemic. In this work, we develop a variant of the DTHP to model the
distinct phases of the COVID-19 epidemic. We modify the traditional Hawkes process to account
for this change in dynamics by including a deterministic change point in the model.

Change point models for Hawkes processes have been considered in other applications [50].
However, these authors assume independence of the observed data between change points, pro-
hibiting events that occur within a time period to influence events in future time periods. This
type of model is inappropriate for this application, as the time periods are not independent. While
the behaviour of the process varies between time periods, the influence of past events remains active
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in the memory of the process. Thus, the baseline parameters become artificially inflated if events
from di↵erent time periods are assumed to be independent.

In particular for the COVID-19 epidemic, while other studies directly estimate the change points
or partition the timeline into regular intervals to reflect the evolving dynamics of the epidemic, we
propose a simple method that incorporates only a single, fixed change point. We do not attempt
to estimate the change point for our model, as di↵erent interventions have been introduced in
each country, with varying levels of restrictions. Furthermore, the delays before tangible results are
observed, in addition to the complex and hidden interactions underlying the process, complicate the
interpretation of estimated change points. We instead opt for a consistent and simplistic definition
of the change point for each country.

We illustrate in this study how a simple model can be used to describe exceedingly complex
natural phenomena such as epidemics, and in particular the COVID-19 pandemic. Although it
is the same underlying phenomenon, all countries are unique concerning the spread of the virus
and the resultant response measures. Our simple model can capture these dynamics. Additionally,
while many other studies consider small-scale regions, such as individual counties in the U.S., we are
also able to gain insights into the dynamics of the process at a higher-level across entire countries.

1.3 Outline

In Section 2.1, a general form of the DTHP is defined, and contrasted with its continuous-time
equivalent. Section 2.2 follows by introducing the particular model used in this analysis for mod-
elling COVID-19, incorporating a change point into the construction of the DTHP. We provide a
brief description of the data and inference methods in Sections 2.3 and 2.4 respectively. Section 3
then presents the results for the ten countries of interest, followed by a discussion in Section 4 and
final conclusions in Section 5.

2 Methods

2.1 Discrete-time Hawkes process

The discrete-time Hawkes process is a self-exciting stochastic process whereby events occur at
regular intervals on a discrete-time scale. It follows a similar construction to the continuous-time
Hawkes process [24]. The conditional intensity function �(t) characterises a Hawkes process, and
herein lies the di↵erence between the continuous-time and discrete-time variants. For the DTHP,
�(t) represents the expected number of events that occur at time interval t, conditionally on the
past. In contrast, for the continuous-time Hawkes process, �(t) is the instantaneous rate of an
event occurring at time t. The DTHP model also has an extra layer of flexibility compared to
its continuous-time counterpart as the underlying data generating process can be selected as any
counting distribution with conditional mean �(t).

Consider a linear univariate discrete-time Hawkes process N , where N(t) represents the number
of events up to time interval t. N(t) is dependent on the history of events up to but not including
time t, denoted by Ht�1 = {ys : s  t � 1}, where ys represents the observed number of events in
a given time interval s. Furthermore, N(t)�N(t� 1) represents the number of event occurrences
at time t, and thus,

�(t) = E{N(t)�N(t� 1)|Ht�1}

= µ+ ↵

X

i:ti<t

ytig(t� ti) (1)
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where µ represents the baseline mean of the process and the second term represents the self-exciting
component of the Hawkes process, describing the expected number of events during a particular
interval t given previous events. The triggering kernel g(t�ti) describes the influence of past events
on the intensity of the process, given the time elapsed since event i, where t > ti. In this study, we
specify the triggering kernel to be a proper probability mass function with strictly positive support.
Thus one can interpret the non-negative magnitude parameter ↵ 2 R�0 as the expected number of
subsequent events produced by a single event [29].

2.2 Model

Daily counts of the reported number of deaths of the novel coronavirus COVID-19 are modelled
using the discrete-time Hawkes process, where the number of events observed on day t, namely yt,
are distributed according to the random variable, Y (t), which has conditional mean E(Y (t)|Ht�1) =
�(t) as defined in (1). In this analysis Y (t) is assumed Poisson distributed, thus Y (t) ⇠ P(�(t)).
The Poisson distribution is selected as it has an intuitive interpretation regarding the generation
of daily death counts on a given day and also to align with the assumptions of the continuous-time
Hawkes process, whereby the underlying generative model follows a Poisson process. Thus, for the
proposed DTHP model, the probability that day t has y events is,

P (Y (t) = y|�(t)) = �(t)ye��(t)

y!

The conditional intensity function �(t) is altered from (1) to allow for change points in the
process, since the DTHP with fixed parameters is unable to capture the complex dynamics for
an epidemic of this scale. The parameters of the DTHP implicitly incorporate environmental and
social characteristics that are significant for the spread of the disease, and these characteristics
change after preventative measures are introduced. Thus, if the dynamic nature of the epidemic
is not taken into account, the model averages the estimated parameters, combining the e↵ects
of the initial explosive phase of the pandemic with the downward trend that follows after the
implementation of preventative measures.

Thus, we retrospectively define a single change point at time T1, where T1 is the maximum value
of deaths, to capture the di↵erent dynamics of the epidemic at two distinct stages of the outbreak.
Intuitively, the time series before T1 represents the first stage in the epidemic where the virus is
spreading rapidly, and the time series after T1 represents the process following the introduction of
preventative measures and policies, and when cases have started to decline.

The conditional intensity function before T1 is calculated using one set of model parameters,
(µ1,↵1,�1). After T1, the intensity function is calculated using a new set of parameters, (µ2,↵2,�2)
for the second phase in the epidemic. Thus for one change point at time T1, �(t) is given by,

�(t) =

⇢
µ1 + ↵1

P
i:ti<t ytig1(t� ti), t  T1

µ2 + ↵2
P

i:ti<t ytig2(t� ti), t > T1
(2)

It is straightforward to extend Equation (2) to allow for additional change points. However,
this did not appear to be justified for our analysis and indeed might limit model performance due
to lack of information in shorter time series.

The triggering kernel g(t� ti) is selected as a geometric excitation kernel, g(i;�) = �(1��)i�1.
We choose the geometric kernel to resemble the exponential distribution, which is one of the most
commonly used triggering kernels for continuous-time Hawkes processes.
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For a time series of T days and a given country, the log-likelihood function for this DTHP model
with retrospective change point, T1, up to an additive constant K, is then,

logL(y|µ,↵,�) =

K +
T1X

t=1


yt log

 
µ1 + ↵1

X

i:ti<t

yti�1(1� �1)
t�ti�1

!
�
✓
µ1 + ↵1

X

i:ti<t

yti�1(1� �1)
t�ti�1

◆�

�
TX

t=T1+1


yt log

 
µ2 + ↵2

X

i:ti<t

yti�2(1� �2)
t�ti�1

!
�
✓
µ2 + ↵2

X

i:ti<t

yti�2(1� �2)
t�ti�1

◆�

2.3 Data

We use data gathered by the Johns Hopkins University [51] in this work. These data come in
the form of daily counts of confirmed cases or deaths by country and region. In this analysis,
the number of daily reported deaths for a selection of countries, namely Brazil, China, France,
Germany, India, Italy, Spain, Sweden, the United Kingdom and the United States, are considered.
We select these countries to represent a global sample of countries that have been adversely a↵ected
by the coronavirus outbreak. It is important to note that the definition of deaths due to COVID-19
varies between countries. These di↵erences are ignored in our modelling.

The reported number of deaths was considered a more reliable response variable than the
reported number of cases. This is due to data issues that can arise when considering the number
of confirmed cases, such as lack of testing or di↵ering testing rates between countries, di↵erences
in definitions and di↵erences in the timing for reporting of cases. Additionally, to mitigate the
e↵ect of systematic influences in reporting, such as lower reporting on weekends [44], the data is
smoothed over a rolling window of seven days. The start of the observation window, t1, for each
country is defined as the time the number of deaths exceeds ten. Fig 1 shows the smoothed volume
of daily deaths for the countries under consideration up to 25th July 2020.

Fig 1. Observed data. Daily volume of deaths due to COVID-19 for the countries selected in
this analysis.

We define the change point, T1, as the time where the maximum number of deaths occurs, for
the countries with su�cient data in the downward phase of the epidemic by 25th July 2020. Where
there is insu�cient evidence for the downward trend, for example, in India and Brazil, no change
point is introduced, and only a single phase is modelled. Moreover, the trend for Brazil shows
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evidence of the curve flattening; however, there is insu�cient data for this second phase. Thus the
end of the observation window for Brazil is fixed on 1st June 2020. Additionally, as China, India,
Spain and the United States experienced large deviations from the current trend towards the end
of the observed data, earlier endpoints of 13th April 2020, 12th June 2020, 15th June 2020 and
21st June 2020 were imposed respectively. This avoids the anomalous spikes at the end of these
series, since it was not clear whether these aberrations were real or due to reporting definitions or
other errors. The endpoint for the remaining countries is set as 25th July 2020.

2.4 Parameter Inference

Parameter estimation is undertaken using Bayesian methods. We consider a range of prior choices
for the baseline parameters µ1 and µ2, and perform leave-future-out cross validation with Pareto
smoothed importance sampling [52] to assess the performance of each prior choice. The priors
considered are,

µ1, µ2 ⇠

8
>>>><

>>>>:

logN(1, 1)
logN(5, 1.5)
Gamma(2, 2)
Gamma(5, 1)
U(0,1),

where the first term of the log-normal priors represents the mean of the random variable itself,
as opposed to the mean of the variable’s natural logarithm.

Cross validation with Pareto smoothed importance sampling relies on the expected log predictive
density (ELPD), for which a larger value indicates a better model fit. We calculate the ELPD in
each country for each of the baseline parameter prior choices, and these results are provided in the
supplementary material. Based on this analysis, there is no obvious choice of prior that consistently
outperforms the rest for each country. On the contrary, the di↵erence in the ELPD is marginal
between priors. The remainder of this paper presents the results for µ1, µ2 ⇠ Gamma(5, 1), as this
is most frequently the highest ELPD, and if not the maximum, is generally very comparable.

Flat priors are selected for ↵1, ↵2, �1 and �2 such that,

• ⇡(↵1,↵2) / I(0,1)2(↵1,↵2)

• �1,�2 ⇠ U(0, 1)

A Metropolis-adjusted Langevin step [53] is used to jointly update ↵1 and �1, and also to jointly
update ↵2 and �2. Denoting the parameters at iteration t by ↵

(t)
,�

(t), the proposals ↵
⇤
,�

⇤ are
simulated from, 

↵
⇤

�
⇤

�
⇠ N

✓
↵
(t)

�
(t)

�
+

✏
2

2
G


D↵(↵(t)

,�
(t))

D�(↵(t)
,�

(t))

�
, ✏

2
G

◆
(3)

where D↵(.) and D�(.) are the gradients of logL with respect to ↵ and � respectively, G is a
pre-conditioning matrix accounting for covariance between parameters and ✏ is the step size in the
Metropolis-adjusted Langevin algorithm.

The MCMC chain was run for 60,000 iterations discarding the first 20,000. The pre-conditioning
matrix G was taken as the covariance matrix from an implementation of the standard Metropolis-
Hastings algorithm for each country. The R code and data required to replicate this study are
available on Github (https://github.com/RaihaTuiTaura/covid-hawkes-paper).
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3 Results

Fig 2 presents the 95% posterior intervals around the estimated conditional intensity function �(t)
against the observed data for each country. The estimated intensity function on day t, represents
the expected number of events on day t and very closely follows the observed number of deaths.
It is also extremely reactive to minor deviations from the observed trend, and more volatile times
in the observed data result in wider posterior intervals to account for increased uncertainty in the
trend of the data.

Fig 2. Observed deaths versus estimated deaths. The observed number of deaths (black
dots) compared to the 95% posterior interval for the estimated expected number of events , i.e.
�(t) (solid red ribbon).

Diagnostic plots, including MCMC trace plots, autocorrelation between the MCMC samples and
pairwise correlation between parameters were examined and suggest the algorithm has converged.
Further details on the posterior distributions of the model parameters, convergence and model
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diagnostics are provided in the supplementary material.
Tables 1-3 present the posterior median and corresponding 80% posterior intervals for the model

parameters. Further details for the other baseline parameter priors considered can be found in the
supplementary material. In most countries, the posterior interval for µ2 is consistently lower than
µ1, indicating a reduction in the baseline rate of events from the beginning to later stages of the
epidemic. The exception to this is the U.S. The results for the U.S. are highly sensitive to the
prior choice; thus, wider priors return higher posterior estimates than expected when compared
to other countries. In an earlier analysis, this behaviour was also prevalent for Sweden and the
U.K., although it disappeared when considering a longer time series. This implies that there may
be insu�cient information in the data for the U.S. to reliably learn the model parameters for the
second phase. However, without alternative data, it is not possible to improve modelling for the
U.S. by considering a longer time series. This is due to a large anomaly at the end of the series,
as discussed in Section 2.3. Nonetheless, it highlights the importance of having su�cient training
data and being cautious when interpreting parameter estimates.

Country µ1 µ2

Italy 4.39 (3.18,5.71) 1.17 (0.69,1.8)
France 4.57 (3.38,5.91) 1.57 (0.97,2.28)
Spain 5.78 (4.06,7.6) 0.49 (0.28,0.76)
Germany 4.17 (2.89,5.54) 0.95 (0.59,1.39)
Sweden 4.05 (2.88,5.44) 1.79 (1.05,2.68)
U.K. 4.51 (3.08,6) 2.42 (1.32,3.75)
U.S. 4.08 (3.13,5.15) 4.1 (2.16,7.12)
China 8.92 (6.29,11.73) 0.82 (0.48,1.22)
Brazil 4.18 (2.98,5.52) -
India 2.81 (2.02,3.72) -

Table 1. Phase 1 versus Phase 2 median and 80% intervals for baseline parameters, µ1 and µ2

Country ↵1 ↵2

Italy 1.07 (1.05,1.09) 0.94 (0.93,0.95)
France 1.1 (1.08,1.11) 0.92 (0.91,0.93)
Spain 1.11 (1.09,1.13) 0.96 (0.95,0.97)
Germany 1.06 (1.03,1.09) 0.91 (0.89,0.93)
Sweden 1.07 (1.01,1.13) 0.92 (0.89,0.95)
UK 1.14 (1.11,1.17) 0.95 (0.95,0.96)
US 1.07 (1.06,1.07) 0.97 (0.97,0.98)
China 1.07 (1.01,1.15) 0.8 (0.76,0.84)
Brazil 1.03 (1.02,1.04) -
India 1.1 (1.07,1.13) -

Table 2. Phase 1 versus Phase 2 median and 80% intervals for magnitude parameters, ↵1 and ↵2
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Country �1 �2 ��1
1 ��1

2

Italy 0.88 (0.8,0.95) 0.55 (0.48,0.63) 1.136 (1.053,1.25) 1.818 (1.587,2.083)
France 0.97 (0.92,0.99) 0.64 (0.58,0.7) 1.031 (1.01,1.087) 1.562 (1.429,1.724)
Spain 0.96 (0.9,0.99) 0.91 (0.85,0.95) 1.042 (1.01,1.111) 1.099 (1.053,1.176)
Germany 0.65 (0.57,0.75) 0.51 (0.45,0.59) 1.538 (1.333,1.754) 1.961 (1.695,2.222)
Sweden 0.42 (0.32,0.54) 0.5 (0.39,0.62) 2.381 (1.852,3.125) 2 (1.613,2.564)
UK 0.79 (0.68,0.91) 0.56 (0.5,0.62) 1.266 (1.099,1.471) 1.786 (1.613,2)
US 0.99 (0.98,1) 0.77 (0.66,0.89) 1.01 (1,1.02) 1.299 (1.124,1.515)
China 0.4 (0.28,0.56) 0.43 (0.35,0.54) 2.5 (1.786,3.571) 2.326 (1.852,2.857)
Brazil 0.83 (0.73,0.93) - 1.205 (1.075,1.37) -
India 0.33 (0.26,0.41) - 3.03 (2.439,3.846) -

Table 3. Phase 1 versus Phase 2 median and 80% intervals for triggering kernel parameters, �1
and �2 and the means of their respective geometric distributions, ��1

1 and �
�1
2

The magnitude parameter in the second phase, ↵2, is also consistently lower than the parameter
for the first phase, ↵1. With a posterior probability (greater than 80%), it can be said for all
countries that ↵1 > 1 and ↵2 < 1. This implies the process is explosive before the change point
and becomes stationary after the change point, likely driven by the introduction of interventions
to reduce the rate of infection.

The parameters for the geometric triggering kernel, �1 and �2, are similar for Sweden and China.
However, for the remaining countries where two phases are considered, the kernel parameter for
the first phase, �1, is larger than �2, indicating that the self-excitation has a longer memory in the
second phase. For reference, � = 0.4 in the geometric kernel corresponds to an average of 2.5 days
for the self-excitation, with the majority of the mass occurring within one week, whereas � = 0.9
is shorter, corresponding to an average self-excitation of just over 1 day with approximately 2 days
of total memory.

3.1 Model Fit

Several measures are used to assess model fit. First, the model’s capability to interpolate missing
data is evaluated. Then in-sample and out-of-sample posterior predictive checks are considered.
The purpose of prediction in this study is to assess model fit and to discover what can be learned
about the process retrospectively.

The first measure of model fit considers how accurately the model can recover missing data.
We randomly remove 10% of observations across the entire time series and treat the missing data
as parameters in the model to estimate. Table 4 describes the number of interpolated data points
for which the observed value lies within both the 95% and 80% credible intervals (CrI) of the
posterior distributions for the missing data. The proportion of data points correctly interpolated is
generally high when considering the 95% credible intervals. This reduces when considering the 80%
interval, however, is still high for most countries, capturing at least half of the missing data points.
The exception to this is the U.S., with just less than half of the missing data points accurately
interpolated.
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Country 95% CrI (average) 80% CrI (average)
France 11/14 7.4/14
Italy 13/15 11/15

Germany 13.4/14 10.2/14
Spain 8/11 6.2/11

Sweden 12.6/13 10.4/13
U.K. 11.8/14 9.2/14

China 8.6/9 7.2/9
U.S. 8.6/11 5.4/11

Brazil 6.6/8 4.6/8
India 7.8/9 6.8/9

Table 4. Number of missing data points with actual value within 95% and 80% CrIs, out of the
total number of missing data points.

Prediction is a di�cult task, particularly for complex phenomena such as the COVID-19 pan-
demic. For this particular model, more recent events have a larger impact on the intensity of the
process, and thus the model is very reactive to recent behaviours. Thus prediction performed at a
time where abnormal behaviour is occurring will be highly uncertain and often unreliable. More-
over, a prediction is only realistic in the short term and generally only at times where there is no
evidence of abnormal behaviour. This is consistent with other models in the literature [33,34,54–56].
Thus we consider in-sample and out-of-sample posterior predictive checks in this study as a measure
of model fit only.

In-sample prediction is performed by generating sample paths of the process for the range of
model parameters obtained and comparing these to the observed time series. In particular, a
random selection of posterior samples is taken, and the entire time series is simulated from these
draws. The posterior predictive intervals from these simulations compared to the observed data
are given in Fig 3. In general, the intervals for these simulations encapsulate or are very close to
the observed data, however, they can be extremely wide and often underestimate the volume of
events in the initial phase of the outbreak. This is likely due to variation in the assumed Poisson
data generating distribution, and relatively wide priors on the baseline parameters for the first
phase, resulting in a wide range of possible sample paths. Additionally, these sample paths did not
adequately capture the observed trend in the U.S. However, we find that including the data from
the first phase in the model and predicting the second phase results in improved accuracy of the
posterior predictive intervals for all countries. These results are presented in Fig 4.
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Fig 3. In-sample validation. The observed number of deaths (black dots) compared to the 95%
posterior predictive interval for the estimated expected number of events , i.e. �(t) (grey ribbon).
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Fig 4. In-sample validation, conditioned on data from the first phase. The observed
number of deaths (black dots) compared to the 95% posterior predictive interval for the estimated
expected number of events , i.e. �(t) (grey ribbon).

Out-of-sample (O.O.S.) validation is also performed for each country as a measure of model
fit. First, we consider the initial phase of the epidemic before the change point. The model is
trained on data from the first 15 days of the sample, followed by a 5-day O.O.S. prediction. We
then repeat this process, increasing the length of the training period by 5 days until the change
point. As shown in Fig 5, these predictions are reliable only in the short term, and become more
unreliable as the end of the first phase approaches. The first phase predictions grow exponentially
and quickly surpass the actual growth of the process, as the observed curve flattens due to the
e↵ects of preventative measures that have been implemented.
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Fig 5. Out-of-sample validation. The observed number of deaths (black dots) compared to
the 95% posterior predictive interval for the estimated expected number of events , i.e. �(t) using
various training datasets (grey ribbons).

O.O.S. prediction is also considered for the second phase of the model, after the change point.
We first train the model on data from the first phase and 15 days of the second phase. We then
repeat the same procedure as described above with 10-day O.O.S. predictions. The downward
trajectory of the infection cycle is more stable than the upward trajectory, so we consider a longer
prediction duration. The posterior predictive intervals are generally very accurate for all countries,
as seen in Fig 5. Compared to the O.O.S. validation performed for the first phase, the improve-
ments in accuracy observed in the second phase are likely due to the stationarity of the process in
the second phase, resulting in more predictable trends. For both phases, the accuracy of O.O.S.
predictions depends on the endpoint of the training period for the model, and the type of behaviour
preceding any predictions.

While we do not attempt to predict the course of the epidemic in this study, we do find that
O.O.S. predictions may indicate when the peak in the number of events is approaching. This could
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be useful in countries that have not yet experienced a decline in the number of daily events, for
example, Brazil and India in this study. Posterior predictive intervals that surpass the growth rate
in the observed data indicate, and could pre-empt, the downward phase of the epidemic. Conversely,
where the predictive intervals do encapsulate the observed data, it is unlikely that the peak is being
approached. This is evident in Fig 5, where the curve for Brazil is flattening, resulting in unreliable
O.O.S. predictions, compared to the more reliable predictions in India due to the strong upward
trend.

4 Discussion

Infectious diseases have previously been studied using Hawkes processes. However, the scale, sever-
ity and uncertainty of the current COVID-19 pandemic make it a very challenging problem, provid-
ing a unique opportunity to evaluate the capacity of Hawkes processes in describing an incredibly
complex process. Another source of complexity arises from the definition of what constitutes a
COVID-19 death, which di↵ers between countries. This analysis finds that by modifying the DTHP
to incorporate a change point, our model can adequately capture the overall process as two distinct
phases, while quickly reacting to and accommodating for some level of abnormal behaviour.

The findings of this work can also quantify the dynamics of these two distinct phases in the
pandemic. Our results show that for the baseline parameters, the background rate in the second
phase, µ2, is lower than that for the first phase, µ1. This is analogous to a reduction in the baseline
level of exogenous events, possibly related to reduced travel and general mobility. Another factor
could be increased levels of community transmission, a↵ecting the self-exciting component of the
intensity function, and thus placing less emphasis on the baseline component. The exception to
this is the U.S., for the reasons stated in previous sections. The baseline parameter could also be
a↵ected by the definition of a reported COVID-19 death, as this di↵ers between countries. For
example, when the criteria for reporting a death excludes cases where the person su↵ers from other
illnesses in addition to the virus, this could result in an inflated baseline rate, as secondary events
from unreported cases could be present in the data.

Our results for the magnitude parameters show, with a high degree of certainty, that for the
first phase ↵1 is greater than 1, and for the second phase ↵2 is less than 1. This exhibits the distinct
di↵erences between phases, as a magnitude parameter greater than 1 indicates the process itself is
non-stationary, and similarly a magnitude parameter less than 1 suggests a stationary process. We
discuss below the similarities between the magnitude parameters in our model and the reproduction
number in standard epidemiological models.

The triggering kernel parameter in the first phase, �1, is higher than that for the second phase,
namely �2, for all countries except Sweden and China. This could suggest that in later stages of
the epidemic when preventative measures have been implemented, the time between transmission is
longer, as there is less opportunity for transmission. The two exceptions to this, Sweden and China,
are on opposite ends of this spectrum. While China enforced very strict lockdown and quarantine
requirements, Sweden adopted a soft approach to lockdown.

Throughout this analysis, we have found di�culty in fitting the proposed model for the U.S.
In particular, the posterior estimates for the baseline parameter are uncertain as they are heavily
influenced by the prior choice. Additionally, in-sample posterior predictive checks found that the
sample paths produced by the estimated model parameters do not resemble the observed trend. We
consider the U.S. an anomaly, as their response to the virus by the relevant state-level authorities
varied widely between states. While this is also true to an extent for other countries, the hetero-
geneity across the country was arguably more significant for the U.S., implying that the proposed
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model may need to be applied at a more granular level of regions to obtain more reliable results.
Despite this model being able to accurately capture the dynamics of this complex process,

some limitations and extensions could be considered. As the epidemic is still ongoing, new data
is becoming available each day, and the model must be re-fit and re-tuned each time the data is
updated. Additional change points can also be considered when there are significant changes in the
trend, such as second waves of infection. An algorithm with automatic selection of the number of
change points and their respective locations could also be considered. However, additional change
points need to be determined carefully as the length of time between each change point must be
su�cient. Another consideration is a Bayesian nonparametric spline [57], providing time-varying
parameters through flexible splines. However, the identifiability and existence of this model would
need to be established. One could also consider di↵erent triggering kernels, including nonparametric
kernels in order to improve the flexibility of the model.

Our model considers only the infected population, as opposed to standard epidemiological mod-
els that di↵erentiate the population into several groups depending on their infection status, for
example, the SIR model. It is helpful to consider a stochastic variation of the SIR model as a
bivariate Poisson process, comprised of infection and recovery events, to compare the two frame-
works. Infection events are then governed by a Poisson process where the rate is based on the
transmission rate and the current size of the susceptible and infected populations, corresponding
to the rate of infection in the deterministic SIR model. Our model di↵ers as we consider a discrete
time scale, the daily number of events is Poisson-distributed and, conditioned on past events, the
rate of events each day is given by (2).

The reproduction number, defined as the number of secondary infections from a single case,
is a crucial parameter in epidemiological models. Similarly, the magnitude parameters in our
model, ↵1 and ↵2, also represent the expected number of secondary cases caused by a single
parent event. While their respective interpretations are similar at a superficial level, ↵1 and ↵2

are not directly comparable to reproduction numbers in epidemiological models, due to di↵erences
in model assumptions and the underlying mathematical frameworks. Furthermore, the magnitude
parameters in our model do not provide the same information as reproduction numbers. Examples
include the level of herd immunity that will bring the virus under control, and the proportion of new
infections that must be prevented to change the trend of events from increasing to decreasing [58].

Other key epidemiological parameters are generation times and serial intervals, which describe
the time between infection and development of symptoms, respectively, for a pair of individuals.
Our model does not capture this type of information, as we do not consider the relationship between
specific pairs of individuals. As a result, it is not possible to obtain parameters such as growth
rates, which are often of interest in epidemiological models. However, we can gain insight into an
alternative temporal aspect of the contagion. The geometric triggering kernel in our model describes
how the probability of contagion changes as time elapses. More precisely, we can determine, for a
given day, the influence of past events on the expected number of events for that day.

5 Conclusions

The utility of our model is not restricted to the current coronavirus epidemic, and could be used as
a simple model to describe a much broader range of complex phenomena. We have demonstrated
through this study that the proposed model is a simple, yet powerful tool for explaining an incredibly
complex process. In general, models that attempt to describe complex processes can become
increasingly complicated, as more intricate details are embedded and accounted for in the modelling.
Thus having a parsimonious model that is flexible enough to competently capture the dynamics of
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a complex process, without adding too much additional complexity, is very desirable.
In particular for the current pandemic, this study shows that our simple discrete-time Hawkes

process can capture the dynamics for di↵erent countries, despite the complexities involved with
each country’s unique response to the virus. The same underlying biological process is a↵ecting
countries in di↵erent ways, and there is a significant di↵erence in the impact and severity of the
pandemic across di↵erent countries. Additionally, the actions that have been taken to stop the
spread, and the timing of these also vary widely. These di↵erent behaviours between countries
mean that the evolution of the pandemic for an individual country is very intricate within itself,
and involves many unseen and complex hidden interactions that we cannot model directly. However,
the proposed model, while being very simple, can capture these trends surprisingly well.

To adequately model the entire course of the pandemic, we find that we must make provisions
as there are multiple distinct phases. Initially, there is exponential growth as the virus spreads,
followed by a period of reduced infection rates as actions are taken to slow the spread. These
distinct behavioural di↵erences throughout the evolution of the epidemic must be acknowledged,
as a single DTHP applied to the entire time series provides uninformative and uninterpretable
parameter estimates. Hence a model that accounts for these di↵erent phases, such as the model
presented in this work, is required.

Fitting a DTHP to the epidemic has led to some other unique insights. Our results show that a
discrete-time model is appropriate for this application, avoiding unnecessary computational burden
as well as additional noise due to artificial data imputation, as is required for the continuous-time
model. This model also provides to an extent, interpretable parameters and an indication of the
changing dynamics between distinct phases of the pandemic. We show that despite unique circum-
stances for individual countries, including the type and timing of non-pharmaceutical interventions,
population demographics, and the overall impact of the virus, the model is flexible and can also
accomodate some level of volatility in the data. Furthermore, one of the most surprising outcomes
of this analysis is that, at the country level, a very simple DTHP model fits remarkably well to the
number of deaths, thus capturing the dynamics of the COVID-19 pandemic.
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