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Abstract 30 

Tumors infiltrating the motor system lead to significant disability, often caused by 31 

corticospinal tract injury. The delineation of the healthy-pathological white matter (WM) 32 

interface area, for which diffusion magnetic resonance imaging (dMRI) has shown promising 33 

potential, may improve treatment outcome. However, up to 90% of white matter (WM) 34 

voxels include multiple fiber populations, which cannot be correctly described with 35 

traditional metrics such as fractional anisotropy (FA) or apparent diffusion coefficient (ADC). 36 

Here, we used a novel fixel-based along-tract analysis consisting of constrained spherical 37 

deconvolution (CSD) based probabilistic tractography and fixel-based apparent fiber density 38 

(FD), capable of identifying fiber orientation specific microstructural metrics. We addressed 39 

this novel methodology’s capability to detect corticospinal tract impairment. 40 

 We measured and compared tractogram-related FD and traditional microstructural 41 

metrics bihemispherically in 65 patients with WHO grade III and IV gliomas infiltrating the 42 

motor system. The cortical tractogram seeds were based on motor maps derived by 43 

transcranial magnetic stimulation. We extracted 100 equally distributed cross-sections along 44 

each streamline of corticospinal tract (CST) for along-tract statistical analysis. Cross-sections 45 

were then analyzed to detect differences between healthy and pathological hemispheres.  46 

All metrics showed significant differences between healthy and pathologic 47 

hemispheres over the entire tract and between peritumoral segments. Peritumoral values 48 

were lower for FA and FD, but higher for ADC within the entire cohort. FD was more specific 49 

to tumor-induced changes in CST than ADC or FA, whereas ADC and FA showed higher 50 

sensitivity. 51 

 The bihemispheric along-tract analysis provides an approach to detect subject-52 

specific structural changes in healthy and pathological WM. In the current clinical dataset, 53 

the more complex FD metrics did not outperform FA and ADC in terms of describing 54 

corticospinal tract impairment. 55 

  56 
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1. Introduction
1
 57 

In previous studies we introduced the combination of navigated transcranial 58 

magnetic stimulation (TMS) cortical motor mapping and tractography to improve surgery of 59 

motor eloquent brain tumors (Krieg et al., 2016; Lefaucheur & Picht, 2016; Picht, Frey, 60 

Thieme, Kliesch, & Vajkoczy, 2016; Rosenstock, Grittner, et al., 2017). In a recent study we 61 

could also demonstrate that the segmental analysis of diffusion tensor imaging (DTI) derived 62 

metrics, such as fractional anisotropy (FA) and apparent diffusion coefficient (ADC), 63 

correlated with clinical outcomes (Rosenstock, Giampiccolo, et al., 2017). Here, we now set 64 

out to investigate whether more complex metrics derived from spherical deconvolution and 65 

probabilistic tractography, which allow for more detailed analysis of the white matter, 66 

would prove superior in terms of detecting tumor induced white matter (WM) changes. In 67 

this context we analyzed the structural impact of gliomas affecting the corticospinal tract 68 

(CST) in 65 patients. This was carried out without the generation of a group template 69 

because of the lateralized pathology, which allows a clear deduction of interhemispheric 70 

differences on the subject-level (D. A. Raffelt et al., 2015). We compared the pathological 71 

with the healthy hemisphere and focused on describing tumor-induced changes along the 72 

CST with dMRI. We used CSD-based probabilistic tractography at an individual scale within 73 

the MRtrix3 framework (Tournier et al., 2019). 74 

DTI enables quantification of the molecular diffusion rate, ADC, or the directional 75 

preference of diffusion, FA (Soares, Marques, Alves, & Sousa, 2013). ADC and FA are 76 

established metrics integrated as predictive features in neurosurgical studies (Rosenstock, 77 

Giampiccolo, et al., 2017). The two main diffusion tensor-derived parameters, ADC and FA, 78 

are based on voxel-wise eigenvalues, which represent the magnitude of the diffusion 79 

                                                       
1
 Abbreviations 

ADC = Apparent diffusion coefficient; CSD = Constrained spherical deconvolution; CST = 

Corticospinal tract; dMRI = Diffusion magnetic resonance imaging; DTI = Diffusion tensor 

imaging; FA = Fractional anisotropy; FD = Fiber density; FDI = first dorsal interosseous; FOD = 

Fiber orientation distribution; GM = Grey matter; MEP = motor evoked potentials; nTMS = 

Navigated transcranial magnetic stimulation; RMT = Resting motor threshold; WM = White 

matter. 
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process in the principal diffusion orientation and two directions perpendicular to it. These 80 

values are influenced by different factors (Colby et al., 2012). ADC is a measure of the 81 

overall diffusivity in a single voxel, regardless of its orientation. It is higher where water 82 

diffuses more easily, e.g. in ventricles, lower in structures with high tissue density and 83 

consequently more diffusion barriers, such as GM (Van Hecke, Emsell, & Sunaert, 2016). FA 84 

describes the directional coherence of water diffusion in tissue and is modulated by 85 

numerous biological factors, such as the microstructural and architectural organization of 86 

white matter, myelination and non-white matter partial volume effects. Further influences 87 

on FA modulation are methodological factors, such as the choice of the estimation, 88 

preprocessing methods and subjective selection of regions of interests (ROIs) (Roine et al., 89 

2014; Veraart, Sijbers, Sunaert, Leemans, & Jeurissen, 2013). 90 

In contrast to DTI, CSD can distinguish complex fiber populations in the brain. In brief, 91 

CSD estimates fiber orientation distributions (FODs) within each voxel, based on the 92 

expected signal from a single collinearly oriented fiber population (Tournier, Calamante, 93 

Gadian, & Connelly, 2004). By leveraging the rich information in FODs, probabilistic 94 

tractography algorithms, such as the iFOD2, have been proposed to address limitations of 95 

tensor-based tractography methods (Tournier, Mori, & Leemans, 2011). In up to 90% of all 96 

WM voxels, multiple fiber orientations were observed, and 30% to 40% of these WM voxels 97 

contain more than three fiber populations (Jeurissen, Leemans, Tournier, Jones, & Sijbers, 98 

2013; Riffert, Schreiber, Anwander, & Knösche, 2014; Tournier, 2019; Vos, Jones, Jeurissen, 99 

Viergever, & Leemans, 2012). Moreover, non-white matter contamination is present in 100 

more than a third of the WM voxels (Roine et al., 2014) and has been addressed by multi-101 

tissue CSD methods (Dhollander, Raffelt, & Connelly, 2016; Jeurissen, Tournier, Dhollander, 102 

Connelly, & Sijbers, 2014b; Roine et al., 2015). 103 

A complete picture about the underlying white matter architecture is highly relevant 104 

with regard to adequate risk estimation and  neurosurgical planning (Mormina et al., 2015). 105 

To that end, in addition to the conventional DTI measures, modern CSD-based fiber density 106 

(FD) and fixel-based analysis (FBA) methods offer promising opportunities, since they are 107 

related to the intra-axonal restricted compartment that is specific to a certain fiber 108 

orientation within a voxel (D. A. Raffelt et al., 2017). Based on its advantages for the analysis 109 

of crossing fiber regions, we expect this metric to improve the detection of tumor-induced 110 

changes along the CST, and obtain more specific information about the microstructural 111 
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effects of tumors in combination with traditional FA or ADC measures. Furthermore, we 112 

expect higher specificity of FD in detecting the peritumoral segments, most importantly at 113 

the tumor-white matter interface, which is surgically the most important area. However, the 114 

translation of advanced neuroimaging to clinical settings is slow both in terms of adapting 115 

modern methods and imaging protocols. While there exist tools to use the modern CSD and 116 

probabilistic tractography with conventional images, for tumor patients, little is known 117 

about how applicable they prove with existing conventional neuroimaging protocols. 118 

Nevertheless, clinical feasibility, robustness, and methodological superiority has been 119 

proven (Farquharson et al., 2013; Petersen et al., 2017). Until now, fixel-based studies have 120 

concentrated on group analyses without subject-specific examination of tumor patients for 121 

neurosurgical planning (D. A. Raffelt et al., 2017). We developed a new variant of FD for the 122 

fiber orientation specific along-tract investigation of microstructural properties in relation to 123 

infiltrating tumors.  124 

Importantly, we used state-of-the-art TMS methods for motor mapping to find 125 

functionally critical regions of interest (ROIs) and used these as seed points to generate 126 

streamlines. This approach is shown to be highly effective for surgical planning (Picht et al., 127 

2016), therefore it is superior to studying the whole CST, which lacks information about 128 

patient and tumor specific functional consequences of neurosurgery. 129 

 130 

2. Material & Methods 131 

2.1. Ethical standard 132 

The study proposal is in accordance with ethical standards of the Declaration of Helsinki and 133 

was approved by the Ethics Commission of the Charité University Hospital (#EA1/016/19). 134 

All patients provided written informed consent for medical evaluations and treatments 135 

within the scope of the study. 136 

 137 

2.2 Patient selection 138 

We included n=65 left- and right-handed adult patients in this study (25 females, 40 males, 139 

age 55.6±15.2, age range 24-81). Only patients with an initial diagnosis of unilateral WHO 140 

grade III & IV gliomas (14 WHO grade III, 51 WHO grade IV) were included (Table 1). All 141 

tumors were infiltrating M1 and the CST or implied critical adjacency, either in the left or 142 
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right hemisphere. Patients with recurrent tumors, previous radiochemotherapy, 143 

multicentric or non-glial tumors were not considered. 144 

Table 1. Patient demographics. 145 

 Number (%) 

Demographics  

Sample size 65 

Age 55.6±15.2 

Female 25(38) 

Male 40(62)  

Glioma Degree  

Glioma III 14 (22) 

Glioma IV 51 (78) 

Tumor Location  

Frontal 33 (51) 

Temporal 7 (11) 

Insular 9 (14) 

Parietal 16 (25) 

 146 

2.3 Image acquisition 147 

MRI data were acquired on a Siemens Skyra 3T scanner (Erlangen, Germany) equipped with 148 

a 32-channel receiver head coil at Charité University Hospital, Berlin, Department of 149 

Neuroradiology. These data consisted of a high-resolution T1-weighted structural (TR/TE/TI 150 

2300/2.32/900 m s, 9° flip angle, 256 × 256 matrix, 1 mm isotropic voxels, 192 slices, 151 

acquisition time: 5 min) and a single shell dMRI acquisition (TR/TE 7500/95m s, 2 × 2 × 2 152 

mm
3
 voxels, 128 × 128 matrix, 60 slices, 3 b 0 volumes), acquired at b = 1000 s/mm

2
 with 40 153 

gradient orientations, for a total acquisition time of 12 minutes. 154 

 155 

2.4 Preprocessing and processing of MRI data 156 

All T1 images were registered to the dMRI data sets using Advanced Normalization Tools 157 

(ANTs) with the Symmetric Normalization (SyN) transformation model (Avants et al., 2011; 158 

Grabner et al., 2006). The preprocessing of dMRI data included the following and was 159 

performed within MRtrix3 (Tournier et al., 2019) in order: denoising (Veraart et al., 2016), 160 

removal of Gibbs ringing artefacts (Kellner, Dhital, Kiselev, & Reisert, 2016), correction of 161 

subject motion (Leemans & Jones, 2009), eddy-currents (J. L. R. Andersson et al., 2017) and 162 

susceptibility-induced distortions (J. L. Andersson, Skare, & Ashburner, 2003) in FMRIB 163 

Software Library (Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012), and subsequent 164 

bias field correction with ANTs N4 (Tustison et al., 2010). Each dMRI data set and processing 165 

step was visually inspected for outliers and artifacts. Scans with excessive motion were 166 
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initially excluded (over 10% outlier slices). We upsampled the dMRI data to a 1.3 mm 167 

isotropic voxel size before computing FODs to increase anatomical contrast and improve 168 

downstream tractography results and statistics. To obtain ADC and FA scalar maps, we first 169 

used diffusion tensor estimation using iteratively reweighted linear least squares estimator, 170 

resulting in scalar maps of tensor-derived parameters (Basser, Mattiello, & LeBihan, 1994; 171 

Veraart et al., 2013). For voxel-wise modelling we used a robust and fully automated and 172 

unsupervised method. This method allowed to obtain 3-tissue response functions 173 

representing single-fiber combined white and grey matter and CSF from our data with 174 

subsequent use of multi-tissue CSD to obtain tissue specific orientation distribution 175 

functions and white matter FODs (Dhollander et al., 2016; Jeurissen et al., 2014b; Tournier, 176 

Calamante, & Connelly, 2007). 177 

 178 

2.5 Transcranial magnetic stimulation 179 

Non-invasive functional motor mapping of both pathologic and healthy hemispheres was 180 

performed in each patient using navigated transcranial magnetic stimulation (nTMS) with 181 

Nexstim eXimia Navigated Brain Stimulation (NBS). Briefly, each patient's head was 182 

registered to the structural MRI through the use of anatomical landmarks and surface 183 

registration. The composite muscle action potentials were captured by the integrated 184 

electromyography unit (EMG) (sampling rate 3 kHz, resolution 0.3 mV; Neuroline 720, 185 

Ambu). The muscle activity (motor evoked potential, MEP amplitude ≥ 50 μV) was recorded 186 

by surface electrodes on the abductor pollicis brevis and first dorsal interosseous (FDI). First, 187 

the FDI hotspot, defined as the stimulation area that evoked the strongest MEP, was 188 

determined. Subsequently, the resting motor threshold (RMT), defined as the lowest 189 

stimulation intensity that repeatedly elicits MEPs, was defined using a threshold-hunting 190 

algorithm within the Nexstim eximia software. Mapping was performed at 105% RMT and 191 

0.25 Hz. All MEP amplitudes > 50 μV (peak to peak) were considered as motor positive 192 

responses and exported in the definitive mapping (Picht et al., 2011). The subject-specific 193 

positive responses of the FDI were exported as binary 3 × 3 × 3 mm
3
 voxel masks per 194 

response in the T1 image space. 195 

 196 

2.6 Tractography 197 
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Probabilistic tractography was performed in each hemisphere with the iFOD2 algorithm by 198 

using above mentioned nTMS derived cortical seeding ROI. A second inclusion ROI was 199 

defined in the medulla oblongata. Tracking parameters were set to default with a FOD 200 

amplitude cutoff value of 0.1, a streamline minimum length of 5 x voxel size and a maximum 201 

streamline length of 100 x voxel size. For each tractogram describing the CST, we computed 202 

5000 streamlines per hemisphere. Each streamline of the tractograms was resampled along 203 

its length to 100 points. Peritumoral segments were defined in relation to the resampled 204 

points within the range 1-100 in all individual tractograms by visual inspection performed by 205 

one neuroscientist and one expert neurosurgeon with 4 and 20 years of experience, in that 206 

order. Subsequently, values of associated FA, ADC and FD scalar maps were sampled along 207 

the derived 100 segments of each streamline (Fig. 1 & 2). The code used for the 208 

tractography pipeline is archived as a shell script on Zenodo 209 

(https://zenodo.org/record/3732348) and openly accessible (Fekonja et al., 2020). 210 

 211 

Fig. 1. TMS-based tractography of the CST and subsequent along-tract resampling of 212 

streamlines. The tractogram shows streamlines in relation to cortical hand representation 213 

derived by TMS-ROIs (left). The first zoom shows a combination with resampled points 214 

(yellow), overlaid on each streamlines (middle). The second, larger magnification reveals the 215 

single points, derived by resampling along the streamlines (right). 216 

 217 

Fig. 2. CST tractogram with mapped ADC (left), FA (middle) and FD (right) scalar values, 218 

illustrating the methodological differences of scalar maps sampling. 219 

 220 

2.7 Computation of along-tract FD values using FBA 221 

A fixel is considered as a specific fiber population within a voxel (D. A. Raffelt et al., 2015; D. 222 

A. Raffelt et al., 2017). For each subject, segmentations of continuous FODs via the integrals 223 

of the FOD lobes were performed to produce discrete fixel maps which are developed to 224 

indicate voxel-based measures of axon diameters, weighted by their relative volumes within 225 

voxels (D. A. Raffelt et al., 2017; Smith, Tournier, Calamante, & Connelly, 2013). With 226 

higher-order diffusion models, such as CSD, parameters related to FD can be extracted for 227 

individual fixels (D. A. Raffelt et al., 2015). FBA is able to identify effects in specific fiber 228 

pathways and in crossing fibers regions, unlike voxel-based analysis (D. A. Raffelt et al., 229 
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2015). After obtaining the fixels for all voxels in an image, FD values along CST tractograms 230 

were computed in 4 steps: (i) fixels associated with CSTs were obtained using fixel tract-231 

density imaging, (ii) fixels in the image were thresholded based on the CST fixels which 232 

eliminates the contributions of other tracts that are present in these voxels, (iii) the mean 233 

FD of the remaining fixels were exported as a scalar image, and (iv) FD values were 234 

interpolated along the 100 sampled points of each streamline present in the CST 235 

tractograms. The code used for the tract-based fixel image construction pipeline is archived 236 

as a shell script on Zenodo (https://zenodo.org/record/3732348) and openly accessible 237 

(Fekonja et al., 2020). 238 

 239 

2.8 Statistical analysis 240 

Confirmatory statistical analysis was performed using RStudio version 1.2.5019 241 

(https://rstudio.com) with R version 3.6.1 (https://cran.r-project.org). We compared FD 242 

with traditional tensor-derived ADC and FA to study signal changes between healthy and 243 

pathological hemispheres. To analyze the behavior of the different metrics, we used above 244 

mentioned resampled streamlines, comparing the median values for each of the 100 CST 245 

segments per 5000 streamlines per hemisphere. To model the tumor-related effect on each 246 

metric, a linear mixed model (package lmerTest_3.1-0 under R version 3.6.1) was built for 247 

each metric using the metric’s value as dependent variable, hemisphere (0, healthy; 1, 248 

pathological) as independent variable and a random intercept for subjects (Kuznetsova, 249 

Brockhoff, & Christensen, 2017). Thus, each model contained 13000 data points (65 subjects 250 

* 2 hemispheres * 100 median tract segment values per streamline). Further, we repeated 251 

this analysis for the peritumoral area according to our hypothesis to find stronger effects in 252 

these segments. Each of these models contained 4138 data points, with each subject 253 

contributing a different number of peritumoral segments depending on tumor location and 254 

size. All effects were considered significant using a two-sided p-value of 0.05. All models 255 

were examined for patterns in the residuals (deviation from normality via QQ-plots, pattern 256 

fitted values vs. residuals). All plots were generated with the ggplot2 library within tidyverse 257 

(Wickham, 2009; Wickham et al., 2019). Tests for sensitivity (n of true positive predicted 258 

segments/n of true positive predicted segments + n of false negative predicted segments) 259 

and specificity (n of true negative predicted segments/n of true negative predicted 260 

segments + n of false positive predicted segments) were based on classified tract segments 261 
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(0 non-tumorous, 1 tumorous) in relation to the obtained significant or non-significant 262 

differences between healthy and pathological hemispheres per segment (classified as 0 and 263 

1). These tests were performed with Bonferroni-adjusted alpha levels of 0.0005 (0.05/100) 264 

and thresholded only for large effects (≥ 0.474) with Cliff's delta due to the non-normal 265 

distribution. The script used to perform the statistical analysis and produce this manuscript 266 

is available on and archived in Zenodo (Fekonja et al., 2020). 267 

2.9 Data availability 268 

Parts of the data that support the findings of this study are not publicly available due to 269 

information that could compromise the privacy of the research participants but are 270 

available from the corresponding author on reasonable request. However, code we have 271 

used is openly available under the following address 272 

(https://doi.org/10.5281/zenodo.3732348) and is cited at the corresponding passage in the 273 

article (Fekonja et al., 2020). 274 

 275 

3. Results 276 

TMS mapping, the calculation of TMS-ROI-based streamlines and the extraction of ADC, FA 277 

and FD were feasible in each subject (cf. Fig. 3) and showed either close tumor-tract 278 

distance (< 8mm, n = 3) or adjacency or direct infiltration of the CST by the tumor (n = 62). 279 

Visual inspection of boxplots showed differences between pathological and healthy 280 

hemispheres for ADC, FA, and FD (Fig 4A). As expected, these differences were larger when 281 

looking at the peritumoral area only (Fig 4B). Further, a larger variability in ADC values could 282 

be observed in the pathological hemisphere in general and the peritumoral area specifically. 283 

When plotting values along the entire CST, distinct patterns of variation between 284 

hemispheres could be observed. ADC showed no significant differences in the non-285 

peritumoral segments but showed significant differences in peritumoral segments, even 286 

stronger than FA and FD. In contrast, FA and FD values showed differences both in the non-287 

peritumoral and peritumoral segments (Fig. 5, Fig. 6, Table 2). The distribution of tumors 288 

along the CST is indicated in Fig. 6. Additionally, the tumor-induced variability in peritumoral 289 

ADC values in contrast to the entire CST becomes particularly evident here (Fig. 5). Finally, 290 

the information shown in Fig. 2 highlights and visualizes the advantages of FOD 291 

representation in regard to multiple fiber populations. The CSD method identifies multiple 292 

appropriately oriented fiber populations in a voxel including multiple fiber populations, 293 
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while the DTI-based method does not represent multiple fiber populations within each voxel 294 

and does not provide an orientation estimate corresponding to any of the existing fiber 295 

populations (Farquharson et al., 2013), cf. Fig. 3. 296 

 297 

Fig. 3. Demonstration of different voxel-level modelling methods results and their 298 

subsequently obtained scalar maps, illustrated on a coronal section. The ROI is highlighted 299 

in a pre-processed diffusion image. Either diffusion tensor-ellipsoids as estimated by 300 

diffusion tensor imaging or FOD’s estimated using CSD are shown. Further, their respective 301 

scalar maps such as ADC, FA, or fixel-based are depicted. The tensor-based scalar value does 302 

not represent any single fiber population in the voxel in comparison to the fixel-based 303 

metrics. 304 

 305 

Fig. 4. Boxplots for ADC, FA FD for both hemispheres. (A) Values for the entire CST. (B) 306 

Values for the peritumoral segments only. Outliers are marked by small circles. 307 

 308 

Fig. 5. Line plots illustrating ADC, FA and FD along the entire CST of both hemispheres (0, 309 

medulla oblongata; 100, cortex). The points indicate median values with their respective 310 

95% confidence intervals. The heat-maps demonstrate related Bonferroni-corrected p-311 

values, derived by paired t-tests. 312 

 313 

Fig. 6. Density plot displaying the distribution of tumors grouped by hemispheric occurrence. 314 

Additionally, the plot shows that no tumors occur below segment 25. 315 

 316 

3.1 Group wise analysis 317 

The results from the mixed model analysis confirmed our hypotheses. We expected FD to 318 

improve the detection of tumor-induced changes along the tract, in combination with 319 

traditional FA or ADC measures. Furthermore, we expected stronger effects in the 320 

peritumoral segments. Our results show significant differences between healthy and 321 

pathological hemispheres for ADC, FA, and FD in the peritumoral areas (Table 2). As 322 

expected, these effects can be confirmed in the peritumoral segments in all tested values 323 

(Table 3). Fig. 4 & 5 illustrate significantly lower values in the pathological hemisphere 324 

within the entire cohort and even greater differences within the peritumoral segments for 325 
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FD. Calculations for sensitivity and specificity yielded 63%, 74% and 42% sensitivity and 68%, 326 

53% and 76% specificity for ADC, FA and FD in that order, reflecting a higher sensitivity for 327 

ADC and FA to tumor induced microstructural differences, whereas FD showed higher 328 

specificity to local WM architecture complexities or orientation dispersion. 329 

 330 

Table 2. Results of linear mixed model analysis. Models 1-3 show results for the entire CST 331 

for FA, ADC and FD, models 4-6 for the peritumoral segments respectively. The table shows 332 

regression coefficients for the fixed effect of hemisphere and the intercept with their 333 

respective standard error in brackets. Further, number of observations for each model, the 334 

log likelihood ratio, Akaike information criterion and Bayesian information criterion are 335 

stated. 336 

Dependent variable: 

FA ADC FD FA Peritumoral ADC Peritumoral FD Peritumoral 

Pathologic  

hemispheres 
-0.042 0.0001 -0.046 -0.075 0.0001 -0.067 

(-0.047, -0.038) (0.00005, 0.0001) (-0.052, -0.039) (-0.082, -0.069) (0.0001, 0.0001) (-0.076, -0.057) 

p < 2e-16 p < 2e-16 p < 2e-16 p < 2e-16 p < 2e-16 p < 2e-16 

Constant 0.560 0.001 0.718 0.540 0.001 0.729 

(0.552, 0.567) (0.001, 0.001) (0.704, 0.732) (0.515, 0.564) (0.001, 0.001) (0.689, 0.769) 

p < 2e-16 p < 2e-16 p < 2e-16 p < 2e-16 p < 2e-16 p < 2e-16 

Observations 13,000 13,000 13,000 4,138 4,138 4,138 

Log Likelihood 7,926.707 97,226.680 2,486.618 3,201.497 31,060.070 1,495.331 

Akaike Inf. Crit. -15,845.410 -194,445.400 -4,965.236 -6,394.995 -62,112.150 -2,982.661 

Bayesian Inf. Crit. -15,815.520 -194,415.500 -4,935.345 -6,369.683 -62,086.840 -2,957.349 

 337 

In addition to these analyses, we calculated the mean of the entire cohort of ADC, FA and FD 338 

differences between the healthy and pathological hemispheres with respect to healthy 339 

segments only, pathological segments only and healthy-pathological WM interface (range of 340 

3 voxels) for tumor external as well as internal segments (Fig. 7). The results indicate that 341 

ADC is stronger altered within the pathological WM area, while FA and FD show alterations 342 

along the entire CST. Furthermore, FD shows stronger differences in the healthy-343 

pathological WM interface. 344 

 345 

Fig. 7. Box plots of cohort mean of ADC, FA and FD differences between the healthy and 346 

pathological hemispheres with respect to healthy segments only (A), pathological segments 347 
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only (B) and tumor-healthy WM interface for tumor external (C) as well as internal segments 348 

(D). 349 

 350 

3.2 Subject-specific analysis 351 

The differences are illustrated by means of two example cases (Fig. 8 and Table 3). Four 352 

further case-specific examples are given in the supplementary materials (supplementary Fig. 353 

1-4 & supplementary Tables 1-4). The exemplary cases were randomly selected by a script. 354 

Case A: This patient in his 80’s was brought to our emergency room with suspected stroke. 355 

A sudden weakness in the legs had occurred, causing the patient to collapse without losing 356 

consciousness. Furthermore, it was reported that the patient had been suffering from 357 

dizziness for several weeks. Conventional MRI confirmed a left parietal mass with extensive 358 

perifocal edema. The patient was diagnosed with a left postcentral WHO grade IV 359 

glioblastoma and right leg emphasized hemiparesis. The indication for resection of the mass 360 

was given. 361 

Case B: This patient in his 60’s presented with a several weeks history of dysesthesia in his 362 

left arm and right hand with associated arm weakness. He also felt insecure when walking 363 

and suffered from a general weakness. Conventional MRI confirmed the presence of a right 364 

frontal mass. Following this, the patient was referred to our clinic. The patient was 365 

diagnosed with a complex focal seizure with right precentral WHO grade IV glioblastoma 366 

and Todd's paresis which included transient left hemiparesis. The indication for resection of 367 

the mass was given. 368 

 369 

Our results show significant differences between healthy and pathological hemispheres in 370 

FD over the entire CST (p < .01 and p < .01) for both cases (Table 3). Case A shows significant 371 

differences in FA over the entire CST and in the peritumoral segments (p < .01 and p < .01). 372 

In addition, a significant difference (p < .05) can be seen in the peritumoral area as well with 373 

respect to ADC. However, case B shows no significant differences for ADC and FA, neither 374 

between the entire healthy and pathological hemispheres nor in the peritumoral segments.  375 

The values of the two hemispheres overlap here in the non-peritumoral area, similar to the 376 

group wise results described above. Case A shows less overlap for FA and FD, also in the 377 

non-peritumoral segments, while ADC shows large overlap.  378 

 379 
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Fig. 8. Single subject line plots depicting ADC, FA and FD along the CST of both hemispheres 380 

for case A (A) and B (B). The black lines indicate the peritumoral segments. 381 

 382 

Table 3 (A-B). Results of linear mixed model analysis. Models 1-3 show results for the entire 383 

CST for FA, ADC, and FD, models 4-6 for the peritumoral segments respectively. The table 384 

shows regression coefficients for the fixed effect of hemisphere and the intercept with their 385 

respective standard error in brackets. Further, number of observations for each model, the 386 

log likelihood ratio, Akaike information criterion and Bayesian information criterion are 387 

stated. 388 

Table 3A. 389 

Dependent variable: 

FA ADC FD FA Peritumoral ADC Peritumoral FD Peritumoral 

Pathologic  

hemispheres 
0.021 0.00000 0.077 0.055 0.00004 -0.058 

(0.008, 0.034) (-0.00002, 0.00002) (0.038, 0.117) (0.031, 0.080) (0.00002, 0.0001) (-0.138, 0.023) 

p = 0.012 p = 1 p = 0.0012 p = 0.00006 p = 0.00012 p = 0.972 

Constant 0.517 0.001 0.645 0.371 0.001 0.705 

(0.488, 0.546) (0.001, 0.001) (0.611, 0.678) (0.331, 0.411) (0.001, 0.001) (0.640, 0.771) 

p < 1.2e-15 p < 1.2e-15 p < 1.2e-15 p < 1.2e-15 p < 1.2e-15 p < 1.2e-15 

Observations 200 200 200 40 40 40 

Log Likelihood 172.557 1,488.435 69.184 44.545 339.211 15.904 

Akaike Inf. Crit. -337.115 -2,968.871 -130.368 -81.090 -670.423 -23.807 

Bayesian Inf. Crit. -323.921 -2,955.678 -117.175 -74.334 -663.667 -17.052 

 390 

Table 3B. 
 

Dependent variable: 

FA ADC FD FA Peritumoral ADC Peritumoral FD Peritumoral 

Pathologic  

hemispheres 
-0.006 0.00001 -0.033 0.013 0.00000 -0.012 

 

(-0.022, 

0.011) 

(-0.00000, 

0.00003) 

(-0.057, -

0.010) 
(-0.020, 0.045) (-0.00002, 0.00003) (-0.037, 0.012) 

p = 1 p = 0.606 p = 0.036 p = 1 p = 1 p = 1 

Constant 0.562 0.001 0.705 0.459 0.001 0.543 

 
(0.539, 0.585) 

(0.001, 

0.001) 

(0.665, 

0.744) 
(0.432, 0.486) (0.001, 0.001) (0.510, 0.577) 

 p < 1.2e-15 p < 1.2e-15 p < 1.2e-15 p < 1.2e-15 p < 1.2e-15 p < 1.2e-15 

Observations 200 200 200 90 90 90 

Log Likelihood 176.595 1,624.744 87.184 83.431 723.449 78.396 

Akaike Inf. Crit. -345.190 -3,241.488 -166.367 -158.862 -1,438.898 -148.793 

Bayesian Inf. Crit. -331.997 -3,228.295 -153.174 -148.863 -1,428.898 -138.793 
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 391 

4. Discussion 392 

Morbidity due to brain tumor growth and their surgical treatment is often caused by 393 

impairment of relevant WM. Neuroimaging-based characterization of the healthy-394 

pathological WM interface area is therefore crucial for neurosurgical planning. DTI based 395 

tractography has seen a widespread adoption in clinical neuroscience and practice in the 396 

recent years. Especially the combination of TMS and DTI for motor function-informed 397 

tractography has shown promising results. Yet, the interpretation of differences as 398 

measured by tensor-based scalar values is particularly challenging in regions with crossing 399 

fibers, since tensors reflect only the main diffusion direction (Jeurissen et al., 2013; D. 400 

Raffelt et al., 2012). Because the tensor representation is not able to distinguish crossing 401 

fiber populations present in the majority of the WM voxels, FA offers limited opportunities 402 

to quantitatively study WM integrity (Jeurissen et al., 2013; Van Hecke et al., 2016). 403 

Nevertheless, diffusion anisotropy can provide unique information about axonal anomalies 404 

(Mori & Tournier, 2014) as it decreases as a consequence of loss of coherence in the 405 

preferred main diffusion direction (Soares et al., 2013). In this context, studies also show 406 

that ADC is generally higher in damaged tissue due to increased free diffusion. This suggests 407 

that we can compare values of above mentioned metrics with a population average in order 408 

to determine whether they are unusually high or low, e.g. by comparing the subject-specific 409 

values of WM pathways of the healthy hemisphere with those of the pathological 410 

hemisphere or compare group-wise pathological populations with healthy ones (Mori & 411 

Tournier, 2014). 412 

It has already been confirmed that many voxels along the CST contain considerable 413 

contributions of multiple fiber populations (Farquharson et al., 2013; Petersen et al., 2017). 414 

Nevertheless, our results indicate more significant segment-wise differences between the 415 

healthy and pathological hemispheres for FA and ADC in comparison to FD. This result was 416 

found in the group and individual tests. The investigation of other pathways may result in 417 

another order for the sensitivity and specificity of the metrics due to, for instance, different 418 

contributions of multiple fiber populations or extra axonal signal. 419 

 420 

4.1 FD metrics in clinical settings 421 
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To better account for the complex microstructural organization of WM and its quantitative 422 

analysis, FD, which uses higher-order dMRI models such as FODs to analyze differences 423 

along WM pathways, allows to consider multiple fiber populations within a voxel. Multiple 424 

studies for group-wise statistical analysis of dMRI measures were published earlier (D. 425 

Raffelt et al., 2012; D. A. Raffelt et al., 2015; D. A. Raffelt et al., 2017).  In contrast to these 426 

group-wise study designs, we used FD for an individual assessment of a specific tract for 427 

clinical validation. However, the presented higher sensitivity of ADC and FA indicates that 428 

these metrics are more appropriate and robust for peritumoral analysis. However, this may 429 

be due to the fact that FD has underperformed due to insufficient raw data. This finding 430 

highlights the need for better dMRI quality in clinical routine to be able to integrate 431 

advanced neuroimaging methods into clinical workflows. The discrepancy between clinical 432 

scan quality and advanced neuroimaging highlights the need to optimize raw data 433 

acquisition in order to leverage advanced neuroimaging modalities and methods into the 434 

clinical workflow (Farquharson et al., 2013; Jeurissen, Tournier, Dhollander, Connelly, & 435 

Sijbers, 2014a). 436 

Our results demonstrate the feasibility of FD along-tract analysis as a tool to describe 437 

subject-and tract-specific tumor-induced changes. Moreover, our results demonstrate the 438 

addition of further information to that obtained only via ADC or FA. Earlier fixel studies, 439 

designed for group wise analysis of pathology-related effects, demonstrated that fixel-440 

analyses are sensitive to WM changes in a variety of pathologies (D. A. Raffelt et al., 2015; D. 441 

A. Raffelt et al., 2017). In this study, we focused on subject-specific analyses, which showed 442 

higher sensitivity for ADC and FA, but higher specificity for FD. These findings are in line with 443 

other studies (Chamberland et al., 2019; Mormina et al., 2015). The higher specificity of FD 444 

in relation to correctly predict healthy segments is particularly relevant for presurgical 445 

analysis and intraoperative navigation in relation to risk assessment, but also for 446 

retrospective evaluation or outcome prediction models.  447 

 448 

4.2 ADC, FA and FD characteristics in brain tumor patients 449 

In both cases subject-specific differences between the healthy and pathological 450 

hemispheres can be seen in the tumorous segments. Furthermore, differences between the 451 

non-pathological and pathological area can be seen as well in non-tumorous segments. This 452 

result may indicate a global effect of gliomas on the entire CST and neural connectivity, 453 
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affecting diffusion and voxel-wise white matter architecture modelling, especially in regard 454 

to FD. The results are consistent with the expected behavior of the different diffusion 455 

measures: ADC was higher in the pathological hemispheres which is attributed to the 456 

damaged tissue leading to increased diffusion. This finding might reflect the tumor-related 457 

degression of WM integrity, the edema surrounding the tumor and related increase of free-458 

water (Mormina et al., 2015). FA and FD showed lower values in the pathological 459 

hemispheres compared to the corresponding segments in the healthy hemispheres. This 460 

result is consistent with the effect of the glioma-related loss of coherence in the preferred 461 

main diffusion directions (FA) and reduced fiber density (FD). This might be explained by the 462 

tumor infiltration or edema affecting the CST (Mormina et al., 2015). The ADC and FD values 463 

show a higher overlap of the healthy and pathological hemispheres in the non-peritumoral 464 

area. 465 

 466 

4.3 Limitations 467 

Tractography suffers from a range of limitations that make its routine use problematic 468 

(Schilling et al., 2019). It is well known that tractograms contain false positive (Maier-Hein et 469 

al., 2017) and false negative (Aydogan et al., 2018) streamlines. In addition, tractography 470 

cannot distinguish between afferent and efferent connections, and streamlines may 471 

terminate improperly (Tournier, 2019). The dMRI data used for this study consists of a 472 

typical clinical single-shell acquisition, and is thus suboptimal for fiber density measurement 473 

due to incomplete attenuation of apparent extra-axonal signal (D. Raffelt et al., 2012). In 474 

this study we focused on the CST. Further studies could integrate a variety of fiber bundles 475 

to investigate the need for FD in along-tract statistical analysis. 476 

 477 

5. Conclusions 478 

Our results show that the direct comparison between healthy and pathological hemispheres 479 

is sensitive to glioma-induced changes in structural integrity of the CST measured by 480 

different dMRI derived metrics. In contrast to our hypothesis, according to our data and 481 

analysis, FD did not outperform FA or ADC and all three metrics showed similar results for 482 

indicating tumor-induced changes of the CST. This finding highlights the need for better 483 

scans in clinical routine if one wants to introduce advanced neuroimaging modalities into 484 

clinical workflows.  485 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.28.20220293doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.28.20220293
http://creativecommons.org/licenses/by/4.0/


 486 

Funding 487 

L. F. and T. P. acknowledge the support of the Cluster of Excellence Matters of Activity. 488 

Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG, German 489 

Research Foundation) under Germany´s Excellence Strategy – EXC 2025. T.R. received 490 

support from the Finnish Cultural Foundation. 491 

Acknowledgements 492 

This work was supported by the DFG (EXC 2025). The views expressed are those of the 493 

author(s) and not necessarily those of the DFG. We thank Heike Schneider for the numerous 494 

TMS-mappings. 495 

 496 

Competing interests 497 

The authors report no competing interests. 498 

 499 

 500 

References 501 

Andersson, J. L., Skare, S., & Ashburner, J. (2003). How to correct susceptibility distortions in 502 

spin-echo echo-planar images: application to diffusion tensor imaging. Neuroimage, 503 

20(2), 870-888. doi:10.1016/S1053-8119(03)00336-7 504 

Andersson, J. L. R., Graham, M. S., Drobnjak, I., Zhang, H., Filippini, N., & Bastiani, M. (2017). 505 

Towards a comprehensive framework for movement and distortion correction of 506 

diffusion MR images: Within volume movement. Neuroimage, 152, 450-466. 507 

doi:10.1016/j.neuroimage.2017.02.085 508 

Avants, B. B., Tustison, N. J., Song, G., Cook, P. A., Klein, A., & Gee, J. C. (2011). A 509 

reproducible evaluation of ANTs similarity metric performance in brain image 510 

registration. Neuroimage, 54(3), 2033-2044. doi:10.1016/j.neuroimage.2010.09.025 511 

Aydogan, D. B., Jacobs, R., Dulawa, S., Thompson, S. L., Francois, M. C., Toga, A. W., . . . Shi, Y. 512 

(2018). When tractography meets tracer injections: a systematic study of trends and 513 

variation sources of diffusion-based connectivity. Brain Struct Funct, 223(6), 2841-514 

2858. doi:10.1007/s00429-018-1663-8 515 

Basser, P. J., Mattiello, J., & LeBihan, D. (1994). MR diffusion tensor spectroscopy and 516 

imaging. Biophys J, 66(1), 259-267. doi:10.1016/S0006-3495(94)80775-1 517 

Chamberland, M., Raven, E. P., Genc, S., Duffy, K., Descoteaux, M., Parker, G. D., . . . Jones, D. 518 

K. (2019). Dimensionality reduction of diffusion MRI measures for improved 519 

tractometry of the human brain. Neuroimage, 200, 89-100. 520 

doi:10.1016/j.neuroimage.2019.06.020 521 

Colby, J. B., Soderberg, L., Lebel, C., Dinov, I. D., Thompson, P. M., & Sowell, E. R. (2012). 522 

Along-tract statistics allow for enhanced tractography analysis. Neuroimage, 59(4), 523 

3227-3242. doi:10.1016/j.neuroimage.2011.11.004 524 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.28.20220293doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.28.20220293
http://creativecommons.org/licenses/by/4.0/


Dhollander, T., Raffelt, D., & Connelly, A. (2016). Unsupervised 3-tissue response function 525 

estimation from single-shell or multi-shell diffusion MR data without a co-registered 526 

T1 image. Paper presented at the ISMRM Workshop on Breaking the Barriers of 527 

Diffusion MRI, At Lisbon, Portugal, Volume: pp. 5, Lisbon. Conference Paper 528 

retrieved from  529 

Farquharson, S., Tournier, J. D., Calamante, F., Fabinyi, G., Schneider-Kolsky, M., Jackson, G. 530 

D., & Connelly, A. (2013). White matter fiber tractography: why we need to move 531 

beyond DTI. J Neurosurg, 118(6), 1367-1377. doi:10.3171/2013.2.JNS121294 532 

Fekonja, L. S., Wang, Z., Aydogan, D. B., Roine, T., Engelhardt, M., Dreyer, F. R., . . . Picht, T. 533 

(2020). Code used in article "CSD-based metric for along- tract statistical analysis in 534 

primary motor tumor patients". doi:10.5281/zenodo.3732349 535 

Grabner, G., Janke, A. L., Budge, M. M., Smith, D., Pruessner, J., & Collins, D. L. (2006). 536 

Symmetric atlasing and model based segmentation: an application to the 537 

hippocampus in older adults. Med Image Comput Comput Assist Interv, 9(Pt 2), 58-66.  538 

Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W., & Smith, S. M. (2012). Fsl. 539 

Neuroimage, 62(2), 782-790. doi:10.1016/j.neuroimage.2011.09.015 540 

Jeurissen, B., Leemans, A., Tournier, J. D., Jones, D. K., & Sijbers, J. (2013). Investigating the 541 

prevalence of complex fiber configurations in white matter tissue with diffusion 542 

magnetic resonance imaging. Hum Brain Mapp, 34(11), 2747-2766. 543 

doi:10.1002/hbm.22099 544 

Jeurissen, B., Tournier, J. D., Dhollander, T., Connelly, A., & Sijbers, J. (2014a). Multi-tissue 545 

constrained spherical deconvolution for improved analysis of multi-shell diffusion 546 

MRI data. Neuroimage, 103, 411-426. doi:10.1016/j.neuroimage.2014.07.061 547 

Jeurissen, B., Tournier, J. D., Dhollander, T., Connelly, A., & Sijbers, J. (2014b). Multi-tissue 548 

constrained spherical deconvolution for improved analysis of multi-shell diffusion 549 

MRI data. Neuroimage, 103, 411-426. doi:10.1016/j.neuroimage.2014.07.061 550 

Kellner, E., Dhital, B., Kiselev, V. G., & Reisert, M. (2016). Gibbs-ringing artifact removal 551 

based on local subvoxel-shifts. Magn Reson Med, 76(5), 1574-1581. 552 

doi:10.1002/mrm.26054 553 

Krieg, S. M., Picht, T., Sollmann, N., Bahrend, I., Ringel, F., Nagarajan, S. S., . . . Tarapore, P. E. 554 

(2016). Resection of Motor Eloquent Metastases Aided by Preoperative nTMS-Based 555 

Motor Maps-Comparison of Two Observational Cohorts. Front Oncol, 6, 261. 556 

doi:10.3389/fonc.2016.00261 557 

Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest Package: Tests in 558 

Linear Mixed Effects Models. 2017, 82(13), 26. doi:10.18637/jss.v082.i13 559 

Leemans, A., & Jones, D. K. (2009). The B-matrix must be rotated when correcting for 560 

subject motion in DTI data. Magn Reson Med, 61(6), 1336-1349. 561 

doi:10.1002/mrm.21890 562 

Lefaucheur, J. P., & Picht, T. (2016). The value of preoperative functional cortical mapping 563 

using navigated TMS. Neurophysiol Clin, 46(2), 125-133. 564 

doi:10.1016/j.neucli.2016.05.001 565 

Maier-Hein, K. H., Neher, P. F., Houde, J. C., Cote, M. A., Garyfallidis, E., Zhong, J., . . . 566 

Descoteaux, M. (2017). The challenge of mapping the human connectome based on 567 

diffusion tractography. Nat Commun, 8(1), 1349. doi:10.1038/s41467-017-01285-x 568 

Mori, S., & Tournier, J. D. (2014). Chapter 7 - New Image Contrasts from Diffusion Tensor 569 

Imaging: Theory, Meaning, and Usefulness of DTI-Based Image Contrast. In 570 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.28.20220293doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.28.20220293
http://creativecommons.org/licenses/by/4.0/


Introduction to Diffusion Tensor Imaging (Second Edition) (pp. 53-64). San Diego: 571 

Academic Press. 572 

Mormina, E., Longo, M., Arrigo, A., Alafaci, C., Tomasello, F., Calamuneri, A., . . . Granata, F. 573 

(2015). MRI Tractography of Corticospinal Tract and Arcuate Fasciculus in High-574 

Grade Gliomas Performed by Constrained Spherical Deconvolution: Qualitative and 575 

Quantitative Analysis. AJNR Am J Neuroradiol, 36(10), 1853-1858. 576 

doi:10.3174/ajnr.A4368 577 

Petersen, M. V., Lund, T. E., Sunde, N., Frandsen, J., Rosendal, F., Juul, N., & Ostergaard, K. 578 

(2017). Probabilistic versus deterministic tractography for delineation of the cortico-579 

subthalamic hyperdirect pathway in patients with Parkinson disease selected for 580 

deep brain stimulation. J Neurosurg, 126(5), 1657-1668. 581 

doi:10.3171/2016.4.JNS1624 582 

Picht, T., Frey, D., Thieme, S., Kliesch, S., & Vajkoczy, P. (2016). Presurgical navigated TMS 583 

motor cortex mapping improves outcome in glioblastoma surgery: a controlled 584 

observational study. J Neurooncol, 126(3), 535-543. doi:10.1007/s11060-015-1993-9 585 

Picht, T., Schmidt, S., Brandt, S., Frey, D., Hannula, H., Neuvonen, T., . . . Suess, O. (2011). 586 

Preoperative functional mapping for rolandic brain tumor surgery: comparison of 587 

navigated transcranial magnetic stimulation to direct cortical stimulation. 588 

Neurosurgery, 69(3), 581-588; discussion 588. doi:10.1227/NEU.0b013e3182181b89 589 

Raffelt, D., Tournier, J. D., Rose, S., Ridgway, G. R., Henderson, R., Crozier, S., . . . Connelly, A. 590 

(2012). Apparent Fibre Density: a novel measure for the analysis of diffusion-591 

weighted magnetic resonance images. Neuroimage, 59(4), 3976-3994. 592 

doi:10.1016/j.neuroimage.2011.10.045 593 

Raffelt, D. A., Smith, R. E., Ridgway, G. R., Tournier, J. D., Vaughan, D. N., Rose, S., . . . 594 

Connelly, A. (2015). Connectivity-based fixel enhancement: Whole-brain statistical 595 

analysis of diffusion MRI measures in the presence of crossing fibres. Neuroimage, 596 

117, 40-55. doi:10.1016/j.neuroimage.2015.05.039 597 

Raffelt, D. A., Tournier, J. D., Smith, R. E., Vaughan, D. N., Jackson, G., Ridgway, G. R., & 598 

Connelly, A. (2017). Investigating white matter fibre density and morphology using 599 

fixel-based analysis. Neuroimage, 144(Pt A), 58-73. 600 

doi:10.1016/j.neuroimage.2016.09.029 601 

Riffert, T. W., Schreiber, J., Anwander, A., & Knösche, T. R. (2014). Beyond fractional 602 

anisotropy: extraction of bundle-specific structural metrics from crossing fiber 603 

models. Neuroimage, 100, 176-191. doi:10.1016/j.neuroimage.2014.06.015 604 

Roine, T., Jeurissen, B., Perrone, D., Aelterman, J., Leemans, A., Philips, W., & Sijbers, J. 605 

(2014). Isotropic non-white matter partial volume effects in constrained spherical 606 

deconvolution. Front Neuroinform, 8, 28. doi:10.3389/fninf.2014.00028 607 

Roine, T., Jeurissen, B., Perrone, D., Aelterman, J., Philips, W., Leemans, A., & Sijbers, J. 608 

(2015). Informed constrained spherical deconvolution (iCSD). Med Image Anal, 24(1), 609 

269-281. doi:10.1016/j.media.2015.01.001 610 

Rosenstock, T., Giampiccolo, D., Schneider, H., Runge, S. J., Bahrend, I., Vajkoczy, P., & Picht, 611 

T. (2017). Specific DTI seeding and diffusivity-analysis improve the quality and 612 

prognostic value of TMS-based deterministic DTI of the pyramidal tract. Neuroimage 613 

Clin, 16, 276-285. doi:10.1016/j.nicl.2017.08.010 614 

Rosenstock, T., Grittner, U., Acker, G., Schwarzer, V., Kulchytska, N., Vajkoczy, P., & Picht, T. 615 

(2017). Risk stratification in motor area-related glioma surgery based on navigated 616 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.28.20220293doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.28.20220293
http://creativecommons.org/licenses/by/4.0/


transcranial magnetic stimulation data. J Neurosurg, 126(4), 1227-1237. 617 

doi:10.3171/2016.4.JNS152896 618 

Schilling, K. G., Nath, V., Hansen, C., Parvathaneni, P., Blaber, J., Gao, Y., . . . Landman, B. A. 619 

(2019). Limits to anatomical accuracy of diffusion tractography using modern 620 

approaches. Neuroimage, 185, 1-11. doi:10.1016/j.neuroimage.2018.10.029 621 

Smith, R. E., Tournier, J. D., Calamante, F., & Connelly, A. (2013). SIFT: Spherical-622 

deconvolution informed filtering of tractograms. Neuroimage, 67, 298-312. 623 

doi:10.1016/j.neuroimage.2012.11.049 624 

Soares, J. M., Marques, P., Alves, V., & Sousa, N. (2013). A hitchhiker's guide to diffusion 625 

tensor imaging. Front Neurosci, 7, 31. doi:10.3389/fnins.2013.00031 626 

Tournier, J. D. (2019). Diffusion MRI in the brain - Theory and concepts. Prog Nucl Magn 627 

Reson Spectrosc, 112-113, 1-16. doi:10.1016/j.pnmrs.2019.03.001 628 

Tournier, J. D., Calamante, F., & Connelly, A. (2007). Robust determination of the fibre 629 

orientation distribution in diffusion MRI: non-negativity constrained super-resolved 630 

spherical deconvolution. Neuroimage, 35(4), 1459-1472. 631 

doi:10.1016/j.neuroimage.2007.02.016 632 

Tournier, J. D., Calamante, F., Gadian, D. G., & Connelly, A. (2004). Direct estimation of the 633 

fiber orientation density function from diffusion-weighted MRI data using spherical 634 

deconvolution. Neuroimage, 23(3), 1176-1185. 635 

doi:10.1016/j.neuroimage.2004.07.037 636 

Tournier, J. D., Mori, S., & Leemans, A. (2011). Diffusion tensor imaging and beyond. Magn 637 

Reson Med, 65(6), 1532-1556. doi:10.1002/mrm.22924 638 

Tournier, J. D., Smith, R., Raffelt, D., Tabbara, R., Dhollander, T., Pietsch, M., . . . Connelly, A. 639 

(2019). MRtrix3: A fast, flexible and open software framework for medical image 640 

processing and visualisation. Neuroimage, 202, 116137. 641 

doi:10.1016/j.neuroimage.2019.116137 642 

Tustison, N. J., Avants, B. B., Cook, P. A., Zheng, Y., Egan, A., Yushkevich, P. A., & Gee, J. C. 643 

(2010). N4ITK: improved N3 bias correction. IEEE Trans Med Imaging, 29(6), 1310-644 

1320. doi:10.1109/TMI.2010.2046908 645 

Van Hecke, W., Emsell, L., & Sunaert, S. (2016). Diffusion Tensor Imaging A Practical 646 

Handbook (1st ed. 2016. ed.). 647 

Veraart, J., Novikov, D. S., Christiaens, D., Ades-Aron, B., Sijbers, J., & Fieremans, E. (2016). 648 

Denoising of diffusion MRI using random matrix theory. Neuroimage, 142, 394-406. 649 

doi:10.1016/j.neuroimage.2016.08.016 650 

Veraart, J., Sijbers, J., Sunaert, S., Leemans, A., & Jeurissen, B. (2013). Weighted linear least 651 

squares estimation of diffusion MRI parameters: strengths, limitations, and pitfalls. 652 

Neuroimage, 81, 335-346. doi:10.1016/j.neuroimage.2013.05.028 653 

Vos, S. B., Jones, D. K., Jeurissen, B., Viergever, M. A., & Leemans, A. (2012). The influence of 654 

complex white matter architecture on the mean diffusivity in diffusion tensor MRI of 655 

the human brain. Neuroimage, 59(3), 2208-2216. 656 

doi:10.1016/j.neuroimage.2011.09.086 657 

Wickham, H. (2009). ggplot2: Elegant Graphics for Data Analysis: Springer Publishing 658 

Company, Incorporated. 659 

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L., François, R., . . . Yutani, H. 660 

(2019). Welcome to the Tidyverse. Journal of Open Source Software, 4(43), 1686.  661 

 662 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.28.20220293doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.28.20220293
http://creativecommons.org/licenses/by/4.0/


 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.28.20220293doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.28.20220293
http://creativecommons.org/licenses/by/4.0/


 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.28.20220293doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.28.20220293
http://creativecommons.org/licenses/by/4.0/


 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.28.20220293doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.28.20220293
http://creativecommons.org/licenses/by/4.0/


 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.28.20220293doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.28.20220293
http://creativecommons.org/licenses/by/4.0/


 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.28.20220293doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.28.20220293
http://creativecommons.org/licenses/by/4.0/


 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.28.20220293doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.28.20220293
http://creativecommons.org/licenses/by/4.0/


 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.28.20220293doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.28.20220293
http://creativecommons.org/licenses/by/4.0/


 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 3, 2020. ; https://doi.org/10.1101/2020.10.28.20220293doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.28.20220293
http://creativecommons.org/licenses/by/4.0/

