

31 Tumors
32 corticosp
33 interface
34 potential 32 corticospinal tract injury. The delineation of the healthy-pathological white matter (WM)
33 interface area, for which diffusion magnetic resonance imaging (dMRI) has shown promising
34 potential, may improve treatment 33 interface area, for which diffusion magnetic resonance imaging (dMRI) has shown promising
34 potential, may improve treatment outcome. However, up to 90% of white matter (WM)
35 voxels include multiple fiber populations 34 potential, may improve treatment outcome. However, up to 90% of white matter (WM)
35 voxels include multiple fiber populations, which cannot be correctly described with
36 traditional metrics such as fractional anisotro Fremma, may improve treatment outcome treatment of the correctly described with
35 voxels include multiple fiber populations, which cannot be correctly described with
36 traditional metrics such as fractional anisotropy (F 35 traditional metrics such as fractional anisotropy (FA) or apparent diffusion coefficient (ADC).
37 Here, we used a novel fixel-based along-tract analysis consisting of constrained spherical
38 deconvolution (CSD) based 37 Here, we used a novel fixel-based along-tract analysis consisting of constrained spherical
38 deconvolution (CSD) based probabilistic tractography and fixel-based apparent fiber density
39 (FD), capable of identifying f 38 deconvolution (CSD) based probabilistic tractography and fixel-based apparent fiber density
39 (FD), capable of identifying fiber orientation specific microstructural metrics. We addressed
30 this novel methodology's ca

39 (FD), capable of identifying fiber orientation specific microstructural metrics. We addressed
30 this novel methodology's capability to detect corticospinal tract impairment.
31 We measured and compared tractogram-relat 39 (FD), this novel methodology's capability to detect corticospinal tract impairment.

39 (FD), we measured and compared tractogram-related FD and traditional microstructural

39 (FD), metrics bihemispherically in 65 pati 41 We measured and compared tractogram-related FD and traditional
42 metrics bihemispherically in 65 patients with WHO grade III and IV gliomas
43 motor system. The cortical tractogram seeds were based on motor ma
44 trans metrics bihemispherically in 65 patients with WHO grade III and IV gliomas infiltrating the

43 motor system. The cortical tractogram-seeds were based on motor maps derived by

44 transcranial magnetic stimulation. We extr 43 motor system. The cortical tractogram seeds were based on motor maps derived by
44 transcranial magnetic stimulation. We extracted 100 equally distributed cross-sections along
45 each streamline of corticospinal tract (14 transcranial magnetic stimulation. We extracted 100 equally distributed cross-sections along

44 each streamline of corticospinal tract (CST) for along-tract statistical analysis. Cross-sections

46 were then analyzed t

each streamline of corticospinal tract (CST) for along-tract statistical analysis. Cross-sections

were then analyzed to detect differences between healthy and pathological hemispheres.

All metrics showed significant diff were then analyzed to detect differences between healthy and pathological hemispheres.

All metrics showed significant differences between healthy and pathologic

As metrics of a the entire tract and between peritumoral se All metrics showed significant differences between healthy and patholog

Hemispheres over the entire tract and between peritumoral segments. Peritumoral valu

49 were lower for FA and FD, but higher for ADC within the enti 148 hemispheres over the entire tract and between peritumoral segments. Peritumoral values
149 were lower for FA and FD, but higher for ADC within the entire cohort. FD was more specific
150 to tumor-induced changes in CST were lower for FA and FD, but higher for ADC within the entire cohort. FD was more specific

to tumor-induced changes in CST than ADC or FA, whereas ADC and FA showed higher

sensitivity.

The bihemispheric along-tract ana

49 Were lower for FA and ADC or FA, whereas ADC and FA showed higher
51 sensitivity.
52 The bihemispheric along-tract analysis provides an approach to detect subject-
53 specific structural changes in healthy and pathologi 51 sensitivity.
52 The bihemispheric along-tract analysis provides an approach to detect subject-
53 specific structural changes in healthy and pathological WM. In the current clinical dataset,
54 the more complex FD metri 52 The
53 specific stri
54 the more
55 corticospin 54 the more complex FD metrics did not outperform FA and ADC in terms of describing
55 corticospinal tract impairment.
56 55 corticospinal tract impairment.
56 56

57 1. Introduction 1

58
59
60
61
62 magnetic stimulation (TMS) cortical motor mapping and tractography to improve surgery of

58 In protor eloquent brain tumors (Krieg et al., 2016; Lefaucheur & Picht, 2016; Picht, Frey,

51 In the combination of Niesch, & V magnetic stimulation (TMS) cortical motion impping and tractography to improve singley of

50 motor eloquent brain tumors (Krieg et al., 2016; Lefaucheur & Picht, 2016; Picht, Frey,

51 Thieme, Kliesch, & Vajkoczy, 2016; R Thieme, Kliesch, & Vajkoczy, 2016; Rosenstock, Grittner, et al., 2017). In a recent study we

could also demonstrate that the segmental analysis of diffusion tensor imaging (DTI) derived

metrics, such as fractional anisot 62 could also demonstrate that the segmental analysis of diffusion tensor imaging (DTI) derived
63 metrics, such as fractional anisotropy (FA) and apparent diffusion coefficient (ADC),
64 correlated with clinical outcomes metrics, such as fractional anisotropy (FA) and apparent diffusion coefficient (ADC),
correlated with clinical outcomes (Rosenstock, Giampiccolo, et al., 2017). Here, we now set
out to investigate whether more complex metr 64 correlated with clinical outcomes (Rosenstock, Giampiccolo, et al., 2017). Here, we now set
65 out to investigate whether more complex metrics derived from spherical deconvolution and
66 probabilistic tractography, whic out to investigate whether more complex metrics derived from spherical deconvolution and
66 probabilistic tractography, which allow for more detailed analysis of the white matter,
67 would prove superior in terms of detect 66 probabilistic tractography, which allow for more detailed analysis of the white matter,
67 would prove superior in terms of detecting tumor induced white matter (WM) changes. In
68 this context we analyzed the structura 67 would prove superior in terms of detecting tumor induced white matter (WM) changes. In
68 this context we analyzed the structural impact of gliomas affecting the corticospinal tract
69 (CST) in 65 patients. This was ca 68 this context we analyzed the structural impact of gliomas affecting the corticospinal tract
69 (CST) in 65 patients. This was carried out without the generation of a group template
670 because of the lateralized patholo 69 (CST) in 65 patients. This was carried out without the generation of a group template

68 because of the lateralized pathology, which allows a clear deduction of interhemispheric

69 because of the lateralized pathology 69 (CST) in the lateralized pathology, which allows a clear deduction of interhemispheric

19 differences on the subject-level (D. A. Raffelt et al., 2015). We compared the pathological

19 with the healthy hemisphere and differences on the subject-level (D. A. Raffelt et al., 2015). We compared the pathological

72 with the healthy hemisphere and focused on describing tumor-induced changes along the

73 CST with dMRI. We used CSD-based pro 12 with the healthy hemisphere and focused on describing tumor-induced changes along the
13 CST with dMRI. We used CSD-based probabilistic tractography at an individual scale within
14 the MRtrix3 framework (Tournier et al

The Matrix of the MRI. We used CSD-based probabilistic tractography at an individual scale within
The MRI is framework (Tournier et al., 2019).
The health of the molecular diffusion rate, ADC, or the directional
The prefer The MRI. The MRI. The Matter of the Matter Probabilistic tractography at an individual scale in the MRI. DTI enables quantification of the molecular diffusion rate, ADC, or the directional
T6 preference of diffusion, FA (S 27 THE MARTRIX-PARTRIX-PARTRIX, 2022).
27 THE Preference of diffusion, FA (Soares, Marque
27 THE established metrics integrated as predictive fe
28 Giampiccolo, et al., 2017). The two main diffus
29 THE are based on voxelpreference of diffusion, FA (Soares, Marques, Alves, & Sousa, 2013). ADC and FA are
established metrics integrated as predictive features in neurosurgical studies (Rosenstock,
Giampiccolo, et al., 2017). The two main diffu established metrics integrated as predictive features in neurosurgical studies (Rosenstock,
T8 Giampiccolo, et al., 2017). The two main diffusion tensor-derived parameters, ADC and FA,
T9 are based on voxel-wise eigenvalue The theorem is the metric of the metric of the diffusion tensor-derived parameters, ADC and FA,

The two main diffusion tensor-derived parameters, ADC and FA,

The based on voxel-wise eigenvalues, which represent the magni The two main diffusion control of the magnitude of the diffusion
 The two main diffusion
 The two magnitude of the diffusion
 Abbreviations

ADC = Apparent diffusion coefficient; CSD = Constrained spherical deconvolu

¹ Abbreviations
ADC = Apparent diffusion coefficient; CSD = Constrained spherical deconvolution; CST =
Corticospinal tract; dMRI = Diffusion magnetic resonance imaging; DTI = Diffusion tensor - A C ii F Abbreviations
ADC = Apparent
Corticospinal transition
Fiber orientation
Mavigated transit Corticospinal tract; dMRI = Diffusion magnetic resonance imaging; DTI = Diffusion tensor
imaging; FA = Fractional anisotropy; FD = Fiber density; FDI = first dorsal interosseous; FOD =
Fiber orientation distribution; GM = imaging; FA = Fractional anisotropy; FD = Fiber density; FDI = first dorsal interosseous; FOD =
Fiber orientation distribution; GM = Grey matter; MEP = motor evoked potentials; nTMS =
Navigated transcranial magnetic stimu Fiber orientation distribution; GM = Grey matter; MEP = motor evoked potentials; nTMS =
Navigated transcranial magnetic stimulation; RMT = Resting motor threshold; WM = White
matter. Navigated transcranial magnetic stimulation; RMT = Resting motor threshold; WM = White matter.

matter. Navigated transcription; RMT = Resting matter.

Navigated transcription; RMT = Resting motor threshold; WM = White

RMT = White

RM

80 values are influenced by different factors (Colby et al., 2012). ADC is a measure of the

82 overall diffusivity in a single voxel, regardless of its orientation. It is higher where water

83 diffuses more easily, e.g. in overall diffusivity in a single voxel, regardless of its orientation. It is higher where water

81 diffuses more easily, e.g. in ventricles, lower in structures with high tissue density and

84 consequently more diffusion diffuses more easily, e.g. in ventricles, lower in structures with high tissue density and

84 consequently more diffusion barriers, such as GM (Van Hecke, Emsell, & Sunaert, 2016). FA

85 describes the directional coheren 84 consequently more diffusion barriers, such as GM (Van Hecke, Emsell, & Sunaert, 2016). FA
85 describes the directional coherence of water diffusion in tissue and is modulated by
86 numerous biological factors, such as t describes the directional coherence of water diffusion in tissue and is modulated by
86 numerous biological factors, such as the microstructural and architectural organization of
87 white matter, myelination and non-white Moreous biological factors, such as the microstructural and architectural organization of

87 white matter, myelination and non-white matter partial volume effects. Further influences

88 on FA modulation are methodologica 87 white matter, myelination and non-white matter partial volume effects. Further influences
88 on FA modulation are methodological factors, such as the choice of the estimation,
89 preprocessing methods and subjective sel on FA modulation are methodological factors, such as the choice of the estimation,
89 preprocessing methods and subjective selection of regions of interests (ROIs) (Roine et al.,
2014; Veraart, Sijbers, Sunaert, Leemans, &

preprocessing methods and subjective selection of regions of interests (ROIs) (Roine et al.,

2014; Veraart, Sijbers, Sunaert, Leemans, & Jeurissen, 2013).

11 In contrast to DTI, CSD can distinguish complex fiber populati 2014; Veraart, Sijbers, Sunaert, Leemans, & Jeurissen, 2013).

91 In contrast to DTI, CSD can distinguish complex fiber populations in the brain. In brief,

92 CSD estimates fiber orientation distributions (FODs) within ea 91 In contrast to DTI, CSD can distinguish complex fiber p
92 CSD estimates fiber orientation distributions (FODs) with
93 expected signal from a single collinearly oriented fiber pop
94 Gadian, & Connelly, 2004). By lever CSD estimates fiber orientation distributions (FODs) within each voxel, based on the
193 expected signal from a single collinearly oriented fiber population (Tournier, Calamante,
194 Gadian, & Connelly, 2004). By leveragin expected signal from a single collinearly oriented fiber population (Tournier, Calamante,
94 Gadian, & Connelly, 2004). By leveraging the rich information in FODs, probabilistic
95 tractography algorithms, such as the iFOD 93 Gadian, & Connelly, 2004). By leveraging the rich information in FODs, probabilistic
95 tractography algorithms, such as the iFOD2, have been proposed to address limitations of
96 tensor-based tractography methods (Tour entractography algorithms, such as the iFOD2, have been proposed to address limitations of
196 tensor-based tractography methods (Tournier, Mori, & Leemans, 2011). In up to 90% of all
197 WM voxels, multiple fiber orientat 1958 tensor-based tractography methods (Tournier, Mori, & Leemans, 2011). In up to 90% of all
197 WM voxels, multiple fiber orientations were observed, and 30% to 40% of these WM voxels
198 contain more than three fiber po 96 tensor-based tractography methods were observed, and 30% to 40% of these WM voxels
198 contain more than three fiber populations (Jeurissen, Leemans, Tournier, Jones, & Sijbers,
199 2013; Riffert, Schreiber, Anwander, & ontain more than three fiber populations (Jeurissen, Leemans, Tournier, Jones, & Sijbers,
2013; Riffert, Schreiber, Anwander, & Knösche, 2014; Tournier, 2019; Vos, Jones, Jeurissen,
2013; Riffert, Schreiber, Anwander, & Kn 2013; Riffert, Schreiber, Anwander, & Knösche, 2014; Tournier, 2019; Vos, Jones, Jeurissen,

199 Ciergever, & Leemans, 2012). Moreover, non-white matter contamination is present in

199 Moreover, Non-White matter contamina Viergever, & Leemans, 2012). Moreover, non-white matter contamination is present in

99 Viergever, & Leemans, 2012). Moreover, non-white matter contamination is present in

99 Connelly, Schöne, Connellander, Raffelt, & Con 101 more than a third of the WM voxels (Roine et al., 2014) and has been addressed by multi-
102 tissue CSD methods (Dhollander, Raffelt, & Connelly, 2016; Jeurissen, Tournier, Dhollander,
103 Connelly, & Sijbers, 2014b; R

106 To that end, in addition to the conventional DTI measures, modern CSD-based fiber density 103 Connelly, & Sijbers, 2014b; Roine et al., 2015).

104 A complete picture about the underlying white matter architecture is highly relevant

105 with regard to adequate risk estimation and neurosurgical planning (Mormin 104 A complete picture about the underlyin
105 with regard to adequate risk estimation and n
106 To that end, in addition to the conventional D
107 (FD) and fixel-based analysis (FBA) methods of
108 related to the intra-ax with regard to adequate risk estimation and neurosurgical planning (Mormina et al., 2015).

106 To that end, in addition to the conventional DTI measures, modern CSD-based fiber density

107 (FD) and fixel-based analysis (106 To that end, in addition to the conventional DTI measures, modern CSD-based fiber density
107 (FD) and fixel-based analysis (FBA) methods offer promising opportunities, since they are
108 related to the intra-axonal re 107 (FD) and fixel-based analysis (FBA) methods offer promising opportunities, since they are
108 related to the intra-axonal restricted compartment that is specific to a certain fiber
109 orientation within a voxel (D. A. The stated to the intra-axonal restricted compartment that is specific to a certain fiber
109 orientation within a voxel (D. A. Raffelt et al., 2017). Based on its advantages for the analysis
110 of crossing fiber regions, 109 orientation within a voxel (D. A. Raffelt et al., 2017). Based on its advantages for the analysis
110 of crossing fiber regions, we expect this metric to improve the detection of tumor-induced
111 changes along the CST 110 of crossing fiber regions, we expect this metric to improve the detection of tumor-induced
111 changes along the CST, and obtain more specific information about the microstructural 111 changes along the CST, and obtain more specific information about the microstructural
111 changes along the CST, and obtain more specific information about the microstructural 111 changes along the CST, and obtain more specific information about the microstructural more
111 changes about the microstructural more specific information about the microstructural more specific informa
111 changes abo

112 expect higher specificity of FD in detecting the peritumoral segments, most importantly at

114 the tumor-white matter interface, which is surgically the most important area. However, the

115 translation of advanced neuro 114 the tumor-white matter interface, which is surgically the most important area. However, the
115 translation of advanced neuroimaging to clinical settings is slow both in terms of adapting
116 modern methods and imaging 115 translation of advanced neuroimaging to clinical settings is slow both in terms of adapting
116 modern methods and imaging protocols. While there exist tools to use the modern CSD and
117 probabilistic tractography wit modern methods and imaging protocols. While there exist tools to use the modern CSD and

117 probabilistic tractography with conventional images, for tumor patients, little is known

118 about how applicable they prove wit modern methods and moging protocolal images, for tumor patients, little is known
118 about how applicable they prove with existing conventional neuroimaging protocols.
119 Nevertheless, clinical feasibility, robustness, an 118 about how applicable they prove with existing conventional neuroimaging protocols.

119 Nevertheless, clinical feasibility, robustness, and methodological superiority has been

120 proven (Farquharson et al., 2013; Pet Nevertheless, clinical feasibility, robustness, and methodological superiority has been
120 proven (Farquharson et al., 2013; Petersen et al., 2017). Until now, fixel-based studies have
121 concentrated on group analyses w 120 proven (Farquharson et al., 2013; Petersen et al., 2017). Until now, fixel-based studies have
121 concentrated on group analyses without subject-specific examination of tumor patients for
122 neurosurgical planning (D. 121 concentrated on group analyses without subject-specific examination of tumor patients for

122 neurosurgical planning (D. A. Raffelt et al., 2017). We developed a new variant of FD for the

124 fiber orientation specif meurosurgical planning (D. A. Raffelt et al., 2017). We developed a new variant of FD for the

123 fiber orientation specific along-tract investigation of microstructural properties in relation to

125 Importantly, we used

123 fiber orientation specific along-tract investigation of microstructural properties in relation to

124 infiltrating tumors.

125 Importantly, we used state-of-the-art TMS methods for motor mapping to find

126 function Infiltrating tumors.

125 Importantly, we used state-of-the-art TMS methods for motor mapping to find

126 functionally critical regions of interest (ROIs) and used these as seed points to generate

127 streamlines. This a 125 Importantly
126 functionally critical
127 streamlines. This ap
128 2016), therefore it
129 natient and tumors 126 functionally critical regions of interest (ROIs) and used these as seed points to generate
127 streamlines. This approach is shown to be highly effective for surgical planning (Picht et al.,
128 2016), therefore it is 127 streamlines. This approach is shown to be highly effective for surgical planning (Picht et al.,
128 2016), therefore it is superior to studying the whole CST, which lacks information about
129 patient and tumor specifi 2016), therefore it is superior to studying the whole CST, which lacks information about

129 patient and tumor specific functional consequences of neurosurgery.

130

2. Material & Methods

132 2.1. Fibical standard 129 patient and tumor specific functional consequences of neurosurgery.
130
131 2. Material & Methods
132 2.1. Ethical standard
133 The study proposal is in accordance with ethical standards of the Declaration of Helsinki

130
131 **2. Material & Methods**
132 **2.1. Ethical standard**
133 The study proposal is in accordance with ethical standards of the Dec
134 was annroved by the Ethics Commission of the Charité University H 131
132
133
134
135 2. Material & Methods
132 2.1. Ethical standard
133 The study proposal is in
134 was approved by the E
135 All patients provided v
136 within the scope of the 132 2.1. Ethical standard
133 The study proposal is
134 was approved by the
135 All patients provided
136 within the scope of th 134 Was approved by the Ethics Commission of the Charité University Hospital (#EA1/016/19).

135 All patients provided written informed consent for medical evaluations and treatments

136 Within the scope of the study.

13 All patients provided written informed consent for medical evaluations and treatments

136 within the scope of the study.

137

138 2.2 Patient selection

139 We included n=65 left- and right-handed adult patients in this

within the scope of the study.
137
138 2.2 Patient selection
139 We included n=65 left- and right-handed adult patients in this study (25 females, 40 males,
140 age 55.6+15.2, age range 24-81). Only patients with an initia 137
138 **2.2 Patient selection**
139 We included n=65 left- and rig
140 age 55.6±15.2, age range 24-8
141 **prade IIL & IV gliomas (14 W**) 138
139
140
141
142 139 2.2 Patient selection
139 We included n=65 lef
140 age 55.6±15.2, age ra
141 grade III & IV glioma
142 tumors were infiltrat 140 age 55.6±15.2, age range 24-81). Only patients with an initial diagnosis of unilateral WHO
141 grade III & IV gliomas (14 WHO grade III, 51 WHO grade IV) were included (Table 1). All
142 tumors were infiltrating M1 an 141 grade III & IV gliomas (14 WHO grade III, 51 WHO grade IV) were included (Table 1). All
142 tumors were infiltrating M1 and the CST or implied critical adjacency, either in the left or 142 tumors were infiltrating M1 and the CST or implied critical adjacency, either in the left or $\frac{1}{2}$. 142 turnors were infinitely measured critical adjacency, either in the left or in th

143

-
-

146

147
148
149
150
151 147 2.3 Image acquisition
148 MRI data were acquire
149 a 32-channel receive
151 2300/2.32/900 m s, 9
152 acquisition time: 5 mi 149 a 32-channel receiver head coil at Charité University Hospital, Berlin, Department of
150 Neuroradiology. These data consisted of a high-resolution T1-weighted structural (TR/TE/TI
151 2300/2.32/900 m s, 9° flip angle 149 a 32-channel receiver head con at charité Onversity Hospital, Berlin, Department of
150 Neuroradiology. These data consisted of a high-resolution T1-weighted structural (TR/TE/TI
151 2300/2.32/900 m s, 9° flip angle, 2300/2.32/900 m s, 9° flip angle, 256 \times 256 matrix, 1 mm isotropic voxels, 192 slices,
152 acquisition time: 5 min) and a single shell dMRI acquisition (TR/TE 7500/95m s, 2 \times 2 \times 2
153 mm³ voxels, 128 \times 128 151 2300/2.32/900 m s, 9° flip angle, 256 \times 256 matrix, 1 mm isotropic voxels, 192 slices,

152 acquisition time: 5 min) and a single shell dMRI acquisition (TR/TE 7500/95m s, 2 \times 2 \times 2

153 mm³ voxels, 128 \times 152 acquisition time: 5 min) and a single shell dMRI acquisition (TR/TE 7500/95m s, 2 \times 2 \times 2 mm³ voxels, 128 \times 128 matrix, 60 slices, 3 b 0 volumes), acquired at b = 1000 s/mm² with 40 gradient orientations, Ĭ 153 mm³ voxels, 128 × 128 matrix, 60 slices, 3 b 0 volumes), acquired at b = 1000 s/mm² with 40
154 gradient orientations, for a total acquisition time of 12 minutes.
155 **2.4 Preprocessing and processing of MRI data**

grad
2.4
(AN) 2.4 Preprocessing and processing of MRI data
155 2.4 Preprocessing and processing of MRI data
157 All T1 images were registered to the dMRI data sets using Ad
158 (ANTs) with the Symmetric Normalization (SyN) transformatio 156
156
157
158
159 2.4 Preprocessing and processing of MRT data
157 All T1 images were registered to the dMRI data
158 (ANTs) with the Symmetric Normalization (SyN
159 Grabner et al., 2006). The preprocessing of
160 performed within MRtrix3 158 (ANTs) with the Symmetric Normalization (SyN) transformation model (Avants et al., 2011;
159 Grabner et al., 2006). The preprocessing of dMRI data included the following and was
160 performed within MRtrix3 (Tournier e Grabner et al., 2006). The preprocessing of dMRI data included the following and was
160 performed within MRtrix3 (Tournier et al., 2019) in order: denoising (Veraart et al., 2016),
161 removal of Gibbs ringing artefacts (performed within MRtrix3 (Tournier et al., 2019) in order: denoising (Veraart et al., 2016),
161 Fernoval of Gibbs ringing artefacts (Kellner, Dhital, Kiselev, & Reisert, 2016), correction of
162 Fubject motion (Leemans & 161 removal of Gibbs ringing artefacts (Kellner, Dhital, Kiselev, & Reisert, 2016), correction of
162 subject motion (Leemans & Jones, 2009), eddy-currents (J. L. R. Andersson et al., 2017) and
163 susceptibility-induced d 162 subject motion (Leemans & Jones, 2009), eddy-currents (J. L. R. Andersson et al., 2017) and
163 susceptibility-induced distortions (J. L. Andersson, Skare, & Ashburner, 2003) in FMRIB
164 Software Library (Jenkinson, B susceptibility-induced distortions (J. L. Andersson, Skare, & Ashburner, 2003) in FMRIB
164 Software Library (Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012), and subsequent
165 bias field correction with ANTs N4 (T 164 Software Library (Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012), and subsequent
165 bias field correction with ANTs N4 (Tustison et al., 2010). Each dMRI data set and processing
166 step was visually inspected 165 bias field correction with ANTs N4 (Tustison et al., 2010). Each dMRI data set and processing
166 step was visually inspected for outliers and artifacts. Scans with excessive motion were 166 step was visually inspected for outliers and artifacts. Scans with excessive motion were 166 step was visually inspected for outliers and artifacts. Scans with excessive motion with excessive motion
166 step was visually inspected for outliers and artifacts. Scans with excessive motion were seen as a strong

167 168 isotropic voxel size before computing FODs to increase anatomical contrast and improve
169 downstream tractography results and statistics. To obtain ADC and FA scalar maps, we first
170 used diffusion tensor estimation 169 downstream tractography results and statistics. To obtain ADC and FA scalar maps, we first
170 used diffusion tensor estimation using iteratively reweighted linear least squares estimator,
171 resulting in scalar maps 170 used diffusion tensor estimation using iteratively reweighted linear least squares estimator,
171 resulting in scalar maps of tensor-derived parameters (Basser, Mattiello, & LeBihan, 1994;
172 Veraart et al., 2013). Fo The seculting in scalar maps of tensor-derived parameters (Basser, Mattiello, & LeBihan, 1994;
172 Veraart et al., 2013). For voxel-wise modelling we used a robust and fully automated and
173 unsupervised method. This meth 172 Veraart et al., 2013). For voxel-wise modelling we used a robust and fully automated and
173 unsupervised method. This method allowed to obtain 3-tissue response functions
174 representing single-fiber combined white a 173 unsupervised method. This method allowed to obtain 3-tissue response functions
174 representing single-fiber combined white and grey matter and CSF from our data with
175 subsequent use of multi-tissue CSD to obtain ti 174 representing single-fiber combined white and grey matter and CSF from our data with
175 subsequent use of multi-tissue CSD to obtain tissue specific orientation distribution
176 functions and white matter FODs (Dhollan 175 subsequent use of multi-tissue CSD to obtain tissue specific orientation distribution
176 functions and white matter FODs (Dhollander et al., 2016; Jeurissen et al., 2014b; Tournier,
177 Calamante, & Connelly, 2007).
1 176 functions and white matter FODs (Dhollander et al., 2016; Jeurissen et al., 2014b; Tournier,
177 Calamante, & Connelly, 2007).
178 2.5 Transcranial magnetic stimulation
180 Non-invasive functional motor manning of both

177 Calamante, & Connelly, 2007).
178
179 **2.5 Transcranial magnetic stimulation**
180 Non-invasive functional motor mapping of both pathologic and healthy hemispheres was
181 Derformed in each patient using pavigated trans 178
179 2.5 Transcranial magnetic stim
180 Non-invasive functional motor
181 performed in each patient usi
182 Nexstim eXimia Navigated B 179
180
181
182
183 179 2.5 Transcranial magnetic stimulation
180 Non-invasive functional motor mappir
181 performed in each patient using navig
183 registered to the structural MRI thro
184 registration. The composite muscle a performed in each patient using navigated transcranial magnetic stimulation (nTMS) with
182 Nexstim eXimia Navigated Brain Stimulation (NBS). Briefly, each patient's head was
183 registered to the structural MRI through th 182 Nexstim eXimia Navigated Brain Stimulation (NBS). Briefly, each patient's head was
183 registered to the structural MRI through the use of anatomical landmarks and surface
184 registration. The composite muscle action Nexstim eXimia Navigated Brain Stimulation (NBS). Briefly, each patient's head was
183 registered to the structural MRI through the use of anatomical landmarks and surface
184 registration. The composite muscle action pot 184 registration. The composite muscle action potentials were captured by the integrated
185 electromyography unit (EMG) (sampling rate 3 kHz, resolution 0.3 mV; Neuroline 720,
186 Ambu). The muscle activity (motor evoked 185 electromyography unit (EMG) (sampling rate 3 kHz, resolution 0.3 mV; Neuroline 720,
186 Ambu). The muscle activity (motor evoked potential, MEP amplitude \geq 50 μ V) was recorded
187 by surface electrodes on the a Ambu). The muscle activity (motor evoked potential, MEP amplitude $\geq 50 \mu$ V) was recorded
187 by surface electrodes on the abductor pollicis brevis and first dorsal interosseous (FDI). First,
188 the FDI hotspot, define 187 by surface electrodes on the abductor pollicis brevis and first dorsal interosseous (FDI). First,
188 the FDI hotspot, defined as the stimulation area that evoked the strongest MEP, was
189 determined. Subsequently, t 188 the FDI hotspot, defined as the stimulation area that evoked the strongest MEP, was
189 determined. Subsequently, the resting motor threshold (RMT), defined as the lowest
190 stimulation intensity that repeatedly elici determined. Subsequently, the resting motor threshold (RMT), defined as the lowest
190 stimulation intensity that repeatedly elicits MEPs, was defined using a threshold-hunting
191 algorithm within the Nexstim eximia soft 190 stimulation intensity that repeatedly elicits MEPs, was defined using a threshold-hunting
191 algorithm within the Nexstim eximia software. Mapping was performed at 105% RMT and
192 0.25 Hz. All MEP amplitudes > 50 $\$ 191 algorithm within the Nexstim eximia software. Mapping was performed at 105% RMT and
192 0.25 Hz. All MEP amplitudes > 50 μ V (peak to peak) were considered as motor positive
193 responses and exported in the definit 192 0.25 Hz. All MEP amplitudes > 50 μ V (peak to peak) were considered as motor positive
193 responses and exported in the definitive mapping (Picht et al., 2011). The subject-specific
194 positive responses of the FDI 193 responses and exported in the definitive mapping (Picht et al., 2011). The subject-specific
194 positive responses of the FDI were exported as binary $3 \times 3 \times 3$ mm³ voxel masks per
195 response in the T1 image spac 194 positive responses of the FDI were exported as binary $3 \times 3 \times 3$ mm³ voxel masks per
195 response in the T1 image space.
196
197 **2.6 Tractography** 194 positive responses of the FDI were exported as binary 3 \times 3 \times 3 mm³ voxel masks per response in the T1 image space.
196 **2.6 Tractography**

196 $\overline{}$ 196 $\overline{}$ 2.6 Tractography ---
197 197 2.6 Tractography

198 199 using above mentioned nTMS derived cortical seeding ROI. A second inclusion ROI was

198 defined in the medulla oblongata. Tracking parameters were set to default with a FOD

199 amplitude cutoff value of 0.1, a stream 1990 defined in the medulla oblongata. Tracking parameters were set to default with a FOD

1991 amplitude cutoff value of 0.1, a streamline minimum length of 5 x voxel size and a maximum

1992 streamline length of 100 x vo 201 amplitude cutoff value of 0.1, a streamline minimum length of 5 x voxel size and a maximum
202 streamline length of 100 x voxel size. For each tractogram describing the CST, we computed
203 5000 streamlines per hemisph 202 streamline length of 100 x voxel size. For each tractogram describing the CST, we computed
203 5000 streamlines per hemisphere. Each streamline of the tractograms was resampled along
204 its length to 100 points. Perit 203 sooo streamlines per hemisphere. Each streamline of the tractograms was resampled along
204 its length to 100 points. Peritumoral segments were defined in relation to the resampled
205 points within the range 1-100 in 204 its length to 100 points. Peritumoral segments were defined in relation to the resampled
205 points within the range 1-100 in all individual tractograms by visual inspection performed by
206 one neuroscientist and one 205 points within the range 1-100 in all individual tractograms by visual inspection performed by
206 one neuroscientist and one expert neurosurgeon with 4 and 20 years of experience, in that
207 order. Subsequently, value 206 one neuroscientist and one expert neurosurgeon with 4 and 20 years of experience, in that
207 one neurosciently, values of associated FA, ADC and FD scalar maps were sampled along
208 the derived 100 segments of each s 207 order. Subsequently, values of associated FA, ADC and FD scalar maps were sampled along
208 the derived 100 segments of each streamline (Fig. 1 & 2). The code used for the
209 tractography pipeline is archived as a she 208 the derived 100 segments of each streamline (Fig. 1 & 2). The code used for the
209 tractography pipeline is archived as a shell script on Zenodo
210 (https://zenodo.org/record/3732348) and openly accessible (Fekonja e 209 tractography pipeline is archived as a shell script on Zenodo
210 (https://zenodo.org/record/3732348) and openly accessible (Fekonja et al., 2020).
211 Fig. 1. TMS-based tractography of the CST and subsequent along-tra

210 (https://zenodo.org/record/3732348) and openly accessible (Fekonja et al., 2020).
211 Fig. 1. TMS-based tractography of the CST and subsequent along-tract resampling of
213 streamlines. The tractogram shows streamlines 211
212 Fig. 1. TMS-based tractography of the CST and subsequent along-tract resar
213 streamlines. The tractogram shows streamlines in relation to cortical hand repre
214 derived by TMS-ROIs (left). The first zoom shows a 212
213
214
215
216 213 streamlines. The tractogram shows streamlines in relation to cortical hand representation
214 derived by TMS-ROIs (left). The first zoom shows a combination with resampled points
215 (yellow), overlaid on each streamli 214 derived by TMS-ROIs (left). The first zoom shows a combination with resampled points
215 (yellow), overlaid on each streamlines (middle). The second, larger magnification reveals the
216 single points, derived by resam 215 (yellow), overlaid on each streamlines (middle). The second, larger magnification reveals the
216 single points, derived by resampling along the streamlines (right).
217
218 Fig. 2. CST tractogram with mapped ADC (left

216 (yellow), oreflead to each standard continuity, the second, larger magnification reveals
217
218 Fig. 2. CST tractogram with mapped ADC (left), FA (middle) and FD (right) scalar values,
219 Illustrating the methodologi 217
218 Fig. 2. CST tractogram with mapped ADC (left), FA (middle) and
219 illustrating the methodological differences of scalar maps sampling
220
221 2.7 Computation of along-tract FD values using FBA ---
218
219
220
221
221

219 Fig. 2. Computation of along-tract FD values using FBA
221 2.7 Computation of along-tract FD values using FBA
222 A fixel is considered as a specific fiber population within a voxel (D. A. Raffelt et al., 2015; D.
223 220
221 2.7 Computation of along-tract FD values using FBA
222 A fixel is considered as a specific fiber population within a voxel (D.
223 A. Raffelt et al., 2017). For each subject, segmentations of continuous
224 of the 221
222
223
224
225 221 2.7 Computation of along-tract FD values using FBA
222 A fixel is considered as a specific fiber population wit
223 A. Raffelt et al., 2017). For each subject, segmentation
224 of the FOD lobes were performed to produc 223 A. Raffelt et al., 2017). For each subject, segmentations of continuous FODs via the integrals
224 of the FOD lobes were performed to produce discrete fixel maps which are developed to
225 indicate voxel-based measures 224 of the FOD lobes were performed to produce discrete fixel maps which are developed to
225 indicate voxel-based measures of axon diameters, weighted by their relative volumes within
226 voxels (D. A. Raffelt et al., 201 225 indicate voxel-based measures of axon diameters, weighted by their relative volumes within
226 oxels (D. A. Raffelt et al., 2017; Smith, Tournier, Calamante, & Connelly, 2013). With
227 higher-order diffusion models, s 226 voxels (D. A. Raffelt et al., 2017; Smith, Tournier, Calamante, & Connelly, 2013). With
227 higher-order diffusion models, such as CSD, parameters related to FD can be extracted for
228 individual fixels (D. A. Raffelt 227 higher-order diffusion models, such as CSD, parameters related to FD can be extracted for
228 individual fixels (D. A. Raffelt et al., 2015). FBA is able to identify effects in specific fiber
229 pathways and in crossi 228 individual fixels (D. A. Raffelt et al., 2015). FBA is able to identify effects in specific fiber pathways and in crossing fibers regions, unlike voxel-based analysis (D. A. Raffelt et al., 229 pathways and in crossing fibers regions, unlike voxel-based analysis (D. A. Raffelt et al., $\frac{1}{2}$

229 pathways and in crossing fibers regions, unlike voxel-based analysis (D. A. Raffelt et al.,

230 erative of the computed in 4 steps: (i) fixels associated with CSTs were obtained using fixel tract-

232 density imaging, (ii) fixels in the image were thresholded based on the CST fixels which

233 eliminates the contrib 233 eliminates the contributions of other tracts that are present in these voxels, (iii) the mean
234 FD of the remaining fixels were exported as a scalar image, and (iv) FD values were
235 interpolated along the 100 sampl 234 FD of the remaining fixels were exported as a scalar image, and (iv) FD values were
235 interpolated along the 100 sampled points of each streamline present in the CST
236 tractograms. The code used for the tract-base 235 interpolated along the 100 sampled points of each streamline present in the CST tractograms. The code used for the tract-based fixel image construction pipeline is archived as a shell script on Zenodo (https://zenodo.o 236 tractograms. The code used for the tract-based fixel image construction pipeline is archived
237 as a shell script on Zenodo (https://zenodo.org/record/3732348) and openly accessible
238 (Fekonja et al., 2020).
239 240 236 tractograms. The code used for the tract-based fixel image construction pipeline is archived 237 as a shell script on Zenodo (https://zenodo.org/record/3732348) and openly accessible
238 (Fekonja et al., 2020).
239 2.8 Statistical analysis analysis was performed using RStudio version 12.5019 237 as a shell script on Zenodo (https://zenodo.org/record/3732348) and openly accessible
238 (Fekonja et al., 2020).
239 2.8 Statistical analysis
241 Confirmatory statistical analysis was performed using RStudio version 1

239
240 **2.8 Statistical analysis
241 Confirmatory statisti
242 (https://rstudio.com)
243 with traditional tenso** 240
241
242
243
244 240 2.8 Statistical analysis
241 Confirmatory statistic
242 (https://rstudio.com)
243 with traditional tensor
244 pathological hemisphe
245 mentioned resampled 242 (https://rstudio.com) with R version 3.6.1 (https://cran.r-project.org). We compared FD
243 with traditional tensor-derived ADC and FA to study signal changes between healthy and
244 pathological hemispheres. To analyz with traditional tensor-derived ADC and FA to study signal changes between healthy and
244 (pathological hemispheres. To analyze the behavior of the different metrics, we used above
245 (mentioned resampled streamlines, co pathological hemispheres. To analyze the behavior of the different metrics, we used above

245 mentioned resampled streamlines, comparing the median values for each of the 100 CST

246 segments per 5000 streamlines per hem mentioned resampled streamlines, comparing the median values for each of the 100 CST
246 segments per 5000 streamlines per hemisphere. To model the tumor-related effect on each
247 metric, a linear mixed model (package Ime Example 1246 segments per 5000 streamlines per hemisphere. To model the tumor-related effect on each

247 metric, a linear mixed model (package ImerTest_3.1-0 under R version 3.6.1) was built for

248 each metric using the 247 metric, a linear mixed model (package ImerTest_3.1-0 under R version 3.6.1) was built for
248 each metric using the metric's value as dependent variable, hemisphere (0, healthy; 1,
249 pathological) as independent vari 248 each metric using the metric's value as dependent variable, hemisphere (0, healthy; 1,
249 pathological) as independent variable and a random intercept for subjects (Kuznetsova,
250 Brockhoff, & Christensen, 2017). Thu example and a random intercept for subjects (Kuznetsova,
250 Brockhoff, & Christensen, 2017). Thus, each model contained 13000 data points (65 subjects
251 * 2 hemispheres * 100 median tract segment values per streamline). 250 Brockhoff, & Christensen, 2017). Thus, each model contained 13000 data points (65 subjects
251 * 2 hemispheres * 100 median tract segment values per streamline). Further, we repeated
252 this analysis for the peritumor 251 * 2 hemispheres * 100 median tract segment values per streamline). Further, we repeated
252 this analysis for the peritumoral area according to our hypothesis to find stronger effects in
253 these segments. Each of the 252 this analysis for the peritumoral area according to our hypothesis to find stronger effects in
253 these segments. Each of these models contained 4138 data points, with each subject
254 contributing a different number 253 these segments. Each of these models contained 4138 data points, with each subject
254 contributing a different number of peritumoral segments depending on tumor location and
255 size. All effects were considered sign 254 contributing a different number of peritumoral segments depending on tumor location and
255 size. All effects were considered significant using a two-sided p-value of 0.05. All models
256 were examined for patterns in 255 size. All effects were considered significant using a two-sided p-value of 0.05. All models
256 were examined for patterns in the residuals (deviation from normality via QQ-plots, pattern
257 fitted values vs. residua 256 were examined for patterns in the residuals (deviation from normality via QQ-plots, pattern
257 fitted values vs. residuals). All plots were generated with the ggplot2 library within tidyverse
258 (Wickham, 2009; Wick 257 fitted values vs. residuals). All plots were generated with the ggplot2 library within tidyverse
258 (Wickham, 2009; Wickham et al., 2019). Tests for sensitivity (*n* of true positive predicted
259 segments/*n* of true 258 (Wickham, 2009; Wickham et al., 2019). Tests for sensitivity (*n* of true positive predicted segments/*n* of true positive predicted segments and specificity (*n* of true negative predicted segments/*n* of true negati 258 (Wickham, 2009, Wickham et al., 2019). Tests for sensitivity (n of true positive predicted
269 segments/n of true positive predicted segments + n of false negative predicted
261 segments + n of false positive predicte 259 segments/n of true positive predicted segments + n of false negative predicted segments and specificity (n of true negative predicted segments/n of true negative predicted segments + n of false positive predicted segm 260 and specificity (n of true negative predicted segments) were based on classified tract segments
261 segments + n of false positive predicted segments) were based on classified tract segments 261 segments + n of false positive predicted segments) were based on classified tract segments

262 263 differences between healthy and pathological hemispheres per segment (classified as 0 and
264 1). These tests were performed with Bonferroni-adjusted alpha levels of 0.0005 (0.05/100)
265 and thresholded only for larg 264 1). These tests were performed with Bonferroni-adjusted alpha levels of 0.0005 (0.05/100)
265 and thresholded only for large effects (≥ 0.474) with Cliff's delta due to the non-normal
266 distribution. The script 265 and thresholded only for large effects (≥ 0.474) with Cliff's delta due to the non-normal
266 distribution. The script used to perform the statistical analysis and produce this manuscript
267 is available on and ar 265 and thresholded only for large effects (≥ 0.474) with Cliff's delta due to the non-normal
266 distribution. The script used to perform the statistical analysis and produce this manuscript
267 is available on and archi

267 is available on and archived in Zenodo (Fekonja et al., 2020).
268 2.9 Data availability
269 Parts of the data that support the findings of this study are not publicly available due to
270 information that could compro 268 2.9 Data availability
269 Parts of the data that support the findings of this study are
270 information that could compromise the privacy of the
271 available from the corresponding author on reasonable red
272 used is 268 2.9 Data availability
269 Parts of the data the
270 information that co
271 available from the c
272 used is op 270 information that could compromise the privacy of the research participants but are
271 available from the corresponding author on reasonable request. However, code we have
272 used is openly available under the followi 271 available from the corresponding author on reasonable request. However, code we have
272 used is openly available under the following address
273 (https://doi.org/10.5281/zenodo.3732348) and is cited at the correspondi 272 used is openly available under the following address
273 (https://doi.org/10.5281/zenodo.3732348) and is cited at the corresponding passage in the
274 article (Fekonja et al., 2020).
275 3. Results 273 (https://doi.org/10.5281/zenodo.3732348) and is cited at the corresponding passage in the
274 article (Fekonja et al., 2020).
275 3. Results
277 TMS manning the calculation of TMS-ROI-based streamlines and the extracti

274 article (Fekonja et al., 2020).
275 (https://doi.org/10.5281/20.5281/20.5281/20.5281/20.5281/20.5281/273
277 TMS mapping, the calculation of TMS-ROI-based streamlines and the extraction of ADC, FA
278 (and ED were feas 275
276 3. Results
277 TMS mapping, the calculatio
278 and FD were feasible in ea
279 distance (< 8mm n = 3) or a 276
277
278
279
280 276 3. Results
277 TMS mapp
278 and FD w
289 distance (<
280 Visual ins
281 hemisnher 278 and FD were feasible in each subject (cf. Fig. 3) and showed either close tumor-tract
279 distance (< 8mm, n = 3) or adjacency or direct infiltration of the CST by the tumor (n = 62).
280 Visual inspection of boxplots 279 distance (< 8mm, n = 3) or adjacency or direct infiltration of the CST by the tumor (n = 62).
280 Visual inspection of boxplots showed differences between pathological and healthy
281 hemispheres for ADC, FA, and FD (280 Visual inspection of boxplots showed differences between pathological and healthy
281 hemispheres for ADC, FA, and FD (Fig 4A). As expected, these differences were larger when
282 looking at the peritumoral area only (281 hemispheres for ADC, FA, and FD (Fig 4A). As expected, these differences were larger when
282 looking at the peritumoral area only (Fig 4B). Further, a larger variability in ADC values could
283 be observed in the path 282 looking at the peritumoral area only (Fig 4B). Further, a larger variability in ADC values could
283 be observed in the pathological hemisphere in general and the peritumoral area specifically.
284 When plotting values 283 be observed in the pathological hemisphere in general and the peritumoral area specifically.
284 When plotting values along the entire CST, distinct patterns of variation between
285 hemispheres could be observed. ADC 284 When plotting values along the entire CST, distinct patterns of variation between
285 hemispheres could be observed. ADC showed no significant differences in the non-
286 peritumoral segments but showed significant dif 285 hemispheres could be observed. ADC showed no significant differences in the non-
286 peritumoral segments but showed significant differences in peritumoral segments, even
287 stronger than FA and FD. In contrast, FA an 290 ADC values in contrast to the entire CST becomes particularly evident here (Fig. 5). Finally, 287 stronger than FA and FD. In contrast, FA and FD values showed differences both in the non-
288 peritumoral and peritumoral segments (Fig. 5, Fig. 6, Table 2). The distribution of tumors
289 along the CST is indicated i 292 stranger enterthand in regard to multiple fiber populations. The CSD method identifies multiple 289 along the CST is indicated in Fig. 6. Additionally, the tumor-induced variability in peritumoral
290 ADC values in contrast to the entire CST becomes particularly evident here (Fig. 5). Finally,
291 the information sho 290 ADC values in contrast to the entire CST becomes particularly evident here (Fig. 5). Finally,
291 the information shown in Fig. 2 highlights and visualizes the advantages of FOD
292 representation in regard to multiple 291 the information shown in Fig. 2 highlights and visualizes the advantages of FOD representation in regard to multiple fiber populations. The CSD method identifies multiple appropriately oriented fiber populations in a 292 representation in regard to multiple fiber populations. The CSD method identifies multiple
293 appropriately oriented fiber populations in a voxel including multiple fiber populations, 293 appropriately oriented fiber populations in a voxel including multiple fiber populations, 293 appropriately oriented fiber populations in a voxel including multiple fiber populations,

294 295 and does not provide an orientation estimate corresponding to any of the existing fiber
296 populations (Farquharson et al., 2013), cf. Fig. 3.
297 Fig. 3. Demonstration of different voxel-level modelling methods resul

296 populations (Farquharson et al., 2013), cf. Fig. 3.
297
298 Fig. 3. Demonstration of different voxel-level modelling methods results and their
299 subsequently obtained scalar maps, illustrated on a coronal section. Th 297
298 Fig. 3. Demonstration of different voxel-leve
299 subsequently obtained scalar maps, illustrated c
300 in a pre-processed diffusion image. Either di
301 diffusion tensor imaging or FOD's estimated usin 298
299
300
301
302 299 subsequently obtained scalar maps, illustrated on a coronal section. The ROI is highlighted
200 in a pre-processed diffusion image. Either diffusion tensor-ellipsoids as estimated by
201 diffusion tensor imaging or FOD 209 in a pre-processed diffusion image. Either diffusion tensor-ellipsoids as estimated by
201 diffusion tensor imaging or FOD's estimated using CSD are shown. Further, their respective
202 scalar maps such as ADC, FA, or 301 diffusion tensor imaging or FOD's estimated using CSD are shown. Further, their respective
302 scalar maps such as ADC, FA, or fixel-based are depicted. The tensor-based scalar value does
303 not represent any single f 302 scalar maps such as ADC, FA, or fixel-based are depicted. The tensor-based scalar value does
303 not represent any single fiber population in the voxel in comparison to the fixel-based
304 metrics.
305 Fig. 4 Boxplots 303 not represent any single fiber population in the voxel in comparison to the fixel-based
304 metrics.
305 Fig. 4. Boxplots for ADC, FA, FD for both hemispheres. (A) Values for the entire CST. (B)
307 Values for the peri

304 metrics.
305 Fig. 4. Boxplots for ADC, FA FD for both hemispheres. (A) Values for the entire CST. (B)
307 Values for the peritumoral segments only. Outliers are marked by small circles.
308 305
306 Fig. 4. B
307 Values fo
308 Fig. 5 Li 306
307
308
309
310

Values for the peritumoral segments only. Outliers are marked by small circles.
308
Fig. 5. Line plots illustrating ADC, FA and FD along the entire CST of both hemispheres (0,
310 medulla oblongata; 100, cortex). The point 508
309 Fig. 5. Line plots illustrating ADC, FA and FD along the entire CST of both her
310 medulla oblongata; 100, cortex). The points indicate median values with the
311 95% confidence intervals. The heat-maps demonstrat ---
309
310
311
312
313 310 medulla oblongata; 100, cortex). The points indicate median values with their respective
311 95% confidence intervals. The heat-maps demonstrate related Bonferroni-corrected p-
312 values, derived by paired t-tests.
31 311 95% confidence intervals. The heat-maps demonstrate related Bonferroni-corrected p-
312 values, derived by paired t-tests.
313
314 Fig. 6. Density plot displaying the distribution of tumors grouped by hemispheric occur

313
314 Fig. 6. Density plot displaying the
315 Additionally, the plot shows that
316 317 3.1 Group wise analysis ---
314
315
316
317
318

 316

315 Additionally, the plot shows that no tumors occur below segment 25.
316
317 3.1 Group wise analysis
318 The results from the mixed model analysis confirmed our hypotheses. We expected FD to
319 Inprove the detection of 316
317 3.1 Group wise analysis
318 The results from the mixed model analysis confirmed our hypothese
319 improve the detection of tumor-induced changes along the tract,
320 traditional EA or ADC measures. Eurthermore, we 317
318
319
320
321 317 3.1 Group wise analysis
318 The results from the mi:
319 improve the detection
320 traditional FA or ADC
321 peritumoral segments.
322 pathological hemisphere 319 improve the detection of tumor-induced changes along the tract, in combination with
320 traditional FA or ADC measures. Furthermore, we expected stronger effects in the
321 peritumoral segments. Our results show signif 320 traditional FA or ADC measures. Furthermore, we expected stronger effects in the
321 peritumoral segments. Our results show significant differences between healthy and
322 pathological hemispheres for ADC, FA, and FD i 321 peritumoral segments. Our results show significant differences between healthy and
322 peritumoral segments for ADC, FA, and FD in the peritumoral areas (Table 2). As
323 expected, these effects can be confirmed in the 322 pathological hemispheres for ADC, FA, and FD in the peritumoral areas (Table 2). As
323 expected, these effects can be confirmed in the peritumoral segments in all tested values
324 (Table 3). Fig. 4 & 5 illustrate sig Exercised, these effects can be confirmed in the peritumoral segments in all tested values
324 (Table 3). Fig. 4 & 5 illustrate significantly lower values in the pathological hemisphere
325 within the entire cohort and ev 324 (Table 3). Fig. 4 & 5 illustrate significantly lower values in the pathological hemisphere
325 within the entire cohort and even greater differences within the peritumoral segments for 325 within the entire cohort and even greater differences within the peritumoral segments for within the entire cohort and even greater differences within the peritumoral segments for 325 within the entire cohort and even greater differences with periturboral segments for $\frac{1}{2}$

326

53% and 76% specificity for ADC, FA and FD in that order, reflecting a higher sensitivity for
328 ADC and FA to tumor induced microstructural differences, whereas FD showed higher
329 specificity to local WM architecture c

328 ADC and FA to tumor induced microstructural differences, whereas FD showed higher
329 specificity to local WM architecture complexities or orientation dispersion.
330 Table 2. Results of linear mixed model analysis. Mo 329 specificity to local WM architecture complexities or orientation dispersion.
330
331 Table 2. Results of linear mixed model analysis. Models 1-3 show results for the entire CST
332 for FA, ADC and FD, models 4-6 for th 330
331 Table 2. Results of linear mixed model analysis. Models 1-3 show results f
332 for FA, ADC and FD, models 4-6 for the peritumoral segments respectively.
333 regression. coefficients for the fixed effect of hemisphe ---
331
332
333
334
335 332 for FA, ADC and FD, models 4-6 for the peritumoral segments respectively. The table shows
333 regression coefficients for the fixed effect of hemisphere and the intercept with their
334 respective standard error in bra FR, ADC and FR and FR and FR and Text is the person coefficients for the fixed effect of hemisphere and the intercept with their

334 respective standard error in brackets. Further, number of observations for each model, t regressive standard error in brackets. Further, number of observations for each model, the
335 log likelihood ratio, Akaike information criterion and Bayesian information criterion are
336 stated.

337

338
339
340
341
342 differences between the healthy and pathological hemispheres with respect to healthy
340 segments only, pathological segments only and healthy-pathological WM interface (range of
341 3 voxels) for tumor external as well as 340 segments only, pathological segments only and healthy-pathological WM interface (range of
341 3 voxels) for tumor external as well as internal segments (Fig. 7). The results indicate that
342 ADC is stronger altered wi 341 3 voxels) for tumor external as well as internal segments (Fig. 7). The results indicate that
342 ADC is stronger altered within the pathological WM area, while FA and FD show alterations
343 along the entire CST. Furt 342 ADC is stronger altered within the pathological WM area, while FA and FD show alterations
343 along the entire CST. Furthermore, FD shows stronger differences in the healthy-
345 5 7 Box plots of cohort mean of ADC FA 343 along the entire CST. Furthermore, FD shows stronger differences in the healthy-
344 pathological WM interface.
345 Fig. 7. Box plots of cohort mean of ADC, FA and FD differences between the healthy and
347 pathologica

345
346 Fig. 7. Box plots of cohort
347 pathological hemispheres w 346
347 347 Fig. 7. Box pathological hemispheres with respect to healthy segments only (A), pathological segments only (A), pathological segments 347 pathological hemispheres with respect to healthy segments only (A), pathological segments

348

349 (D).
350
351 3.2 Subject-specific analysis
352 The differences are illustrated by means of two example cases (Fig. 8 and Table 3). Four
353 further case-specific examples are given in the supplementary materials (suppl 350
351 3.2 .
352 The
353 furtl
354 1-4 ---
351
352
353
354
355 352 The differences are illustrate
353 further case-specific example
354 1-4 & supplementary Tables
355 Case A: This patient in his 80
356 A sudden weakness in the le 353 further case-specific examples are given in the supplementary materials (supplementary Fig. 354 1-4 & supplementary Tables 1-4). The exemplary cases were randomly selected by a script.
355 Case A: This patient in his 8 354 1-4 & supplementary Tables 1-4). The exemplary cases were randomly selected by a script.
355 Case A: This patient in his 80's was brought to our emergency room with suspected stroke.
356 A sudden weakness in the legs h Case A: This patient in his 80's was brought to our emergency room with suspected stroke.
356 A sudden weakness in the legs had occurred, causing the patient to collapse without losing
357 consciousness. Furthermore, it wa 356 Case A: The S: The Per 357 consciousness. Furthermore, it was reported that the patient had been suffering from
358 dizziness for several weeks. Conventional MRI confirmed a left parietal mass with extensive
359 perifocal edema. The patient was dizziness for several weeks. Conventional MRI confirmed a left parietal mass with extensive
359 perifocal edema. The patient was diagnosed with a left postcentral WHO grade IV
360 glioblastoma and right leg emphasized hemi 359 perifocal edema. The patient was diagnosed with a left postcentral WHO grade IV
360 glioblastoma and right legemphasized hemiparesis. The indication for resection of the mass
361 was given.
362 Case B: This patient in

350 glioblastoma and right leg emphasized hemiparesis. The indication for resection of the mass
361 was given.
362 Case B: This patient in his 60's presented with a several weeks history of dysesthesia in his
363 left arm 361 was given.
362 Case B: This patient in his 60's presented with a several weeks history of dysesthesia in his
363 left arm and right hand with associated arm weakness. He also felt insecure when walking
364 and suffered ²
362 Case B: Thi
363 left arm an
365 frontal ma
365 frontal ma 363 Left arm and right hand with associated arm weakness. He also felt insecure when walking
364 and suffered from a general weakness. Conventional MRI confirmed the presence of a right
365 frontal mass. Following this, th 364 and suffered from a general weakness. Conventional MRI confirmed the presence of a right
365 frontal mass. Following this, the patient was referred to our clinic. The patient was
366 diagnosed with a complex focal seiz 365 frontal mass. Following this, the patient was referred to our clinic. The patient was diagnosed with a complex focal seizure with right precentral WHO grade IV glioblastoma and Todd's paresis which included transient l 366 diagnosed with a complex focal seizure with right precentral WHO grade IV glioblastoma
367 and Todd's paresis which included transient left hemiparesis. The indication for resection of
368 the mass was given.
369 Our r 367 and Todd's paresis which included transient left hemiparesis. The indication for resection of
368 the mass was given.
369 Our results show significant differences between healthy and pathological hemispheres in
371 FD

367 and Todd's paresis which included transient left hemiparesis. The indication for resection of
368 the mass was given.
369 Our results show significant differences between healthy and pathological hemispheres in
371 FD 369
370 Our results show signal
371 FD over the entire CS
372 differences in FA over
373 In addition a signific ---
370
371
372
373 371 FD over the entire CST ($p < .01$ and $p < .01$) for both cases (Table 3). Case A shows significant differences in FA over the entire CST and in the peritumoral segments ($p < .01$ and $p < .01$).
373 In addition, a significa 372 differences in FA over the entire CST and in the peritumoral segments (p < .01 and p < .01).

373 In addition, a significant difference (p < .05) can be seen in the peritumoral area as well with

374 respect to ADC. H 373 In addition, a significant difference ($p < .05$) can be seen in the peritumoral area as well with
374 respect to ADC. However, case B shows no significant differences for ADC and FA, neither
375 between the entire heal The servent of ADC. However, case B shows no significant differences for ADC and FA, neither
375 between the entire healthy and pathological hemispheres nor in the peritumoral segments.
376 The values of the two hemisphere 375 between the entire healthy and pathological hemispheres nor in the peritumoral segments.
376 The values of the two hemispheres overlap here in the non-peritumoral area, similar to the
377 group wise results described a 376 The values of the two hemispheres overlap here in the non-peritumoral area, similar to the
377 group wise results described above. Case A shows less overlap for FA and FD, also in the
378 non-peritumoral segments, whil 377 group wise results described above. Case A shows less overlap for FA and FD, also in the
378 non-peritumoral segments, while ADC shows large overlap.
379 378 non-peritumoral segments, while ADC shows large overlap.
379

378 non-peritumoral segments, while ADC shows large overlap.

381 for case A (A) and B (B). The black lines indicate the peritumoral segments.
382
383 Table 3 (A-B). Results of linear mixed model analysis. Models 1-3 show results for the entire
384 CST for FA, ADC, and FD, models 4-6 382
383 Table 3 (A-B). Results of linear mixed model analysis. Models 1-3 show res
384 CST for FA, ADC, and FD, models 4-6 for the peritumoral segments respe
385 shows regression coefficients for the fixed effect of hemisp ---
383
384
385
386
387 384 CST for FA, ADC, and FD, models 4-6 for the peritumoral segments respectively. The table
385 shows regression coefficients for the fixed effect of hemisphere and the intercept with their
386 respective standard error i 385 shows regression coefficients for the fixed effect of hemisphere and the intercept with their
386 respective standard error in brackets. Further, number of observations for each model, the
387 log likelihood ratio, Aka 386 respective standard error in brackets. Further, number of observations for each model, the
387 log likelihood ratio, Akaike information criterion and Bayesian information criterion are
388 stated.
389 Table 3A. 1386 respective standard error in brackets. Further, number of observations for each model, the
1387 log likelihood ratio, Akaike information criterion and Bayesian information criterion are
1383 stated.
1389 Table 3A.

390

391

392
393
394
395 392 4. Discussion
393 Morbia
394 impairment
395 pathological \
396 tractography
397 recent vears mortune of relevant WM. Neuroimaging-based characterization of the healthy-
393 Morbidity due to brain territorial for an interface area is therefore crucial for neurosurgical planning.
396 Tractography has seen a widespre 399 measured by tensor-based scalar values is particularly challenging in regions with crossing 396 tractography has seen a widespread adoption in clinical neuroscience and practice in the
397 recent years. Especially the combination of TMS and DTI for motor function-informed
398 tractography has shown promising resu Example 2012 tractography has shown promising results. Yet, the interpretation of differences as
398 tractography has shown promising results. Yet, the interpretation of differences as
399 measured by tensor-based scalar v 398 tractography has shown promising results. Yet, the interpretation of differences as
399 measured by tensor-based scalar values is particularly challenging in regions with crossing
300 fibers, since tensors reflect only 399 measured by tensor-based scalar values is particularly challenging in regions with crossing
300 fibers, since tensors reflect only the main diffusion direction (Jeurissen et al., 2013; D.
301 Raffelt et al., 2012). Bec 399 measured by tensor-based scalar values is paralalarly enamologing in regions financialized.

399 fibers, since tensors reflect only the main diffusion direction (Jeurissen et al., 2013; D.

399 fiber populations presen 401 Raffelt et al., 2012). Because the tensor representation is not able to distinguish crossing
402 fiber populations present in the majority of the WM voxels, FA offers limited opportunities
403 to quantitatively study W 402 fiber populations present in the majority of the WM voxels, FA offers limited opportunities
403 to quantitatively study WM integrity (Jeurissen et al., 2013; Van Hecke et al., 2016).
404 Nevertheless, diffusion anisotr 403 to quantitatively study WM integrity (Jeurissen et al., 2013; Van Hecke et al., 2016).
404 Nevertheless, diffusion anisotropy can provide unique information about axonal anomalies
405 (Mori & Tournier, 2014) as it decr About the Mevertheless, diffusion anisotropy can provide unique information about axonal anomalies

405 (Mori & Tournier, 2014) as it decreases as a consequence of loss of coherence in the

406 preferred main diffusion dir 405 (Mori & Tournier, 2014) as it decreases as a consequence of loss of coherence in the
406 preferred main diffusion direction (Soares et al., 2013). In this context, studies also show
407 that ADC is generally higher in example in the term of the term of the process of the serverse of the serverse of the serverse also show
407 that ADC is generally higher in damaged tissue due to increased free diffusion. This suggests
408 that we can com 407 that ADC is generally higher in damaged tissue due to increased free diffusion. This suggests
408 that we can compare values of above mentioned metrics with a population average in order
409 to determine whether they a 408 that we can compare values of above mentioned metrics with a population average in order
409 to determine whether they are unusually high or low, e.g. by comparing the subject-specific
410 values of WM pathways of the to determine whether they are unusually high or low, e.g. by comparing the subject-specific

410 values of WM pathways of the healthy hemisphere with those of the pathological

411 hemisphere or compare group-wise patholog For the termine whether they are unusually high or low, e.g. by comparing the comparity or permits values of WM pathways of the healthy hemisphere with those of the pathological

410 the emisphere or compare group-wise pat

411 hemisphere or compare group-wise pathological populations with healthy ones (Mori &
412 Tournier, 2014).
413 It has already been confirmed that many voxels along the CST contain considerable
414 contributions of multip 412 Tournier, 2014).
413 It has already been confirmed that many voxels along the CST contain considerable
414 contributions of multiple fiber populations (Farquharson et al., 2013; Petersen et al., 2017).
415 Nevertheless 413 It has almed the state of the state of the 415 Nevertheless, or
415 Nevertheless, or
416 healthy and path
417 found in the gro 414 contributions of multiple fiber populations (Farquharson et al., 2013; Petersen et al., 2017).
415 Nevertheless, our results indicate more significant segment-wise differences between the
416 healthy and pathological h Movertheless, our results indicate more significant segment-wise differences between the

healthy and pathological hemispheres for FA and ADC in comparison to FD. This result was

found in the group and individual tests. T 416 healthy and pathological hemispheres for FA and ADC in comparison to FD. This result was
417 found in the group and individual tests. The investigation of other pathways may result in
418 another order for the sensitiv 417 found in the group and individual tests. The investigation of other pathways may result in
418 another order for the sensitivity and specificity of the metrics due to, for instance, different
419 contributions of multi 418 another order for the sensitivity and specificity of the metrics due to, for instance, different
419 contributions of multiple fiber populations or extra axonal signal.
420
4.1 FD metrics in clinical settings 419 contributions of multiple fiber populations or extra axonal signal.
420
421 **4.1 FD metrics in clinical settings**

420
421 **4.1 FD metrics in clinical settings** 421
|
| 421 4.1 FD metrics in clinical settings

422 423 analysis, FD, which uses higher-order dMRI models such as FODs to analyze differences
424 along WM pathways, allows to consider multiple fiber populations within a voxel. Multiple
425 studies for group-wise statistical 424 along WM pathways, allows to consider multiple fiber populations within a voxel. Multiple
425 studies for group-wise statistical analysis of dMRI measures were published earlier (D.
426 Raffelt et al., 2012; D. A. Raff 425 studies for group-wise statistical analysis of dMRI measures were published earlier (D.
426 Raffelt et al., 2012; D. A. Raffelt et al., 2015; D. A. Raffelt et al., 2017). In contrast to these
427 group-wise study desig For a Raffelt et al., 2012; D. A. Raffelt et al., 2015; D. A. Raffelt et al., 2017). In contrast to these
427 group-wise study designs, we used FD for an individual assessment of a specific tract for
428 clinical validatio group-wise study designs, we used FD for an individual assessment of a specific tract for
428 clinical validation. However, the presented higher sensitivity of ADC and FA indicates that
429 these metrics are more appropria designation. However, the presented higher sensitivity of ADC and FA indicates that
429 dinical validation. However, the presented higher sensitivity of ADC and FA indicates that
430 de due to the fact that FD has underper these metrics are more appropriate and robust for peritumoral analysis. However, this may
430 be due to the fact that FD has underperformed due to insufficient raw data. This finding
431 highlights the need for better dMRI 430 be due to the fact that FD has underperformed due to insufficient raw data. This finding
431 highlights the need for better dMRI quality in clinical routine to be able to integrate
432 advanced neuroimaging methods int 431 bighlights the need for better dMRI quality in clinical routine to be able to integrate
432 advanced neuroimaging methods into clinical workflows. The discrepancy between clinical
433 scan quality and advanced neuroima 432 advanced neuroimaging methods into clinical workflows. The discrepancy between clinical
433 scan quality and advanced neuroimaging highlights the need to optimize raw data
434 acquisition in order to leverage advanced 433 scan quality and advanced neuroimaging highlights the need to optimize raw data
434 acquisition in order to leverage advanced neuroimaging modalities and methods into the
435 clinical workflow (Farquharson et al., 201 acquisition in order to leverage advanced neuroimaging modalities and methods into the

435 clinical workflow (Farquharson et al., 2013; Jeurissen, Tournier, Dhollander, Connelly, &

436 Sijbers, 2014a).

937 Cur results d

435 clinical workflow (Farquharson et al., 2013; Jeurissen, Tournier, Dhollander, Connelly, &
436 Sijbers, 2014a).
437 Our results demonstrate the feasibility of FD along-tract analysis as a tool to describe
438 subject-an 436 Sijbers, 2014a).
437 Our results demonstrate the feasibility of FD along-tract analysis as a tool to describe
438 subject-and tract-specific tumor-induced changes. Moreover, our results demonstrate the
440 designed for 436 Sijbers, 2014a).
437 Our resu
438 subject-and trae
440 designed for gr
441 analyses are ser subject-and tract-specific tumor-induced changes. Moreover, our results demonstrate the

439 addition of further information to that obtained only via ADC or FA. Earlier fixel studies,

440 designed for group wise analysis and addition of further information to that obtained only via ADC or FA. Earlier fixel studies,

440 designed for group wise analysis of pathology-related effects, demonstrated that fixel-

441 analyses are sensitive to WM designed for group wise analysis of pathology-related effects, demonstrated that fixel-

441 analyses are sensitive to WM changes in a variety of pathologies (D. A. Raffelt et al., 2015; D.

442 A. Raffelt et al., 2017). I 445 in relation to correctly predict healthy segments is particularly relevant for presurgical 442 A. Raffelt et al., 2017). In this study, we focused on subject-specific analyses, which showed
443 higher sensitivity for ADC and FA, but higher specificity for FD. These findings are in line with
444 other studies (Ch He considered the study of a the study, we focused on subject-specific analyses, which with the other studies (Chamberland et al., 2019; Mormina et al., 2015). The higher specificity of FD in relation to correctly predict 1444 other studies (Chamberland et al., 2019; Mormina et al., 2015). The higher specificity of FD.

145 in relation to correctly predict healthy segments is particularly relevant for presurgical

146 analysis and intraoper 445 in relation to correctly predict healthy segments is particularly relevant for presurgical
446 analysis and intraoperative navigation in relation to risk assessment, but also for
447 retrospective evaluation or outcome analysis and intraoperative navigation in relation to risk assessment, but also for

447 retrospective evaluation or outcome prediction models.

448 **4.2 ADC, FA and FD characteristics in brain tumor patients**

450 In both

The analysis and integrals and the relationships and the relationships and the state of the relation of the state of the state of the state of t 448
449 **4.2 ADC, FA and FD characteristics in brain tumor patier**
450 In both cases subject-specific differences betwee
451 hemispheres can be seen in the tumorous segments. Fu
452 non-nathological and nathological area c 449
450
451
452
453 449 4.2 ADC, FA and FD characteristics in brain tumor patients
450 In both cases subject-specific differences between
451 hemispheres can be seen in the tumorous segments. Further
452 non-pathological and pathological area 451 hemispheres can be seen in the tumorous segments. Furthermore, differences between the
452 non-pathological and pathological area can be seen as well in non-tumorous segments. This
453 result may indicate a global effe 141 homepoted can be seen to the tumorous segments. This
1452 hon-pathological and pathological area can be seen as well in non-tumorous segments. This
1453 result may indicate a global effect of gliomas on the entire CST 1442 non-pathological and pathological area can be seen as well in non-tumorous segments. The
1453 result may indicate a global effect of gliomas on the entire CST and neural connectivity, $\frac{1}{2}$ result may indicate a global effect of global effect of gliomas on the entire CST and neural connectivity,

454 455 to FD. The results are consistent with the expected behavior of the different diffusion
456 measures: ADC was higher in the pathological hemispheres which is attributed to the
457 damaged tissue leading to increased di measures: ADC was higher in the pathological hemispheres which is attributed to the
457 damaged tissue leading to increased diffusion. This finding might reflect the tumor-related
458 degression of WM integrity, the edema damaged tissue leading to increased diffusion. This finding might reflect the tumor-related
458 degression of WM integrity, the edema surrounding the tumor and related increase of free-
459 water (Mormina et al., 2015). FA degression of WM integrity, the edema surrounding the tumor and related increase of free-

459 water (Mormina et al., 2015). FA and FD showed lower values in the pathological

460 hemispheres compared to the corresponding 1459 main (Mortham et al., 2015). The and FD shows hemispheres. This
1461 was result is consistent with the effect of the glioma-related loss of coherence in the preferred
1462 main diffusion directions (FA) and reduced fi Figure 1988

461 hemispheres consistent with the effect of the glioma-related loss of coherence in the preferred

462 main diffusion directions (FA) and reduced fiber density (FD). This might be explained by the

463 tumor main diffusion directions (FA) and reduced fiber density (FD). This might be explained by the

tumor infiltration or edema affecting the CST (Mormina et al., 2015). The ADC and FD values

show a higher overlap of the healt 463 tumor infiltration or edema affecting the CST (Mormina et al., 2015). The ADC and FD values
464 show a higher overlap of the healthy and pathological hemispheres in the non-peritumoral
465 area.
467 4.3 limitations 463 tumor infiltration or edema affecting the CST (Mormina et al., 2015). The ADC and FD values 464 show a higher overlap of the healthy and pathological hemispheres in the non-peritumoral
465 area.
466 **4.3 Limitations**
468 Tractography suffers from a range of limitations that make its routine use problematic

465 area.
466 **4.3 Limitations**
468 Tractography suffers from a range of limitations that make its routine use problematic
469 (Schilling et al. 2019) It is well known that tractograms contain false positive (Maier-Hein et 466
467 **4.3 Li**l
468 Tracto
469 (Schill
470 al 20 467
468
469
470 467 4.5 Limitations
468 Tractography s
469 (Schilling et al.,
470 al., 2017) and f
471 cannot distingu (Schilling et al., 2019). It is well known that tractograms contain false positive (Maier-Hein et al., 2017) and false negative (Aydogan et al., 2018) streamlines. In addition, tractography cannot distinguish between affer 470 al., 2017) and false negative (Aydogan et al., 2018) streamlines. In addition, tractography
471 cannot distinguish between afferent and efferent connections, and streamlines may
472 terminate improperly (Tournier, 2019 471 cannot distinguish between afferent and efferent connections, and streamlines may
472 terminate improperly (Tournier, 2019). The dMRI data used for this study consists of a
473 typical clinical single-shell acquisition 1472 terminate improperly (Tournier, 2019). The dMRI data used for this study consists of a
1473 typical clinical single-shell acquisition, and is thus suboptimal for fiber density measurement
1474 due to incomplete attenu typical clinical single-shell acquisition, and is thus suboptimal for fiber density measurement
474 due to incomplete attenuation of apparent extra-axonal signal (D. Raffelt et al., 2012). In
475 this study we focused on t 474 due to incomplete attenuation of apparent extra-axonal signal (D. Raffelt et al., 2012). In
475 this study we focused on the CST. Further studies could integrate a variety of fiber bundles
476 to investigate the need f 475 this study we focused on the CST. Further studies could integrate a variety of fiber bundles
476 to investigate the need for FD in along-tract statistical analysis.
477 5. Conclusions
479 Our results show that the dire

1999 the Controller of the CST. Furthermannel on the CST. Furthermannel of the CST.
1999 **5. Conclusions**
1999 Our results show that the direct comparison between healthy and pathological hemispheres
1809 is sensitive to g 477
478 **5. Conclusions**
479 Our results show that the direct comparison between healthy a
480 is sensitive to glioma-induced changes in structural integrit
481 different dMRI derived metrics. In contrast to our hypothesis 478
479
480
481
482 478 5. Conclusions
479 Our results sho
481 different dMRI
482 analysis, FD dic
483 indicating tume 480 is sensitive to glioma-induced changes in structural integrity of the CST measured by
481 different dMRI derived metrics. In contrast to our hypothesis, according to our data and
482 analysis, FD did not outperform FA 481 different dMRI derived metrics. In contrast to our hypothesis, according to our data and
482 analysis, FD did not outperform FA or ADC and all three metrics showed similar results for
483 indicating tumor-induced chang analysis, FD did not outperform FA or ADC and all three metrics showed similar results for
483 indicating tumor-induced changes of the CST. This finding highlights the need for better
484 scans in clinical routine if one w 483 indicating tumor-induced changes of the CST. This finding highlights the need for better
484 scans in clinical routine if one wants to introduce advanced neuroimaging modalities into
485 clinical workflows. 1484 scans in clinical routine if one wants to introduce advanced neuroimaging modalities into

1485 clinical workflows. 1445 clinical workflows.
485 clinical workflows.

486

-
- 487
488
489
490
491 487 Funding
488 L. F. and
489 Image S
491 Support 1
492 Acknowl 1989 Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG, German
190 Research Foundation) under Germany's Excellence Strategy – EXC 2025. T.R. received
191 support from the Finnish Cultural Foundation.

- 490 Research Foundation) under Germany's Excellence Strategy EXC 2025. T.R. received
491 support from the Finnish Cultural Foundation.
492 Acknowledgements
493 This work was supported by the DFG (EXC 2025). The views ex
-

-
- 491 support from the Finnish Cultural Foundation.
492 **Acknowledgements**
493 This work was supported by the DFG (EXC 2025). The views expressed are those of the
494 author(s) and not necessarily those of the DFG. We thank 492 **Acknowledgements**
493 This work was supported by the DFG (EXC 2
494 author(s) and not necessarily those of the DFG
495 TMS-mappings. 492 Acknowledgements
493 This work was supp
494 author(s) and not ne
495 TMS-mappings.
496 Competing interests 494 author(s) and not necessarily those of the DFG. We thank Heike Schneider for the numerous
495 TMS-mappings.
496 **Competing interests**
497 **Competing interests**
-
-

- 495 TMS-mappings.
496
497 **Competing interests**
498 The authors report no competing interests.
499 496
497 **Competing inter**
498 The authors rep
499
500 497
498
499
500
501 497 Competing interests
498 The authors report no
500
501 **References**
502 Andersson L.L. Skari
-

- 499
500
501 **References**
502 Andersson, J. L., Skare, S., & Ashburner, J. (2
503 spin-echo echo-planar images: appli 500
501
502
503
504
505 501
502
503
504
505
506
- 502 Andersson,
503 spin-
504 20(2
505 Andersson,
506 Tow:
507 diffu 503 spin-echo echo-planar images: application to diffusion tensor imaging. Neuroimage,
504 20(2), 870-888. doi:10.1016/S1053-8119(03)00336-7
505 Andersson, J. L. R., Graham, M. S., Drobnjak, I., Zhang, H., Filippini, N., & Sos Spin-echo-echo-planar miages: application to diffusion tensor imaging. Neuroimage,

504 20(2), 870-888. doi:10.1016/S1053-8119(03)00336-7

505 Andersson, J. L. R., Graham, M. S., Drobnjak, I., Zhang, H., Filippini, N., 20(2), 870-888. doi:10.1016/31033-0113(03)00330-7
505 Andersson, J. L. R., Graham, M. S., Drobnjak, I., Zhang, H., Fil
506 Towards a comprehensive framework for movement
507 diffusion MR images: Within volume movement
618 Towards a comprehensive framework for movement and distortion correction of
507 diffusion MR images: Within volume movement. *Neuroimage, 152*, 450-466.
508 doi:10.1016/j.neuroimage.2017.02.085
509 Avants, B. B., Tustison,
- diffusion MR images: Within volume movement. *Neuroimage, 152*, 450-466.
508 doi:10.1016/j.neuroimage.2017.02.085
509 Avants, B. B., Tustison, N. J., Song, G., Cook, P. A., Klein, A., & Gee, J. C. (2011). A
510 reproducibl
- doi:10.1016/j.neuroimage.2017.02.085
509 Avants, B. B., Tustison, N. J., Song, G., Cook, P. A., Klein, A., & Gee, J. C. (2011). A
510 reproducible evaluation of ANTs similarity metric performance in brain image
511 registr Avants, B. B., Tustison, N. J., Song, G., Coo
510 reproducible evaluation of ANTs sim
511 registration. Neuroimage, 54(3), 2033-2
512 Aydogan, D. B., Jacobs, R., Dulawa, S., Thompso
513 (2018). When tractography meets trac Formance in brain, Perroducible evaluation of ANTs similarity metric performance in brain image

stration. *Neuroimage, 54*(3), 2033-2044. doi:10.1016/j.neuroimage.2010.09.025

Aydogan, D. B., Jacobs, R., Dulawa, S., Thomp registration. *Neuroimage, 54*(3), 2033-2044. doi:10.1016/j.neuroimage.2010.09.025

512 Aydogan, D. B., Jacobs, R., Dulawa, S., Thompson, S. L., Francois, M. C., Toga, A. W., ... Shi, Y.

513 (2018). When tractography meet Aydogan, D. B., Jacobs, R., Dulawa, S., Thompson, S. L., Francois, M. C., Toga, A. W., ... Shi, \

512 Aydogan, D. B., Jacobs, R., Dulawa, S., Thompson, S. L., Francois, M. C., Toga, A. W., ... Shi, \

513 (2018). When tra 513 (2018). When tractography meets tracer injections: a systematic study of trends and
514 (2018). When tractography meets tracer injections: a systematic study of trends and
514 2858. doi:10.1007/s00429-018-1663-8
516 Ba
-
- variation sources of diffusion-based connectivity. *Brain Struct Funct, 223*(6), 2841-

515 2858. doi:10.1007/s00429-018-1663-8

516 Basser, P. J., Mattiello, J., & LeBihan, D. (1994). MR diffusion tensor spectroscopy and
 variation sources of diffusion-based connectivity. Brain Struct Funct, 223(6), 2041-

2858. doi:10.1007/s00429-018-1663-8

516 Basser, P. J., Mattiello, J., & LeBihan, D. (1994). MR diffusion tensor spectroscopy and

imagi 816 Basser, P. J., Mattiello, J., & LeBihan, D. (19)

517 imaging. *Biophys J, 66*(1), 259-267. doi:

518 Chamberland, M., Raven, E. P., Genc, S., Duffy,

519 K. (2019). Dimensionality reduction

520 tractometry of the hum 517 Imaging. *Biophys J, 66*(1), 259-267. doi:10.1016/S0006-3495(94)80775-1
518 Chamberland, M., Raven, E. P., Genc, S., Duffy, K., Descoteaux, M., Parker, G. D., . . . Jones, D.
520 K. (2019). Dimensionality reduction of minging. Biophys J, 66(1), 253-267. doi:10.1016/30000-3435(34)00773-1

518 Chamberland, M., Raven, E. P., Genc, S., Duffy, K., Descoteaux, M., Parker, G. D.,

520 K. (2019). Dimensionality reduction of diffusion MRI measur K. (2019). Dimensionality reduction of diffusion MRI measures for improved
520 tractometry of the human brain. Neuroimage, 200, 89-100.
521 doi:10.1016/j.neuroimage.2019.06.020
522 Colby, J. B., Soderberg, L., Lebel, C., D
- 520 tractometry of the human brain. Neuroimage, 200, 89-100.
521 doi:10.1016/j.neuroimage.2019.06.020
522 Colby, J. B., Soderberg, L., Lebel, C., Dinov, I. D., Thompson, P. M., & Sowell, E. R. (2012).
523 Along-tract stati For the human brain. Neuroimage, 200, 89-100.
521 doi:10.1016/j.neuroimage.2019.06.020
522 Colby, J. B., Soderberg, L., Lebel, C., Dinov, I. D., Thompson, P. M., & Sowell, E. R. (2012).
523 Along-tract statistics allow for 522 Colby, J. B., Soderberg, L., Lebel, C., Dinov, I.
523 Along-tract statistics allow for enhance
524 3227-3242. doi:10.1016/j.neuroimage.2 S23 Along-tract statistics allow for enhanced tractography analysis. Neuroimage, 59(4), 3227-3242. doi:10.1016/j.neuroimage.2011.11.004 523 Along-tract statistics allow for emlanced tractography analysis. Neurolingge, $55(4)$,
 $3227-3242$. doi:10.1016/j.neuroimage.2011.11.004 524 3227-3242. doi:10.1016/j.neuroimage.2011.11.004

Example is thold and the USMRM Workshop on Breaking the Barriers of
525 estimation from single-shell or multi-shell diffusion MR data without a co-registered
527 T1 image. Paper presented at the ISMRM Workshop on Breaking Estimation from single-shell or multi-shell diffusion MR data whilout a co-registered
528 Diffusion MRI, At Lisbon, Portugal, Volume: pp. 5, Lisbon. Conference Paper
6529 retrieved from
530 Farquharson, S., Tournier, J. D.

- For the Internal of the ISMRM Workshop on Breaking the Barriers of
528 Diffusion MRI, At Lisbon, Portugal, Volume: pp. 5, Lisbon. Conference Paper
530 Farquharson, S., Tournier, J. D., Calamante, F., Fabinyi, G., Schneider
- France of Farquharson, S., Tournier, J. D., Calamante, F., Fabinyi, G., Schneider-Kolsky, M., Jackson, G.

530 Farquharson, S., Tournier, J. D., Calamante, F., Fabinyi, G., Schneider-Kolsky, M., Jackson, G.

531 D., & Conn 530 Farquharson, S., Tourn
531 D., & Connelly,
532 beyond DTI. J N
533 Fekonja, L. S., Wang, Z
534 (2020). Code u
535 primary motor
536 Grabner, G., Janke, A 531 D., & Connelly, A. (2013). White matter fiber tractography: why we need to move
532 beyond DTI. J Neurosurg, 118(6), 1367-1377. doi:10.3171/2013.2.JNS121294
533 Fekonja, L. S., Wang, Z., Aydogan, D. B., Roine, T., Enge
- Example 19 D. F. A. (2010). The University of the USD-1377. doi:10.3171/2013.2.JNS121294

532 Fekonja, L. S., Wang, Z., Aydogan, D. B., Roine, T., Engelhardt, M., Dreyer, F. R., . . . Picht, T.

534 (2020). Code used in ar Example 11. J Neurosurg, 118(6), 1387-1377. doi:10.3171/2013.2.JNS121234

533 Fekonja, L. S., Wang, Z., Aydogan, D. B., Roine, T., Engelhardt, M., Dreyer, F. R., ...

534 (2020). Code used in article "CSD-based metric for 534 (2020). Code used in article "CSD-based metric for along-tract statistical analysis in
535 primary motor tumor patients". doi:10.5281/zenodo.3732349
536 Grabner, G., Janke, A. L., Budge, M. M., Smith, D., Pruessner, J. primary motor tumor patients". doi:10.5281/zenodo.3732349

536 Grabner, G., Janke, A. L., Budge, M. M., Smith, D., Pruessner, J., & Collins, D. L. (2006).

537 Symmetric atlasing and model based segmentation: an applicatio Grabner, G., Janke, A. L., Budge, M. M., Smith, D., Pruessner, J., 8
537 Symmetric atlasing and model based segmentation: an
6538 hippocampus in older adults. Med Image Comput Comput Assi.
539 Jenkinson, M., Beckmann, C. F
-
- Sannetric atlasing and model based segmentation: an application to the

hippocampus in older adults. *Med Image Comput Comput Assist Interv, 9*(Pt 2), 58-66.

Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W. mippocampus in older adults. *Med Image Comput Comput Assist Interv, 9*(Pt 2), 58-66.

539 Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W., & Smith, S. M. (2012). Fsl.

540 *Neuroimage, 62*(2), 782-790. doi Impocampus in older adults. *Med Image Comput Comput Assist Interv, 9*(122), 58-66.

539 Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W., & Smith, S. M. (2012). Fsl.

540 *Neuroimage, 62*(2), 782-790. doi:1 Neuroimage, 62(2), 782-790. doi:10.1016/j.neuroimage.2011.09.015

541 Jeurissen, B., Leemans, A., Tournier, J. D., Jones, D. K., & Sijbers, J. (2013). Investigating the

542 prevalence of complex fiber configurations in wh S40 Neuroimage, 62(2), 782-790. doi.10.1016/j.neuroimage.2011.09.015

541 Jeurissen, B., Leemans, A., Tournier, J. D., Jones, D. K., & Sijbers, J. (2013). I

prevalence of complex fiber configurations in white matter tissu Factory Productor of Complex fiber configurations in white matter tissue with diffusion

magnetic resonance imaging. Hum Brain Mapp, 34(11), 2747-2766.

doi:10.1002/hbm.22099

S45 Jeurissen, B., Tournier, J. D., Dhollander
- magnetic resonance imaging. Hum Brain Mapp, 34(11), 2747-2766.

544 doi:10.1002/hbm.22099

545 Jeurissen, B., Tournier, J. D., Dhollander, T., Connelly, A., & Sijbers, J. (2014a). Multi-tissue

546 constrained spherical de
- magnetic resonance imaging. Hum Brum Mapp, 34(11), 2747-2766.

544 doi:10.1002/hbm.22099

545 Jeurissen, B., Tournier, J. D., Dhollander, T., Connelly, A., & Sijbers, J. (2014a). Multi-tissue

546 constrained spherical dec 545 Jeurissen, B., Tournier, J. D., Dh
546 constrained spherical de
547 MRI data. *Neuroimage, 1*
548 Jeurissen, B., Tournier, J. D., Dh
550 MRI data. *Neuroimage, 1*
551 Kellner, E., Dhital, B., Kiselev, V 546 constrained spherical deconvolution for improved analysis of multi-shell diffusion
547 MRI data. *Neuroimage, 103, 4*11-426. doi:10.1016/j.neuroimage.2014.07.061
548 Jeurissen, B., Tournier, J. D., Dhollander, T., Conn
- MRI data. *Neuroimage, 103, 4*11-426. doi:10.1016/j.neuroimage.2014.07.061

548 Jeurissen, B., Tournier, J. D., Dhollander, T., Connelly, A., & Sijbers, J. (2014b). Multi-tissue

550 MRI data. *Neuroimage, 103, 4*11-426. d Fara Matter Mini data. Neuroimage, 103, 411-420. doi:10:1010/j.neuroimage.2014:07:001

548 Jeurissen, B., Tournier, J. D., Dhollander, T., Connelly, A., & Sijbers, J. (2014b). Mult

550 MRI data. Neuroimage, 103, 411-426. constrained spherical deconvolution for improved analysis of multi-shell diffusion
550 MRI data. *Neuroimage, 103, 4*11-426. doi:10.1016/j.neuroimage.2014.07.061
551 Kellner, E., Dhital, B., Kiselev, V. G., & Reisert, M. (
- MRI data. *Neuroimage, 103, 411-426.* doi:10.1016/j.neuroimage.2014.07.061

551 Kellner, E., Dhital, B., Kiselev, V. G., & Reisert, M. (2016). Gibbs-ringing artifact removal

552 based on local subvoxel-shifts. *Magn Reson* MRI data. Neuromage, 103, 411-426. doi:10.10107_J.neuromage.2014.07.001
551 Kellner, E., Dhital, B., Kiselev, V. G., & Reisert, M. (2016). Gibbs-ringing artifact r
552 based on local subvoxel-shifts. *Magn Reson Med, 76*(552 based on local subvoxel-shifts. *Magn Reson Med, 76*(5), 1574-1581.
553 based on local subvoxel-shifts. *Magn Reson Med, 76*(5), 1574-1581.
553 krieg, S. M., Picht, T., Sollmann, N., Bahrend, I., Ringel, F., Nagarajan, based on local subvokel-shifts. Magn Reson Med, 70(5), 1574-1581.

553 doi:10.1002/mrm.26054

554 Krieg, S. M., Picht, T., Sollmann, N., Bahrend, I., Ringel, F., Nagarajan, S. S., . . . Tarapore, P. E.

555 (2016). Resecti 554 Krieg, S. M., Picht, T., Sollmann, I
555 (2016). Resection of Mot
556 Motor Maps-Compariso
557 doi:10.3389/fonc.2016.0
558 Kuznetsova, A., Brockhoff, P. B.,
559 Linear Mixed Effects Mod
560 Leemans, A., & Jones, D. K. (2016). Resection of Motor Eloquent Metastases Aided by Preoperative nTMS-Based

556 Motor Maps-Comparison of Two Observational Cohorts. *Front Oncol, 6,* 261.

557 doi:10.3389/fonc.2016.00261

558 Kuznetsova, A., Brockhof
-
- Motor Maps-Comparison of Two Observational Cohorts. *Front Oncol, 6, 261.*
557 (doi:10.3389/fonc.2016.00261)
558 Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). ImerTest Package: Tests in
559 Linear Mixed Motor Maps-Comparison of Two Observational Conorts. *Front Oncol, 0, 201*.
557 doi:10.3389/fonc.2016.00261
558 Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). ImerTest Package: Tests in
569 Linear Mixed E 558 Kuznetsova, A., Brockhoff, P. B., & Cl
559 Linear Mixed Effects Models. 2
560 Leemans, A., & Jones, D. K. (2009).
561 subject motion in DTI
562 doi:10.1002/mrm.21890
563 Lefaucheur, J. P., & Picht, T. (2016).
564 using Linear Mixed Effects Models. 2017, 82(13), 26. doi:10.18637/jss.v082.i13

560 Leemans, A., & Jones, D. K. (2009). The B-matrix must be rotated when correcting for

561 subject motion in DTI data. *Magn Reson Med, 61*(6), 1 Linear Mixed Effects Models. 2017, 02(13), 20. doi:10.18637) 58. voo2.135
560 Leemans, A., & Jones, D. K. (2009). The B-matrix must be rotated when co
561 sobject motion in DTI data. *Magn Reson Med, 61*(6),
652 doi:10.100
- 561 subject motion in DTI data. *Magn Reson Med, 61*(6), 1336-1349.
562 doi:10.1002/mrm.21890
563 Lefaucheur, J. P., & Picht, T. (2016). The value of preoperative functional cortical mapping
564 using navigated TMS. *Neuro* Solution in DTI data. Magn Reson Med, 01(6), 1336-1349.

562 doi:10.1002/mrm.21890

563 Lefaucheur, J. P., & Picht, T. (2016). The value of preoperative functional cortical mapping

subject motion in DTI data. Magn Reson M 1963 Lefaucheur, J. P., & Picht, T. (20

564 using navigated

565 doi:10.1016/j.neucli.2016

566 Maier-Hein, K. H., Neher, P. F.,

567 Descoteaux, M. (2017). T

568 diffusion tractography. N

569 Mori, S., & Tournier, J. D
- Economic Material manipulation of the PINS. Neurophysiol Clin, 46(2), 125-133.

1655 doi:10.1016/j.neucli.2016.05.001

166 Maier-Hein, K. H., Neher, P. F., Houde, J. C., Cote, M. A., Garyfallidis, E., Zhong, J., ...

1667 Gost Chinagon Comparison Clin, 46(2), 125-133.

S65 doi:10.1016/j.neucli.2016.05.001

S66 Maier-Hein, K. H., Neher, P. F., Houde, J. C., Cote, M. A., Garyfallidis, E., Zhong, J., ...

Descoteaux, M. (2017). The challenge o 566 Maier-Hein, K. H., Neher, P. F., Houde,
567 Descoteaux, M. (2017). The challe
568 diffusion tractography. Nat Comm
569 Mori, S., & Tournier, J. D. (2014). Chapt
570 Imaging: Theory, Meaning, and Descoteaux, M. (2017). The challenge of mapping the human connectome based on
568 diffusion tractography. Nat Commun, 8(1), 1349. doi:10.1038/s41467-017-01285-x
569 Mori, S., & Tournier, J. D. (2014). Chapter 7 - New Image
- diffusion tractography. Nat Commun, 8(1), 1349. doi:10.1038/s41467-017-01285-x
569 Mori, S., & Tournier, J. D. (2014). Chapter 7 New Image Contrasts from Diffusion Tensor
570 Imaging: Theory, Meaning, and Usefulness of D onder tractography. Nat Commun, 0(1), 1349. doi:10.1030/s41407-017-01283-x
569 Mori, S., & Tournier, J. D. (2014). Chapter 7 - New Image Contrasts from Diffusion Tens
570 Imaging: Theory, Meaning, and Usefulness of DTI-Bas more, Theory, Meaning, and Usefulness of DTI-Based Image Contrast. In Imaging: Theory, Meaning, and Usefulness of DTI-Based Image Contrast. In $\frac{1}{\sqrt{2}}$ imaging: Theory, Meaning, and Usefulness of DTI-Based Image Contrast. In a

- minolation to Diffusion Tensor Imaging (Second Edition) (pp. 53-64). San Diego:

Academic Press.

Mormina, E., Longo, M., Arrigo, A., Alafaci, C., Tomasello, F., Calamuneri, A., . . . Granata, F.

(2015). MRI Tractography 573 Mormina, E., Longo, M.,
574 (2015). MRI Tra
575 Grade Gliomas P
576 Quantitative A
577 doi:10.3174/ajnr
578 Petersen, M. V., Lund, T
579 (2017). Probabili 1574 (2015). MRI Tractography of Corticospinal Tract and Arcuate Fasciculus in High-

575 Grade Gliomas Performed by Constrained Spherical Deconvolution: Qualitative and

576 Quantitative Analysis. *AJNR Am J Neuroradiol,*
- 574 (2015). MRI Tractography of Corticospinal Tract and Arcuate Fasciculus in High-Grade Gliomatical Analysis. ADNR Am J Neuroradiol, 36(10), 1853-1858.

575 Guantitative Analysis. ADNR Am J Neuroradiol, 36(10), 1853-1858.

577 Betersen, M. V., Lund, T. E., Sunde, N., Frandsen, J., Rosendal, F., Juul, N. Guantitative Analysis. AJNR Am J Neuroradiol, 30(10), 1633-1838.

577 doi:10.3174/ajnr.A4368

578 Petersen, M. V., Lund, T. E., Sunde, N., Frandsen, J., Rosendal, F., Juul, N., & Ostergaard, K.

579 (2017). Probabilistic v 578 Petersen, M. V., Lund, T. E., Sui
579 (2017). Probabilistic vers
580 subthalamic hyperdirect
581 deep brain stin
582 doi:10.3171/2016.4.JNS:
583 Picht, T., Frey, D., Thieme, S., K
584 motor cortex mapping 579 (2017). Probabilistic versus deterministic tractography for delineation of the cortico-
580 subthalamic hyperdirect pathway in patients with Parkinson disease selected for
581 deep brain stimulation. *J Neurosurg, 126*
- deep brain stimulation. J Neurosurg, 126(5), 1657-1668.

582 doi:10.3171/2016.4.JNS1624

583 Picht, T., Frey, D., Thieme, S., Kliesch, S., & Vajkoczy, P. (2016). Presurgical navigated TMS

584 motor cortex mapping improves
- 586 Picht, T., Schmidt, S., Brandt, S., Frey, D., Hannula, H., Neuvonen, T., . . . Suess, O. (2011).
587 Preoperative functional mapping for rolandic brain tumor surgery: comparison of Geep Brain stimulation. J Neurosurg, 120(5), 1657-1668.

1882 doi:10.3171/2016.4.JNS1624

Ficht, T., Frey, D., Thieme, S., Kliesch, S., & Vajkoczy, P. (2016). Presurgical navigated TMS

motor cortex mapping improves outcom 913 Picht, T., Frey, D., Thieme, S., Kliesc

584 motor cortex mapping improbervational study. J Neuroo

585 picht, T., Schmidt, S., Brandt, S., Fre

587 Preoperative functional map

588 navigated transcranial ma

589 Neuro motor cortex mapping improves outcome in glioblastoma surgery: a controlled

585 picht, T., Schmidt, S., Brandt, S., Frey, D., Hannula, H., Neuvonen, T., ... Suess, O. (2011).

587 Picht, T., Schmidt, S., Brandt, S., Frey, 585 observational study. *J Neurooncol, 126*(3), 535-543. doi:10.1007/s11060-015-1993-9
586 Picht, T., Schmidt, S., Brandt, S., Frey, D., Hannula, H., Neuvonen, T., ... Suess, O. (2011).
587 Preoperative functional mapping Fig. 120(3), 335-343. doi:10.1007/s11000-013-1993-9
586 Picht, T., Schmidt, S., Brandt, S., Frey, D., Hannula, H., Neuvonen, T., ... Suess, O. (2011).
587 Preoperative functional mapping for rolandic brain tumor surgery: c
- Preoperative functional mapping for rolandic brain tumor surgery: comparison of

588 navigated transcranial magnetic stimulation to direct cortical stimulation.
 Neurosurgery, 69(3), 581-588; discussion 588. doi:10.1227/ mavigated transcranial magnetic stimulation to direct cortical stimulation.

589 Naffelt, D., Tournier, J. D., Rose, S., Ridgway, G. R., Henderson, R., Crozier, S., ... Connelly, A.

591 (2012). Apparent Fibre Density: a n Meta Neurosurgery, 69(3), 581-588; discussion 588. doi:10.1227/NEU.0b013e3182181b89

590 Raffelt, D., Tournier, J. D., Rose, S., Ridgway, G. R., Henderson, R., Crozier, S., . . . Connelly, A.

591 (2012). Apparent Fibre De Raffelt, D., Tournier, J. D., Rose, S., Ridgway, G. R., Henderson, R., Crozier, S., ... Connelly, A. (2012). Apparent Fibre Density: a novel measure for the analysis of diffusion-
weighted magnetic resonance images. Neuroi
- 591 (2012). Apparent Fibre Density: a novel measure for the analysis of diffusion-
592 weighted magnetic resonance images. Neuroimage, 59(4), 3976-3994.
593 doi:10.1016/j.neuroimage.2011.10.045
594 Raffelt, D. A., Smith, R weighted magnetic resonance images. Neuroimage, 39(4), 3970-3994.

593 Raffelt, D. A., Smith, R. E., Ridgway, G. R., Tournier, J. D., Vaughan, D. N., Rose, S., ...

595 Connelly, A. (2015). Connectivity-based fixel enhance 894 Raffelt, D. A., Smith, R. E., Ridgway, G. R., To
595 Connelly, A. (2015). Connectivity-based
596 analysis of diffusion MRI measures in
597 117, 40-55. doi:10.1016/j.neuroimage.2
898 Raffelt, D. A., Tournier, J. D., Smi
- 598 Raffelt, D. A., Tournier, J. D., Smith, R. E., Vaughan, D. N., Jackson, G., Ridgway, G. R., &
599 Connelly, A. (2017). Investigating white matter fibre density and morphology using Connelly, A. (2015). Connectivity-based fixel enhancement: Whole-brain statistical

space analysis of diffusion MRI measures in the presence of crossing fibres. *Neuroimage,*

117, 40-55. doi:10.1016/j.neuroimage.2015.05.0 596 analysis of diffusion MRI measures in the presence of crossing fibres. *Neuroimage,*
597 117, 40-55. doi:10.1016/j.neuroimage.2015.05.039
598 Raffelt, D. A., Tournier, J. D., Smith, R. E., Vaughan, D. N., Jackson, G., manysis of diffusion MRI measures in the presence of crossing fibres. Mean omage,
597 and 117, 40-55. doi:10.1016/j.neuroimage.2015.05.039
598 Raffelt, D. A., Tournier, J. D., Smith, R. E., Vaughan, D. N., Jackson, G., Rid Example 117, 40-55. doi:10.1016/j.neuroimage.2015.05.05.

598 Raffelt, D. A., Tournier, J. D., Smith, R. E., Vaughan, D. N

599 Connelly, A. (2017). Investigating white matter fib

600 fixel-based analysis. Neuroimage,

60 Connelly, A. (2017). Investigating white matter fibre density and morphology using

580 fixel-based analysis. Neuroimage, 144(Pt A), 58-73.

601 doi:10.1016/j.neuroimage.2016.09.029

602 Riffert, T. W., Schreiber, J., Anwa
- 599 Fixel-based analysis. Neuroimage, 144(Pt A), 58-73.

691 Goi:10.1016/j.neuroimage.2016.09.029

692 Riffert, T. W., Schreiber, J., Anwander, A., & Knösche, T. R. (2014). Beyond fractional

693 anisotropy: extraction of Riffert, T. W., Schreiber, J., Anwander, A., 8

anisotropy: extraction of bundle-spec

604 models. Neuroimage, 100, 176-191. doi:

605 Roine, T., Jeurissen, B., Perrone, D., Aelterma

606 (2014). Isotropic non-white matter
- Fixel-based analysis. Weatermage, 144(Pt A), 58-73.

601 doi:10.1016/j.neuroimage.2016.09.029

602 Riffert, T. W., Schreiber, J., Anwander, A., & Knösche, T. R. (2014). Beyond fractional

anisotropy: extraction of bundle-s misotropy: extraction of bundle-specific structural metrics from crossing fiber

models. Neuroimage, 100, 176-191. doi:10.1016/j.neuroimage.2014.06.015

Roine, T., Jeurissen, B., Perrone, D., Aelterman, J., Leemans, A., Ph
- models. *Neuroimage, 100, 176-191. doi:10.1016/j.neuroimage.2014.06.015*
605 Roine, T., Jeurissen, B., Perrone, D., Aelterman, J., Leemans, A., Philips, W., & Sijbers, J.
606 (2014). Isotropic non-white matter partial volu models. *Neuroimage*, 100, 170-191. doi:10.1016/j.neuroimage.2014.00.013
605 Roine, T., Jeurissen, B., Perrone, D., Aelterman, J., Leemans, A., Philips, W., & S
606 (2014). Isotropic non-white matter partial volume effects Formal Acconvolution. Front Neuroinform, 8, 28. doi:10.3389/fninf.2014.00028

Roine, T., Jeurissen, B., Perrone, D., Aelterman, J., Philips, W., Leemans, A., & Sijbers, J.

(2015). Informed constrained spherical deconvolut
- deconvolution. *Front Neuroinform, 8,* 28. doi:10.3389/fninf.2014.00028

608 Roine, T., Jeurissen, B., Perrone, D., Aelterman, J., Philips, W., Leemans, A., & Sijbers, J.

609 (2015). Informed constrained spherical deconvo Roine, T., Jeurissen, B., Perrone, D., Aelterman, J., Philips, W., Leemans, A., (2015). Informed constrained spherical deconvolution (iCSD). *Med Imag*
609 (2015). Informed constrained spherical deconvolution (iCSD). *Med* (2015). Informed constrained spherical deconvolution (iCSD). *Med Image Anal, 24*(1),
610 269-281. doi:10.1016/j.media.2015.01.001
611 Rosenstock, T., Giampiccolo, D., Schneider, H., Runge, S. J., Bahrend, I., Vajkoczy, P. (2015). Informed constrained spherical deconvolution (iCSD). Med Image Andi, 24(1),

610 (16)-269-281. doi:10.1016/j.media.2015.01.001

611 (2017). Specific DTI seeding and diffusivity-analysis improve the quality and

613 For Ball Rosenstock, T., Giampiccolo, D., Schneider, H., Run

612 T. (2017). Specific DTI seeding and diffu

613 prognostic value of TMS-based determinist

614 *Clin, 16,* 276-285. doi:10.1016/j.nicl.2017.08

615 Rosenstoc T. (2017). Specific DTI seeding and diffusivity-analysis improve the quality and
613 prognostic value of TMS-based deterministic DTI of the pyramidal tract. Neuroimage
614 *Clin, 16*, 276-285. doi:10.1016/j.nicl.2017.08.01 prognostic value of TMS-based deterministic DTI of the pyramidal tract. Neuroimage
614 Clin, 16, 276-285. doi:10.1016/j.nicl.2017.08.010
615 Rosenstock, T., Grittner, U., Acker, G., Schwarzer, V., Kulchytska, N., Vajkoczy,
- 614 *Clin, 16, 276-285.* doi:10.1016/j.nicl.2017.08.010
615 Rosenstock, T., Grittner, U., Acker, G., Schwarzer, V., Kulchytska, N., Vajkoczy, P., & Picht, T.
616 (2017). Risk stratification in motor area-related glioma sur 615 Rosenstock, T., Grittner, U., Acker, G., Schwarzer, V., Ku (2017). Risk stratification in motor area-related 615 Rosenstock, T., Grittner, U., Acker, G., Schwarzer, V., Kulchytska, N., Vajkoczy, P., & Picht, T. 616 (2017). Risk stratification in motor area-related glioma surgery based on navigated

618 doi:10.3171/2016.4.JNS152896
619 Schilling, K. G., Nath, V., Hansen, C., Parvathaneni, P., Blaber, J., Gao, Y., ... Landman, B. A.
620 (2019). Limits to anatomical accuracy of diffusion tractography using modern
621 ap 619 Schilling, K. G., Nath, V., Hansen, C., Pa
620 (2019). Limits to anatomical
621 approaches. *Neuroimage, 185*, 1
622 Smith, R. E., Tournier, J. D., Calam
623 deconvolution informed filter
624 doi:10.1016/j.neuroimage.2 620 (2019). Limits to anatomical accuracy of diffusion tractography using modern
621 approaches. *Neuroimage*, 185, 1-11. doi:10.1016/j.neuroimage.2018.10.029
622 Smith, R. E., Tournier, J. D., Calamante, F., & Connelly, A 621 approaches. *Neuroimage, 185,* 1-11. doi:10.1016/j.neuroimage.2018.10.029
622 Smith, R. E., Tournier, J. D., Calamante, F., & Connelly, A. (2013). SIFT: Spherical-
623 doi:10.1016/j.neuroimage.2012.11.049
625 Soares, J example of tractograms. Meanoning and Solar Smith, R. E., Tournier, J. D., Calamante, F., & Connelly, A. (2013). SIFT: Spectom and the difference of the distribution informed filtering of tractograms. Neuroimage, 67, 2
doi 629 Tournier, J. D., Calamante, F., & Connelly, A. (2007). Robust determination of the fibre
630 **Source Setteman in Stand-** Connelly, Spherical-Tipson or Super-resolved G23 doi:10.1016/j.neuroimage.2012.11.049
625 Soares, J. M., Marques, P., Alves, V., & Sousa, N. (2013). A hitchhiker's guide to diffusion
626 tensor imaging. Front Neurosci, 7, 31. doi:10.3389/fnins.2013.00031
627 Tournier Soares, J. M., Marques, P., Alves, V., & Sousa
626 tensor imaging. Front Neurosci, 7, 31. do
627 Tournier, J. D. (2019). Diffusion MRI in the br
628 Reson Spectrosc, 112-113, 1-16. doi:10.1
629 Tournier, J. D., Calamante, 625 Soares, J. M., Marques, P., Alves, V., & Sousa, N. (2013). A hitchhiker's guide to diffusion
626 tensor imaging. Front Neurosci, 7, 31. doi:10.3389/fnins.2013.00031
627 Tournier, J. D. (2019). Diffusion MRI in the bra Fournier, J. D. (2019). Diffusion MRI in the brain - Theory and concepts.

For Reson Spectrosc, 112-113, 1-16. doi:10.1016/j.pnmrs.2019.03.001

Tournier, J. D., Calamante, F., & Connelly, A. (2007). Robust determinat

orie Fraction Spectrosc, 112-113, 1-16. doi:10.1016/j.pnmrs.2019.03.001

Fournier, J. D., Calamante, F., & Connelly, A. (2007). Robust determination of the fibre

Fraction distribution in diffusion MRI: non-negativity constrain Fournier, J. D., Calamante, F., & Connelly, A. (2007). Robust determin

629 Tournier, J. D., Calamante, F., & Connelly, A. (2007). Robust determin

630 orientation distribution in diffusion MRI: non-negativity constrair

6 631 spherical deconvolution. Neuroimage, 35(4), 1459-1472.
632 doi:10.1016/j.neuroimage.2007.02.016
633 Tournier, J. D., Calamante, F., Gadian, D. G., & Connelly, A. (2004). Direct estimation of the
634 fiber orientation d 631 spherical deconvolution. Neuroimage, 35(4), 1459-1472.
632 doi:10.1016/j.neuroimage.2007.02.016
633 Tournier, J. D., Calamante, F., Gadian, D. G., & Connelly, A. (2004). Direct estimation of the
634 fiber orientation d Salart Machine (acconvolution: Meanomage, 1990), 1999-1472.

632 doi:10.1016/j.neuroimage.2007.02.016

634 fiber orientation density function from diffusion-weighted MRI data using spherical

635 doi:10.1016/j.neuroimage, 633 Tournier, J. D., Calamante, F., Gadian, D. G., &
634 fiber orientation density function from
635 deconvolution. Neuroimage
636 doi:10.1016/j.neuroimage.2004.07.037
637 Tournier, J. D., Mori, S., & Leemans, A. (2011).
6 Framma, Figure orientation density function from diffusion-weighted MRI data using spherical
635 deconvolution. Neuroimage, 23(3), 1176-1185.
636 doi:10.1016/j.neuroimage.2004.07.037
637 Tournier, J. D., Mori, S., & Leeman deconvolution. Meuroimage, 23(3), 1176-1185.

636 doi:10.1016/j.neuroimage.2004.07.037

637 Tournier, J. D., Mori, S., & Leemans, A. (2011). Diffusion tensor imaging and beyond. Magn

638 Reson Med, 65(6), 1532-1556. doi:1 G36 doi:10.1016/j.neuroimage.2004.07.037
636 doi:10.1016/j.neuroimage.2004.07.037
637 Tournier, J. D., Mori, S., & Leemans, A. (2011). Diffusion tensor imaging and beyond. Magn
638 Reson Med, 65(6), 1532-1556. doi:10.1002/ 637 Tournier, J. D., Mori, S., & Leemans, A. (2011).
638 *Reson Med, 65*(6), 1532-1556. doi:10.10
639 Tournier, J. D., Smith, R., Raffelt, D., Tabbara, R
640 (2019). MRtrix3: A fast, flexible and o
641 processing and visua Frame, J. D., Mori, J., & Leemans, A. (2011). Diffusion tensor imaging and beyond. Magnetics Reson Med, 65(6), 1532-1556. doi:10.1002/mrm.22924

639 Tournier, J. D., Smith, R., Raffelt, D., Tabbara, R., Dhollander, T., Pie Fournier, J. D., Smith, R., Raffelt, D., Tabbara, R., Dhollander, T.
640 (2019). MRtrix3: A fast, flexible and open software fr
641 processing and visualisation. Neuroim
642 doi:10.1016/j.neuroimage.2019.116137
643 Tustiso (2019). MRtrix3: A fast, flexible and open software framework for medical image

641 processing and visualisation. Neuroimage, 202, 116137.

642 doi:10.1016/j.neuroimage.2019.116137

643 Tustison, N. J., Avants, B. B., Coo For the processing and visualisation. Neuroimage, 202, 116137.

642 doi:10.1016/j.neuroimage.2019.116137

643 Tustison, N. J., Avants, B. B., Cook, P. A., Zheng, Y., Egan, A., Yushkevich, P. A., & Gee, J. C.

644 (2010). N From Mathematical Meansline. The Mean-Mage, 202, 116137.

642 doi:10.1016/j.neuroimage.2019.116137

643 Tustison, N. J., Avants, B. B., Cook, P. A., Zheng, Y., Egan, A., Yushkevich, P. A., & Gee, J. C.

644 (2010). N4ITK: Tustison, N. J., Avants, B. B., Cook, P. A., Zheng
644 (2010). N4ITK: improved N3 bias correc
645 1320. doi:10.1109/TMI.2010.2046908
646 Van Hecke, W., Emsell, L., & Sunaert, S. (2014)
647 *Handbook* (1st ed. 2016. ed.).
6 644 (2010). N4ITK: improved N3 bias correction. *IEEE Trans Med Imaging, 29*(6), 1310-
645 (2010). N4ITK: improved N3 bias correction. *IEEE Trans Med Imaging, 29*(6), 1310-
646 Van Hecke, W., Emsell, L., & Sunaert, S. (20 (2010). N4ITK: improved N3 bias correction. IEEE Trans Med Imaging, 29(0), 1310-
645 (1320. doi:10.1109/TMI.2010.2046908)
646 (Ist ed. 2016. ed.).
647 (*Handbook* (1st ed. 2016. ed.).
648 (*Handbook* (1st ed. 2016. ed.).
6 646 Van Hecke, W., Emsell, L., & Sunaert, S. (647 *Handbook* (1st ed. 2016. ed.).
648 Veraart, J., Novikov, D. S., Christiaens, D., Ad
649 Denoising of diffusion MRI using rand
650 doi:10.1016/j.neuroimage.2016.08.016
651 For Calif Hecke, W., Emsell, L., & Sunaert, S. (2016). Diffusion Tensor Imaging A Practical
647 Handbook (1st ed. 2016. ed.).
648 Veraart, J., Novikov, D. S., Christiaens, D., Ades-Aron, B., Sijbers, J., & Fieremans, E. (2 France Corol (1st ed. 2010. ed.).
648 Veraart, J., Novikov, D. S., Christiaens
650 doi:10.1016/j.neuroimage.201
651 Veraart, J., Sijbers, J., Sunaert, S., Lee
652 squares estimation of diffusio
653 Neuroimage, 81, 335-346. Examples are the multiple provided in the matrix theory. Neuroimage, 142, 394-406.

650 doi:10.1016/j.neuroimage.2016.08.016

651 Veraart, J., Sijbers, J., Sunaert, S., Leemans, A., & Jeurissen, B. (2013). Weighted linear Benoising of diffusion MRI dising random matrix theory. Neuroimage, 142, 394-406.

650 doi:10.1016/j.neuroimage.2016.08.016

651 Veraart, J., Sijbers, J., Sunaert, S., Leemans, A., & Jeurissen, B. (2013). Weighted linear l Veraart, J., Sijbers, J., Sunaert, S., Leemans, A.,
652 squares estimation of diffusion MRI pa
653 *Neuroimage, 81*, 335-346. doi:10.1016/j
654 Vos, S. B., Jones, D. K., Jeurissen, B., Viergever,
655 complex white matter a 652 squares estimation of diffusion MRI parameters: strengths, limitations, and pitfalls.
653 Neuroimage, 81, 335-346. doi:10.1016/j.neuroimage.2013.05.028
654 Vos, S. B., Jones, D. K., Jeurissen, B., Viergever, M. A., & L Meuroimage, 81, 335-346. doi:10.1016/j.neuroimage.2013.05.028

654 Vos, S. B., Jones, D. K., Jeurissen, B., Viergever, M. A., & Leemans, A. (2012). The influence of

655 complex white matter architecture on the mean diffus Vos, S. B., Jones, D. K., Jeurissen, B., Viergever, M. A., & Leemans, A. (2012

complex white matter architecture on the mean diffusivity in diffu

the human brain. Neuroimage, 59(3),

doi:10.1016/j.neuroimage.2011.09.086
 complex white matter architecture on the mean diffusivity in diffusion tensor MRI of
656 the human brain. Neuroimage, 59(3), 2208-2216.
657 doi:10.1016/j.neuroimage.2011.09.086
658 Wickham, H. (2009). *ggplot2: Elegant Gra* 656 the human brain. Neuroimage, 59(3), 2208-2216.
657 doi:10.1016/j.neuroimage.2011.09.086
658 Wickham, H. (2009). *ggplot2: Elegant Graphics for Data Analysis*: Springer Publishing
669 Company, Incorporated.
660 Wickham, 657 doi:10.1016/j.neuroimage.2011.09.086
658 Wickham, H. (2009). *ggplot2: Elegant Graphics for Data Analysis*: Springer Publishing
669 Company, Incorporated.
660 Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. 658 Wickham, H. (2009). *ggplot2: Elegant Grapl*
659 Company, Incorporated.
660 Wickham, H., Averick, M., Bryan, J., Chang, W.
661 (2019). Welcome to the Tidyverse. Jourr
662 659 Wickham, H. (2009). ggplotz: Elegant Graphics for Data Analysis: Springer Publishing
669 Company, Incorporated.
660 Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L., François, R., . . . Yutani, H. (2019). W 660 Wickham, H., Averick, M., Brya
661 (2019). Welcome to the 1
662 661 (2019). Welcome to the Tidyverse. Journal of Open Source Software, 4(43), 1686. (201) . Welcome to the Tidyverse. Journal of Open Source Software, $4(43)$, 1686.
662

Fixel scalar image

B

Along tract measures

ADC

ADC

FA
Metrics

FD

A

0.0006 0.0007 0.0008 0.0009 0.0010 0.0011