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Abstract Traditional clinical prediction models focus on parameters of the individual patient. For22

infectious diseases, sources external to the patient, including characteristics of prior patients and23

seasonal factors, may improve predictive performance. We describe the development of a24

predictive model that integrates multiple sources of data in a principled statistical framework using25

a post-test odds formulation. Our method enables electronic real-time updating and flexibility,26

such that components can be included or excluded according to data availability. We apply this27

method to the prediction of etiology of pediatric diarrhea, where "pre-test" epidemiologic data may28

be highly informative. Diarrhea has a high burden in low-resource settings, and antibiotics are29

often over-prescribed. We demonstrate that our integrative method outperforms traditional30

prediction in accurately identifying cases with a viral etiology, and show that its clinical application,31

especially when used with an additional diagnostic test, could result in a 61% reduction in32

inappropriately prescribed antibiotics.33

34

Introduction35

Healthcare providers use clinical decision support tools to assist with patient diagnosis, often to36

improve accuracy of diagnosis, reduce cost by avoiding unnecessary laboratory tests, and in the case37

of infectious diseases, deter the inappropriate prescription of antibiotics (Sintchenko et al. (2008)).38

Typically, data entered into these tools is related directly to the patient’s individual characteristics,39

but data sources external to the patient can be informative for diagnosis. For example, climate,40

seasonality, and epidemiological data inform predictive models for communicable disease incidence41

(Colwell (1996), Chao et al. (2019) Fine et al. (2011)). The emergence of advanced computing and42
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machine learning has enabled the incorporation of large data sources in the development of43

clinical support tools (Shortliffe and Sepúlveda (2018)) such as SMART-COP for predicting the need44

for intensive respiratory support for pneumonia (Charles et al. (2008)) or the ALaRMS model for45

predicting inpatient mortality (Tabak et al. (2014)).46

Clinical decision support tools rely on the availability of information sources and computing47

at the time of patient encounter. Although increased availability of internet/mobile phones have48

increased access to information and computing power in low-resource settings, there may be times49

when connectivity, computing power, or data-collection infrastructure is unavailable. Thus, there is50

a need to build clinical decision support tools which can flexibly include features of external sources51

when available, or function without them if unavailable. Methods that enable the dynamic updating52

of predictive models are advantageous due to potential cyclical patterns of infectious etiologies.53

Furthermore, with the emergence of point-of-care (POC) tests for clinical decision-making (Price54

(2001)), predictive models that are able to integrate results of such diagnostic testing could enhance55

their usefulness.56

We develop a novel method for diagnostic prediction which integrates multiple data sources by57

utilizing a post-test odds formulation with proof-of-concept in antibiotic stewardship for pediatric58

diarrhea. Our formulation first fits separate models from different sources of data, and then59

combines the likelihood ratios from each of these independent models into a single prediction.60

This method allows the multiple components to be flexibly included or excluded. We apply this61

method to the prediction of diarrhea etiology with data from the Global Enteric Multicenter Study62

(GEMS) (Kotloff et al. (2013)) and assess the performance of this tool, including with the addition of63

a synthetic diagnostic, using two forms of internal-validation and by showing its potential effect on64

reducing inappropriate antibiotic use.65

Methods66

We present our approach to building and assessing a flexible multi-source clinical prediction tool67

with 1) the data sources, 2) the individual prediction models, 3) the use of the likelihood ratio for68

integrating predictive models, 4) validation of the method, 5) the impact of an additional diagnostic,69

and 6) a simulation of conditionally dependent tests.70

Data Sources71

We apply our post-test odds model using clinical data from GEMS, a prospective, case-control study72

from 2007-2011 which took place in 7 countries in Africa and Asia. Methods for the GEMS study73

have been described in detail (Kotloff et al. (2012)). Briefly, 9439 children with moderate-to-severe74

diarrhea were enrolled at local health care centers along with 1 to 3matched control-children. A fecal75

sample was taken from each child at enrollment to identify enteropathogens clinical information76

was collected, including demographic, anthropometric, and clinical history of the child. We used the77

quantitative real-time PCR-based (qPCR) attribution models developed by Liu et al. (2016) in order78

to best characterize the cause of diarrhea. Our dependent variable was presence or absence of79

viral etiology, defined as a diarrhea episode with at least one viral pathogen with an episode-specific80

attributable fraction (AFe ≥ 0.5) and no bacterial or parasitic pathogens with an episode-specific81

attributable fraction. Prediction of viral attribution is clinically meaningful since it indicates that a82

patient would not benefit from antimicrobial therapy. We defined other known etiologies as having83

a majority attribution of diarrhea episode by at least one other non-viral pathogen. We exclude84

patients with unknown etiologies when fitting the model, though it has been previously shown that85

these cases have a similar distribution of viral predictions using a model with presenting patient86

information as those cases with known etiologies (Brintz et al. (2020)).87

We obtained weather data local to each site’s health centers during the GEMS study using NOAA’s88

Integrated Surface Database (Smith et al. (2011)). The incidence of many pathogens, including89

rotavirus (Cook et al. (1990)), norovirus (Ahmed et al. (2013)), cholera (Emch et al. (2008)), and90

Salmonella (Mohanty et al. (2006)), are known to have seasonal patterns, and other analyses have91
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established climatic factors to be associated with diarrheal diseases (Colwell (1996), Chao et al.92

(2019), Farrar et al. (2019)). Stations near GEMS sites such as in The Gambia exhibit seasonal93

patterns (Figure 1). We used daily temperature and rain data weighted most by those weather94

stations closest to the GEMS sites (Appendix 1).95
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Figure 1. Temperature in The Gambia over study period with (blue) trend line from LOESS (locally estimated
scatterplot smoothing)

Construction of Predictive Models96

We define each model using the features described in the below sub-sections in an additive logistic97

regression model. Each model can be trained using a sample of data from a specific country,98

continent, or all available data.99

Predictive model A) Presenting Patient100

The patient model derived from the GEMS data treats each enrolled patient as an observation and101

uses their available patient data at presentation to predict viral only versus other etiology of their102

infectious diarrhea. In order to make a parsimonious model, we used the previously published103

random forests variable importance screening (Brintz, et. al.). Using the screened variables (Table104

1), we fit a logistic regression including the top five variables that would be accessible to providers at105

the time of presentation. These include age, blood in stool, vomiting, breastfeeding status, and mid-106

upper arm circumference (MUAC), an indicator of nutritional status. We note that while variables107

such as fever and diarrhea duration were shown to be important in previous studies (Fontana et al.108

(1987)), adding these variables did not improve performance (Brintz et al. (2020)). Additionally,109

we excluded “Season”, since variables representing it are included in the climate predictive model110

(discussed below), as well as “Height-for-age Z-score”, another indicator of nutritional status, which111

would require a less feasible calculation than measurement of MUAC.112
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Viral Etiology

Variable Name Variance Reduction

Age 51.6

Season 29.0

Blood in stool 26.1

Height-for-age Z-score 24.7

Vomiting 23.0

Breastfeeding 22.0

Mid-upper arm circumference 20.9

Respiratory rate 18.5

Wealth index 18.3

Body Temperature 16.7

Table 1. Rank of Variable Importance by average reduction in the mean squared prediction error of the
response using Random Forest regression. Greyed rows are variables that would be accessible for providers in

LMICs at the time of presentation.

Predictive model B) Climate113

We use an aggregate (mean) of the weighted (Appendix 1) local weather data over the prior 14 days114

to create features that capture site-specific climatic drivers of etiology of infectious diarrhea. By115

taking an aggregate, we create a moving average that reflects the seasonality seen in Figure 1. An116

example of the aggregate climate data from The Gambia is shown in Figure 1-figure supplement 1.117

From the figure, which also shows a moving average of the viral rate, We see that the periods of118

higher viral cases of diarrhea tend to have low temperatures and less rain.119

Predictive model C) Seasonality120

We include a predictive model with sine and cosine functions as features as explored in Stolwijk121

et al. (1999). Assuming a periodicity of 365.25 days, we have functions sin( 2�t
365.25

) and cos( 2�t
365.25

). We122

show that standardized seasonal sine and cosine curves correlate with a rolling average of daily123

viral etiology rates in The Gambia over time (Figure 1-figure supplement 2. These functions can be124

used to represent multiple underlying processes that result in a seasonality of viral etiology.125

Use of the likelihood ratio to integrate predictivemodels frommultiple data sources126

We integrate predictive models from the multiple sources of data described above using the post-

test odds formulation. Using Bayes’ Theorem, P (A|B) = P (B|A)⋅P (A)
P (B)

, to construct the post-test odds of

having a viral etiology,

P (V = 1|T1 = t1, T2 = t2,⋯ , Tk = tk)
P (V = 0|T1 = t1, T2 = t2,⋯ , Tk = tk)

=
P (V = 1, T1 = t1, T2 = t2,⋯ , Tk = tk)
P (V = 0, T1 = t1, T2 = t2,⋯ , Tk = tk)

(1)

=
P (T1 = t1, T2 = t2,⋯ , Tk = tk|V = 1) ⋅ P (V = 1)
P (T1 = t1, T2 = t2,⋯ , Tk = tk|V = 0) ⋅ P (V = 0)

(2)

=
P (V = 1)
P (V = 0)

⋅
k
∏

j=1

P (Tj = tj|V = 1)
P (Tj = tj|V = 0)

(3)

where V = 1 represents a viral etiology and V = 0 represents an other known etiology, T1, T2,⋯ , Tk127

represent the k tests, the distribution of the predictions from one or more predictive models, used128

to obtain the post-test odds, and
P (V =1)
P (V =0)

is the pre-test odds. Note that going from line (2) to line129

(3) requires conditional independence between the tests, i.e., that P (Ti = ti, Tj = tj|V = 1) = P (Ti =130

ti|V = 1) ⋅ P (Tj = tj|V = 1) and P (Ti = ti, Tj = tj|V = 0) = P (Ti = ti|V = 0) ⋅ P (Tj = tj|V = 0) for all i131

and j. We test for conditional independence to assess the necessity of making higher-dimensional132

kernel density estimates using the ci.test function from the {bnlearn} package in R (Scutari (2010)).133

We derive each P (Tj = tj|V = 1) and P (Tj = tj|V = 0) using Gaussian kernel density estimates on134

conditional predictions from a logistic regression model fit on the training set (Silverman (1986)).135

The distribution of P (Tj|V ) is derived using the kernel density estimator f (tj) =
1
nℎ

∑n
i=1K(

tj−xi
ℎ
)136
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where, in our case, K(x) = �(x), the standard normal density function, and the bandwidth, ℎ, is137

Silverman’s ‘rule of thumb’ and the default chosen in the density function in R (Parzen (1962)).138
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Figure 2. Histograms with overlaid estimated kernel densities (dashed lines) of predicted values obtained from logistic regression on patient
training data. The left graph represent other known etiologies and the right graph represent viral etiologies. The dashed lines do not represent

standardized density heights so the heights for V=0 and V=1 should not be compared from this graph.

Figure 2 shows an example of the frequency of predictions from a logistic regression model139

conditional on the viral-only status (V=0 and V=1) determined from attributable fractions. Addi-140

tionally, we overlaid the estimated 1-dimensional kernel density. To obtain the value of
P (Tj=tj |V =1)

P (Tj=tj |V =0)
,141

the predicted odds, from a model’s prediction, we divide the kernel density estimate from the142

V = 1 set (right) by the kernel density estimate from the V = 0 set (left). It is feasible to estimate a143

multi-dimensional kernel density so that it is not necessary to make the conditional independence144

assumption to move from line 2 to line 3 in the equation above. Figure 2-figure supplement 1 shows145

an example 2-dimensional contour plot for kernel density estimates of predicted values obtained146

from logistic regression on GEMS seasonality and climate data in Mali which we will discuss further147

below. The density was created using R function kde2d (Venables and Ripley (2002)).148

Pre-test Odds from Historical Data149

We calculated pre-test odds using historical rates of viral diarrhea by site and date. We utilize150

available diarrhea etiology data for a given date, regardless of year, and site using a moving average151

such that pre-test probability �d for date d is152

�d =
Dd−n +Dd−n+1 +⋯ +Dd +⋯ +Dd+n−1 +Dd+n

kd−n + kd−n+1 +⋯ + kd +⋯ + kd+n−1 + kd+n
Dd = Σ

kd
i=1Ddi

where kd is the number of observed patients on date d,Ddi is 1 if the etiology of the patients’ diarrhea153

is viral and 0 otherwise, and n is the number of days included on both sides of the moving average.154

We would expect �d to represent a pre-test probability of observing a viral diarrhea etiology on date155

d. Given that this rate information will likely be unavailable in new sites without established etiology156

studies, we provide an alternative formula based on recent patients’ presentations (Appendix 2).157
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Validating the method158

Given the temporal nature of some of the tests we developed, we estimate model performance159

using within rolling-origin-recalibration evaluation. This method evaluates a model by sequentially160

moving values from a test set to a training set and re-training the model on all of the training set161

(Bergmeir and Benítez (2012)); for example, we train on the first 70% of the data and test on the162

remaining 30%, then train on the first 80% of the data and test on the remaining 20%. No data163

from the training set is used as part of the prediction for the test set. In each iteration of evaluation,164

predictions on the test set are produced and corresponding measures of performance obtained:165

the receiver operating characteristic (ROC) curve, and area under the ROC curve (AUC), also known166

as the C-statistic, along with AUC confidence intervals (LeDell et al. (2015)). Figure 3 depicts one167

iteration of within rolling-origin-recalibration evaluation.168

Figure 3. The steps for fitting prediction models and calculating the post-test odds for within rolling-origin-recalibration evaluation.

We additionally include a joint density for the climate and seasonal data in which we estimate a169

2-dimensional kernel density (not shown in Figure 3). This model is called "Joint" in the results to170

follow. To assess how this model might generalize to a site that was not used for model training, we171

used a leave-one-site-out validation. By excluding a site and training the model’s tests at a higher172

level, such as on the entire continent, we get an idea of performance at a new site within one of the173

continents for which we have data. Lastly, we define a threshold for the predicted odds ratio based174

on the desired specificity of the model. We use this threshold to evaluate the effect of the model on175

prescription or treatment of patients with antibiotics in the GEMS data.176
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Modeling the impact of an additional diagnostic test177

We include a theoretical diagnostic which indicates viral versus other etiology with a given sensitivity178

and specificity specifically to show the effect of an additional diagnostic-type test, such as a point-179

of-care stool test, on the performance of our integrated post-test odds model. We include three180

scenarios: 1) 70% sensitivity and 95% specificity, 2) 90% sensitivity and 95% specificity, and 3) 70%181

sensitivity and 70% specificity. In order to estimate the performance of an additional diagnostic182

test, for each patient in each of 500 bootstrapped samples of our test data, we randomly simulated183

a test result based on the sensitivity or specificity of the diagnostic test. From the simulated test184

result, we derive the likelihood ratio of the component directly from the specified sensitivity and185

specificity of the test. A positive test results in a component likelihood ratio of
sensitivity

1−specif icity
and a186

negative test results in a component likelihood ratio of
1−sensitivy
specif icity

. We then take an average the187

measure of performance of the bootstrapped samples.188

Simulation of Conditionally Dependent Tests189

We demonstrate the utility of the 2-dimensional kernel density estimate through simulation. In each

iteration of the simulation (100 iterations), we generate 3366 responses from a random Bernoulli

variable Z with a 1
3
probability of success (the approximate proportion of GEMS cases with a viral

etiology). Then, conditioned on Z we generate predictive variables X and Y such that:

X = Z + � (4)

Y = 
Ẋ +Z + � (5)

where � is a random draw from the standard normal distribution and values of 
 ranging from -10190

to 10 determine the level of conditional dependence between the two predictors conditional on191

the value of Z. 
 = 0 indicates conditional independence. Using an 80% training set, we derive the192

kernel density estimate for the likelihood ratio (no pre-test odds included) using X and Y as two193

separate tests and as a single 2-dimensional test and calculate the AUC from the 20% test set.194

Determination of Appropriate Antibiotic Prescription195

We demonstrate the clinical usefulness of our models by applying them directly to the prescription196

of antibiotics. For each version of the model, we determined the threshold of prediction that would197

amount to attaining a model specificity of 0.90 and 0.95. Since the prediction of a viral only etiology198

of diarrhea indicates that antibiotics should not be prescribed, we chose these high specificities199

due to the potential harm or even death that could occur if a patient who needed antibiotics did200

not receive them. Using the thresholds, we determine which patients our models would correctly201

predict a viral only etiology of their diarrhea (true positives) as well as patients our model would202

incorrectly predict a viral only etiology of their diarrhea (false positives).203

Results204

Integrative post-test odds models outperformed traditional models for prediction205

of diarrhea etiology206

Of the 3366 patients in GEMS with an attributable identified pathogen, 1049 cases were attributable207

to viral only etiology. We first examined whether our integrative post-test odds model can better208

discriminate between patients with diarrhea of viral-only etiology and patients with other etiologies209

than a traditional prediction model which includes only the presenting patient’s information. We210

found that overall, using the AUC as a discrimination metric, the integrative models outperformed211

(AUC: 0.837 (0.806-0.869)) the traditional model (AUC: 0.809 (0.776-0.842)). Overall, the best per-212

forming models were ones in which either the seasonal sine and cosine curves, or the prior patient213

pre-test component alone was added to the presenting patient information with AUC’s of 0.83 and214

0.837 (with 80% training data), respectively (Figure 4). Including additional components, especially215
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including both climate and seasonality (though not as a joint density), appears to reduce the perfor-216

mance. As expected, a reduced testing set increases the AUC but also increases the variance of the217

estimate (Figure 4-figure supplement 1).218

Figure 4. AUC’s and confidence intervals for post-test odds used in the 80% training and 20% testing iteration. "PresPtnt" refers to the predictive
model using the presenting patient’s information."Pre-test" refers tot he use of pre-test odds based on prior patients’ predictive models. "Climate"

refers to the predictive model using aggregate local weather data. "Seasonal" refers to the predictive model based on seasonal sine and cosine

curves. "Joint" refers to the 2-dimensional kernel density estimate from the Seasonal and Climate predictive models.

To assess our model’s performance more granularly, we then examine performance of the top219

two predictive models by individual sites. We found that the AUC, with 80% training and 20%220

testing, varied greatly by site, ranging from 0.63 in Kenya to 0.95 in Bangladesh (Table 2). Of note,221

the African sites have fewer patients in their testing and training sets than the Asian countries.222

In leave-one-site-out validation testing, we found that the climate test tends to outperform the223

seasonality test, and that there were notable differences in c-statistics between sites with the order224

of performance similar to within rolling-origin-recalibration evaluation (Figure 4-figure supplement225

2).226
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Country Test Set Size Formula AUC (95% CI)

Kenya 79

Pre-test * PresPtnt 0.65 (0.53 - 0.77)

PresPtnt * Seasonal 0.66 (0.54 - 0.78)

PresPtnt 0.63 (0.51 - 0.75)

Mali 88

Pre-test * PresPtnt 0.74 (0.61 - 0.86)

PresPtnt * Seasonal 0.78 (0.66 - 0.89)

PresPtnt 0.75 (0.62 - 0.87)

Pakistan 108

Pre-test * PresPtnt 0.81 (0.72 - 0.89)

PresPtnt * Seasonal 0.8 (0.72 - 0.88)

PresPtnt 0.81 (0.73 - 0.89)

India 119

Pre-test * PresPtnt 0.84 (0.76 - 0.91)

PresPtnt * Seasonal 0.85 (0.78 - 0.92)

PresPtnt 0.81 (0.74 - 0.89)

The Gambia 80

Pre-test * PresPtnt 0.89 (0.82 - 0.96)

PresPtnt * Seasonal 0.87 (0.79 - 0.94)

PresPtnt 0.78 (0.67 - 0.88)

Mozambique 66

Pre-test * PresPtnt 0.88 (0.79 - 0.97)

PresPtnt * Seasonal 0.9 (0.82 - 0.98)

PresPtnt 0.77 (0.66 - 0.89)

Bangladesh 141

Pre-test * PresPtnt 0.91 (0.82 - 1)

PresPtnt * Seasonal 0.93 (0.88 - 0.99)

PresPtnt 0.95 (0.92 - 0.99)

Table 2. AUC results by site using 80% of data for training and 20% of data for testing of the top two models.
PresPtnt refers to the model fit using presenting patient information.

Addition of a diagnostic test to integrative models improves discrimination227

Emerging efforts to develop diagnostic devices, including laboratory assays as well POC tests, have228

focused on the performance of the test used in isolation. Here, we consider the use of a diagnostic229

device in combination with clinical predictive models. We used the integrative model to examine the230

impact that an additional diagnostic would have on discrimination of two of the best performing231

models. We show that an additional diagnostic, with varying sensitivity and specificity, would232

improve the cross-validated AUC as expected (Table 3). An additional test with a 70% sensitivity and233

70% specificity increases the AUC by 3-5%, while a more specific test could increase the AUC by 10%.234

specificity=0.90 specificity=0.95

Model Addl. Diag. (Se.,Sp.) AUC (95% CI) True + False + True + False +

Pre-test * PresPtnt

None 0.837 (0.806 - 0.869) 90 30 58 15

(0.7, 0.7) 0.874 (0.846 - 0.902) 101 31 76 15

(0.7, 0.95) 0.933 (0.913 - 0.952) 132 31 122 15

(0.9, 0.95) 0.972 (0.959 - 0.984) 154 33 147 17

PresPtnt * Seasonal

None 0.830 (0.798 - 0.861) 69 25 52 11

(0.7, 0.7) 0.870 (0.842 - 0.897) 100 28 68 14

(0.7, 0.95) 0.931 (0.912 - 0.951) 130 27 121 16

(0.9, 0.95) 0.971 (0.959 - 0.984) 155 30 149 18

PresPtnt

None 0.809 (0.776 - 0.842) 66 31 41 15

(0.7, 0.7) 0.857 (0.827 - 0.886) 97 34 68 16

(0.7, 0.95) 0.925 (0.904 - 0.946) 129 33 117 18

(0.9, 0.95) 0.968 (0.955 - 0.981) 154 33 149 18

Table 3. AUC and 95% confidence intervals from 80% training set after adding an additional point-of-care
diagnostic test with specified sensitivities (Se.) and specificities (Sp.) to the current patient test and pre-test

odds. Additionally, + and - refer to our model indicating a true positive or false positive, respectively, based on

the threshold for each model which achieves a 0.90 or 0.95 specificity. Only patients who were prescribed/given

antibiotics are included in the count.

We next examined ROC curves, which visually demonstrate the effect of additional diagnostics235

with varying levels of sensitivity and specificity (Figure 5). We show that a similar level of sensitivity236

and specificity is achievable by the model with the pre-test information versus the model with237
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seasonal information. Additionally, the additional diagnostics result in improved overall sensitivity238

and specificity corresponding to sensitivity and specificity of the diagnostic. The overall sensitivity239

and specificity of each model is greater than the diagnostic alone.240

Figure 5. ROC curves from validation from 80% training set. Curves shown for three models with additional diagnostics.

Breaking the conditional independence assumption can be addressed using 2-D241

Kernel Density Estimates242

Our integrative post-test odds method assumes the conditional independence of its component243

tests, and thus we performed simulation of increasingly conditionally dependent components to244

assess the performance of the method when the assumption is broken. We showed that the AUC245

of the post-test odds model deteriorates quickly as the conditional independence assumption is246

violated (Table 4). With no conditional dependence between predictions from models X and Y, the247

result using 1-dimensional kernel density is comparable to the result with 2-dimensional kernel248

density model. However, as the conditional correlation between the tests increase to -0.90, the249

1-dimensional AUC decreases by about 11% while the post-test odds with the 2-dimensional test250

performs consistently across this range of conditional correlation.251
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AUC


 cor(X, Y ‖Z) 1D-KDE 2D-KDE

-2.000 -0.894 0.725 0.830

-1.000 -0.709 0.758 0.828

-0.500 -0.446 0.824 0.838

0.000 0.002 0.838 0.836

0.500 0.448 0.836 0.836

1.000 0.708 0.831 0.840

2.000 0.894 0.810 0.836

Table 4. Average AUC’s from 1-dimensional and 2-dimensional kernel density estimates (KDE) when the
post-test odds conditional independence assumption is broken. The table shows the factor (
) used to simulate
induced conditional dependence between two covariates and their average conditional correlation. Additionally,

it shows the average AUC resulting from a post-test odds model where a 1-dimensional kernel density estimate

(conditional independence assumed) is generated for each covariate, and a post-test odds model where a

2-dimension joint kernel density estimate is derived for the two covariates.

Clinician use of an integrative predictive model for diarrhea etiology could result252

in large reductions in inappropriate antibiotic prescriptions253

Given that one potential application of an integrative predictive model for diarrhea etiology would254

be as support for clinical decision making for antibiotic use (i.e. antibiotic stewardship), we then255

examined the impact that the top predictive model would have on prescription of antibiotics by256

clinicians in GEMS. Of the 3366 patients included in our study, 2653 (79%) were treated with or257

prescribed antibiotics, 806 (30%) of whom were prescribed to those with a viral-only etiology as258

determined by qPCR. Here, we examined how use of integrative predictive model could have altered259

antibiotic use in our sample. Of the 681 patients in the 20% test set, 540 (79%) were prescribed260

antibiotics, including 166 (30%) with a viral-only etiology. Of those prescribed/given antibiotics261

the model with pre-test odds, with threshold chosen for an overall specificity of 0.90, identified262

90 (54%) viral cases as viral, and 30 non-viral cases as viral. With an additional diagnostic with a263

sensitivity and specificity of 0.70, the same model would on average identify 101 (61%) viral cases264

as viral with the same 31 non-viral cases identified as viral. Assuming that clinicians would not265

prescribe antibiotics for those cases identified by the predictive model with the additional diagnostic266

as viral, we would avoid 90 (54%) and 101 (61%) of inappropriate antibiotic prescriptions in the267

two scenarios described. The majority of the false positives (30 in both scenarios) were episodes268

majority attributed to Shigella, ST-ETEC, and combinations of rotavirus with a non-viral pathogen269

(Table 3-table supplement 1). All of these false positive, with exception of 1 case, had non-bloody270

diarrhea, and thus would have been deemed as not requiring antibiotics by WHO IMCI guidelines.271

Discussion272

The management of illness in much of the world relies on clinical decisions made in the absence273

of laboratory diagnostics. Such empirical decision-making, including decisions to use antibiotics,274

are informed by variable degrees of clinical and demographic data gathered by the clinician.275

Traditional clinical prediction rules focus on the clinical data from the presenting patient alone.276

In this analysis, we present a method that allows flexible integration of multiple data sources,277

including climate data and clinical or historical information from prior patients, resulting in improved278

predictive performance over traditional predictive models utilizing a single source of data. Using279

this formulation, if certain sources of data such as climate or previous patient information are not280

available (e.g., due to a lack of internet connection or data infrastructure), the prediction can still be281

made using the other sources. We show that application of such a predictive model, especially with282

an additional diagnostic test, may translate to reductions in inappropriate antibiotic prescriptions283

for pediatric viral diarrhea.284

The global burden of acute infectious diarrhea is highest in low- and middle-income countries285

(LMICs) in southeast Asia and Africa (Walker et al. (2013)), where there is limited access to diagnostic286

testing. The care of children in these regions could greatly benefit from an accurate and flexible287
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decision making tool. Decisions for treatment are often empiric and antibiotics are over-prescribed288

(Rogawski et al. (2017)), though the majority of cases of diarrhea do not benefit from antibiotic289

use and also many instances of acute watery diarrhea are self-limiting . For example, 2653 (79%)290

of the 3366 patients in our study were treated with or prescribed antibiotics. Of these 806 (30%)291

were prescribed to those with a viral-only etiology. Unnecessary antibiotic use exposes children to292

significant adverse events including serious allergic reactions and clostridium difficile infection, and293

contributes to increased antimicrobial resistance. We show that a predictive model can be used to294

discriminate between those with and without a viral-only etiology and that the inappropriate use of295

antibiotics can be avoided in 54% cases using our model with no additional diagnostics.296

We found using within rolling-origin-recalibration evaluation that models which include either297

the pre-test odds calculated historical rates or the seasonal test were the best at discriminating298

between viral etiologies and other etiologies, a finding that held true across training and testing299

set sizes. However, in the leave-one-out validation, models which included the alternate pre-test300

odds and climate tended to perform the best. This difference is likely due to the generalizeability of301

the individual tests, i.e, the leave-one-out tests are trained at the continental level and the effect of302

climate on etiology is intuitively more generalizeable than seasonal curves which are very specific303

to each location. We found that our integrative model with only the historical (pre-test) information304

included (without additional diagnostics) would have identified a viral-only etiology in 90 (54%)305

patients who received antibiotics. We then show that even the use of an additional diagnostic test306

with modest performance (70% sensitivity and specificity) would further decrease inappropriate307

antibiotic use by another 11 (for a total of 101, or 61% of) patients.In the context of calls by the308

WHO for the development of affordable rapid diagnostic tools (RDTs) for antibiotic stewardship309

(Declaration (2017)), our findings suggest that development and evaluation of novel RDTs should not310

be performed in isolation. Potential for integration of rapid diagnostic tests into clinical prediction311

algorithms should be considered, though this needs to be balanced with the additional time and312

resources needed. The incremental improvement in discriminative performance achieved by the313

addition of an RDT to a clinical prediction algorithm may not be cost-effective in lower resourced314

settings. Finally, providing this model in the form of a decision support tool to the clinician could315

translate to reductions in inappropriate use of antibiotics.316

The novel use of kernel density estimates to derive the conditional tests when calculating the317

post-test odds enabled a flexibility in model input. While kernel density estimates have been used318

for conditional feature distributions in Naïve Bayes classifiers (John and Langley (1995),Murakami319

and Mizuguchi (2010)), here we show that they can be used to derive conditional likelihoods for320

diagnostic tests constituting one or more features, stressing the effect of the overall test on321

the post-test odds and not individual features. As such, complicated machine learning models322

can be combined with simple diagnostics as part of the post-test odds. For example, we could323

have fit neural networks in lieu of logistic regression models, and in addition to these more324

complicated models, it is possible to incorporate the result of an RDT that make results available to325

the clinician at the point-of-care. Additionally, our method of using two-dimensional kernel density326

estimates can also be used to overcome the conditional independence assumption for tests based327

on potentially interrelated diagnostic information. Densities with higher than two dimensions can328

be considered, though, computational limitations are likely in both speed and, we expect, accuracy,329

as the dimensions increase.330

Our study has a number of limitations. First, a robust training set of both cases and non-331

cases is required to adequately build the conditional kernel densities. Second, the post-test odds332

calculation, at the time of prediction, lacks interpretation on a feature level like a logistic regression333

or decision tree. Although, we do observe the effect of a test on an observation, we cannot see which334

features caused that effect without diving deeper into the training of the diagnostic tests.Thirdly, the335

prediction algorithm generated by the post-test odds model using GEMS data was only validated336

internally, and further studies are need for external validation and field implementation.337

In conclusion, we have developed a clinical prediction model that integrates multiple sources338
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external to the presenting patient, through use of a post-test odds framework and showed that it339

improved diagnostic performance. When applied to the etiological diagnosis of pediatric diarrhea,340

we demonstrate its potential for reducing inappropriate antibiotic use. The flexible inclusion or341

exclusion of output from its components makes it ideal for decision support in lower-resourced342

settings, when only certain data may be available due to limitations in information computation343

or connectivity. Additionally, the ability to incorporate new training data in real-time to update344

decisions allows the model to improve as more data is collected. Such a predictive model has the345

potential to improve the management of pediatric diarrhea, including the rational use of antibiotics346

in lower-resourced settings.347
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Figure 1. The black line represents a 2-week rolling average of daily viral etiology rates over time. The purple
and green lines represent the prior two week average of daily rain and temperature averages.
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Figure 2. The black line represents a 2-week rolling average of daily viral etiology rates over time. The purple
and green lines represent the prior two week average of daily rain and temperature averages.

15 of 21

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 27, 2020. ; https://doi.org/10.1101/2020.10.26.20210385doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.26.20210385
http://creativecommons.org/licenses/by/4.0/


Manuscript submitted to eLife

Figure 2 Supplements427
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Figure 1. Contour plots of 2-dimensional kernel densities of predicted values obtained from logistic regression
on GEMS climate and seasonality data in Mali. The right graph represents viral etiologies and the left graph

represents other known etiologies.
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Figure 1. AUC’s and confidence intervals for tests used in within rolling-origin-recalibration evaluation. Individual plot titles show the proportion of
data used in training.
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Figure 2. AUC’s and confidence intervals for tests used in the leave-one-site-out evaluation. Pre-test refers to the use of prior patient predictions.
Individual plot titles show the site left out of training.
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Table 3 Supplements429

Model

Pre-test * PresPtnt PresPtnt * Seasonal PresPtnt

Pathogen(s) Sp.=0.90 Sp.=0.95 Sp.=0.90 Sp.=0.95 Sp.=0.90 Sp.=0.95

ST-ETEC 5 3 4 2 5 2

Shigella/EIEC 5 1 5 0 4 1

Cryptosporidium 4 2 3 2 9 5

Cryptosporidium+Rotavirus 3 1 2 1 3 3

H. pylori+Rotavirus 3 2 3 2 1 0

Rotavirus+TEPEC 2 1 1 1 1 0

C. jejuni/C. coli+Rotavirus 1 1 1 1 1 1

TEPEC 1 1 1 1 1 1

Adenovirus 40/41+Shigella/EIEC 1 0 0 0 1 0

Rotavirus+ST-ETEC 1 1 2 0 0 0

Rotavirus+Shigella/EIEC 1 1 1 0 0 0

salmonella 1 0 0 0 0 0

Astrovirus+TEPEC 1 0 0 0 0 0

Norvirus GII+Shigella/EIEC 1 1 1 1 0 0

Astrovirus+Shigella/EIEC 0 0 1 0 0 0

C. jejuni/C. coli+Crypto. 0 0 0 0 1 0

Cryptosporidium+ST-ETEC 0 0 0 0 1 0

Adenovirus 40/41+ST-ETEC 0 0 0 0 1 1

Adenovirus 40/41+Crypto. 0 0 0 0 1 1

H. pylori+Shigella+V. cholerae 0 0 0 0 1 0

30 15 25 11 31 15

Table 1. Frequency table of pathogens in which the post-test odds formulation with varying specifity (Sp.)
chosen have false positives.
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Appendix 1430

Weighted Weather Station Data431

Daily local weather information was constructed based on data from weather stations within

200km of the site of interest. We chose 200km because one our sites, Mozambique, does not

have any stations nearer than 180 km. We then collect the temperature and rain info from

the top 5 closest weather stations and take a weighted average where they are weighted

inversely by distance so that the closer weather stations will have more effect on the average.

For instance, for temperature on day d across the 5 closest weather stations: Td⋅ =
∑5
i=1 Tdi⋅d

−1
i

∑5
i=1 d

−1
i

where Tdi is the average temperature for weather station i on day d and di is the distance
from weather station i.
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Appendix 2440

Pre-test Odds fromPrior Patient Predictions for Prediction inNew Sites441

We calculated pre-test odds by combining past predictions from predictive model A, the

presenting patient model. By taking a weighted average of the recently predicted odds

of viral etiology, we attempt to capture recent local trends in diarrhea pathogens, such as

localized outbreaks. This is similar to heuristic decision making historically used by clinicians.

We aggregated the odds calculated from the presenting patient model on their probability

scale for each site over the past d days such that pre-test probability �d for day d is

�d =
Pd−n+1 ⋅w1 + Pd−n+2 ⋅w2 +⋯ + Pd ⋅wn

w1 +w2 +⋯ +wn

Pd =
1
k
Σki=1Pdi

where Pdi are the i = 1,⋯ , k current patient predictions converted from the odds scale to
the probability scale on day d and n is the number of prior days included in the calculation.
Provided the greatest weights are put on the most recent predictions, we would expect an

influx of certain symptoms related to a viral etiology to be represented by �d .
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