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MEGA: Machine Learning-Enhanced Graph
Analytics for Infodemic Risk Management

Ching Nam Hang, Pei-Duo Yu, Siya Chen, Chee Wei Tan and Guanrong Chen

Abstract—The COVID-19 pandemic brought not only global devastation but also an unprecedented infodemic of false or misleading
information that spread rapidly through online social networks. Network analysis plays a crucial role in the science of fact-checking by
modeling and learning the risk of infodemics through statistical processes and computation on mega-sized graphs. This paper
proposes MEGA, Machine Learning-Enhanced Graph Analytics, a framework that combines feature engineering and graph neural
networks to enhance the efficiency of learning performance involving massive graphs. Infodemic risk analysis is a unique application of
the MEGA framework, which involves detecting spambots by counting triangle motifs and identifying influential spreaders by computing
the distance centrality. The MEGA framework is evaluated using the COVID-19 pandemic Twitter dataset, demonstrating superior
computational efficiency and classification accuracy.

Index Terms—Infodemic, AutoML, feature engineering, fact-checking, graph neural network, network centrality.
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1 INTRODUCTION

THE rapid global spread of the coronavirus disease
2019 (COVID-19) spawned a new crisis known as the

COVID-19 infodemic, which the World Health Organiza-
tion (WHO) declared equally devastating for COVID-19
pandemic control [1], [2], [3]. An infodemic refers to the
overwhelming amount of false or misleading information
that circulates in both digital and physical environments
during a pandemic. In the early stages of a disease outbreak,
when little is known about the disease, misinformation can
be particularly damaging, leading to confusion and harmful
outcomes. As shown in [4], the prevalence of false informa-
tion on social media, which has a greater reach and impact
than accurate information, highlights the critical need to
address the infodemic problem urgently.

Fighting infodemics requires detecting spambots or un-
reliable sources that spread fake news or information with
low credibility. According to [5], for every 21 tweets on
Twitter, one is spam, and about 15% of active accounts
are social bots. Managing infodemics also involves some
form of source attribution, such as fact-checking, to root out
malicious misinformation [1]. This can be accomplished by
scoring users in an online social network with a reputation
mechanism. For instance, the authors in [6] introduced the
Infodemic Risk Index (IRI) to evaluate the likelihood of an
infodemic occurrence in various nations. However, it is well-
known that popular online social networks like Twitter have
a high percentage of spambots. For example, it was alluded
that over 10% of the 450 million monthly active Twitter
users in 2022 were bots during Elon Musk’s takeover of
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Twitter. As viral messages in an infodemic can be caused by
spambots (potentially spreading disinformation), assessing
infodemic risks will require a dynamic approach to evaluate
the credibility of a message (whether due to human or bot)
and determine its reach.

Metrics that quantify infodemic risk at the individual
user level can significantly enhance the science of fact-
checking. Given its dependence on accurate and reliable
information sources, fact-checking is a time-consuming pro-
cess that involves validating or cross-checking claims from
multiple sources. Proactive risk assessment can identify
credible sources of news with sufficiently high scores and
authenticate information in the form of a risk matrix for
social listening. This allows infodemic risk managers to
first scale up fact-checking and then mitigate the spread
of misinformation or disinformation over the online social
network.

In this paper, we propose a novel framework called
MEGA, Machine Learning-Enhanced Graph Analytics,
for automated machine learning with mega-sized graph
datasets. A novelty of MEGA is its use of automated
feature-based vertex embeddings in graph neural networks
(GNNs) to process massive graph datasets. MEGA com-
prises two major steps: feature engineering and supervised
learning. MEGA first efficiently computes the most relevant
features via automated feature engineering and then applies
GNNs for supervised learning in downstream tasks. As an
application, we show how to compute accurate infodemic
risk scores using the COVID-19 pandemic Twitter dataset.
The contributions of the paper are as follows:

• Our MEGA framework leverages feature-based vertex
embeddings for GNNs to preserve important feature
information for learning performance optimization.

• For breadth-first search (BFS) graph decomposition,
we incorporate top-k ranking to reduce the number
of BFS executions, significantly improving the feature
engineering step in MEGA. This method, inspired in
part by Tarjan’s BFS graph decomposition technique [7],
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[8], enhances the computation of network centrality-
based problems involving massive graphs [9].

• We demonstrate MEGA’s superior performance over
existing techniques by conducting extensive evalua-
tions on two statistical graph problems (triangle mo-
tif counting and distance center computation) in the
feature engineering step and two classification tasks
(spambot detection and influential spreader identifica-
tion) in the supervised learning step. The evaluations
use a Twitter dataset containing over 1 million tweets
related to the COVID-19 pandemic, collected over five
months.

This paper is organized as follows. In Section 2, we
review the related work in studies of infodemic risk man-
agement on social media. In Section 3, we present the
MEGA framework and outline the triangle motif counting
for spambot detection and distance center computation for
influential spreader identification problems. In Sections 4
and 5, we demonstrate how MEGA solves the problems
of triangle motif counting and distance center computation,
respectively. In Section 6, we propose two feature-based ver-
tex embedding methods with GNNs for spambot detection
and influential spreader identification. We demonstrate the
performance evaluation results and applications on COVID-
19 infodemic risk management in Section 7. We conclude the
paper in Section 8.

2 RELATED WORK

Our work is related to automated machine learning (Au-
toML) for public healthcare applications [10]. AutoML is
particularly useful for detecting spambots and influential
spreaders due to its capability to automate the feature
engineering process, identifying and extracting relevant fea-
tures from massive graph datasets obtained from online
social networks. The traditional approach of manual feature
engineering has become increasingly impractical and time-
consuming, especially in light of the rampant spread of
misinformation. Automated feature engineering can also
help to identify patterns in social media data that are not
immediately obvious to human analysts. For instance, these
techniques can help determine who is spreading pandemic-
related misinformation to whom and how it is being dis-
seminated across the network.

By automating the feature engineering of massive
graphs, AutoML can reduce the risk of bias in data analysis
and decrease the likelihood of overlooking key features
that may not be apparent to human analysts [11], [12].
To detect spambots on social media, the work in [13]
utilized unsupervised feature extraction and a clustering
algorithm to distinguish between humans and bots. In [14],
a BERT model was proposed to detect social bots whose
activities are correlated with COVID-19-related fake news.
The authors in [15] used unsupervised learning to identify
graph features related to suspicious activity patterns for bot
detection. The work in [16], [17] studied extracting graph
features like vertex degree and triangle count to detect spam
accounts.

Another feature engineering aspect of graph data is the
influence of individual vertices in the graph. The work in
[18] applied diffusion algorithms to quantify the influence

of Twitter users using the Twitter follower graph. In [19],
K-truss decomposition was used to locate influential ver-
tices based on counting triangles. Other related works used
network centrality to measure the influence of vertices [20],
[21], [22], [23]. The work in [9] proposed the rumor centrality
as the maximum-likelihood estimate of influential spreaders
[24], which is the optimal solution when the given network
is a tree. Epidemic centrality in [25] generalized the rumor
centrality to graphs with cycles and can be computed by a
message-passing algorithm. In contrast to finding the influ-
ential spreaders, the work in [23] considered the problem of
preventing networks from cascading failures by protecting
some vertices in advance.

To the best of our knowledge, our paper is the first to
propose AutoML to jointly learn how to detect spambots
and influential network users in order to compute infodemic
risk scores in the context of the COVID-19 pandemic. This
approach is inspired by the related work in [6] that analyzed
COVID-19 pandemic-related Twitter data to compute an
infodemic risk index for quantifying the exposure rate of
aggregated Twitter users to unreliable news, but neither
spambots nor influential users detection was considered in
[6].

3 MACHINE LEARNING-ENHANCED GRAPH ANA-
LYTICS

In this section, a new MEGA framework is proposed and
the triangle motif counting and distance center computation
problems for infodemic risk management are formulated.

3.1 The MEGA Framework
Let G = (V (G), E(G)) be a simple undirected graph with
vertex set V (G) and edge set E(G). The MEGA framework
has two main stages:
Stage 1. Feature Engineering:
1) Graph Pruning: Decompose the given graph G into con-
nected components to obtain the resultant graph G′. Set a
threshold parameter θ and iteratively remove small-degree
vertices from G until

∀v ∈ V (G′), θ < deg(v),

where deg(v) is the degree of vertex v. Vertex degree is used
as a criterion in this step as it can be efficiently obtained
without complex pre-computation compared to other vertex
properties.
2) Hierarchical Clustering: Cluster the vertices of a connected
component hierarchically using the breadth-first search al-
gorithm (BFS) [7], [8].
3) Computing: Solve a network computational task based on
the hierarchy property.
Stage 2. Supervised Learning: Apply a GNN with the feature-
based vertex embedding for classification.

In this study, we consider undirected graphs over di-
rected ones. This choice reduces complexity while preserv-
ing properties essential for efficient, accurate, and satis-
factory analysis. The mutual relationships in undirected
retweet networks allow for a more interpretable examina-
tion of spambot detection and influential user identification
on Twitter. Conversely, using directed graphs would require

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 11, 2023. ; https://doi.org/10.1101/2020.10.24.20215061doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.24.20215061
http://creativecommons.org/licenses/by/4.0/


3

Fig. 1. An overview depicting the interdependence among the tasks
solved by the MEGA framework for infodemic risk management.

adapting the methods to account for edge directionality, in-
creasing complexity and complicating the interpretation of
results. Fig. 1 presents an overview of MEGA, assessing the
infodemic risk through spambot detection and influential
spreader identification.

3.2 Motivation and Summary

To motivate our approach for solving the triangle motif
counting and distance center computation problems for
infodemic risk management, we present two examples to
show the measures we compute can help in spambot de-
tection and influential spreader identification for infodemic
risk evaluation.

The work in [6] developed a risk index to quantify the
exposure rate of a Twitter user to unreliable tweets shared
by a specific class of users (partial IRI, (1)) or by any class of
users (IRI, (2)):

pIRIi(t, t+∆t) =

∑
u∈Ci

∑
m∈Mu(t,t+∆t)

Fu (1− rm)

∑
i

∑
u∈Ci

∑
m∈Mu(t,t+∆t)

Fu

, (1)

IRI(t, t+∆t) =
∑
i

p IRIi(t, t+∆t), (2)

where Fu is the follower count of user u, defining the
exposure of message m posted by u at time t in terms of
potential visualizations by the first-order approximation,
rm is the reliability of m with a value of either 0 or 1,
Mu(t, t + ∆t) is the set of messages posted by u within
a time window of length ∆t, and Ci (i = V,U) signifies
user classes: verified (V ) and unverified (U) accounts, as
determined by the social platform. To evaluate the risk index
from another perspective, we use spambot detection to
assess rm and influential spreader identification to measure
Fu (see details in Section 7.5).

In our Twitter dataset of the COVID-19 pandemic (de-
tailed in Section 7.1), we identify two categories of accounts:
legitimate users and spambots. As seen in Fig. 5 (Section
7.3.3) and consistent with [16], legitimate users exhibit a

higher triangle count than spambots. This observation leads
to two conjectures: (a) the triangle distribution of legitimate
users differs from that of spambots on Twitter, making the
triangle motif count a robust spambot detection feature.
Additionally, detection with content-based features can eas-
ily be evaded by filtering spam words, while the graph-
based triangle count feature models real-world social rela-
tionships, making it harder to bypass. (b) Legitimate users
tend to follow and retweet those with shared interests or
similar views, leading to relationship formation and triangle
creation in their networks.

Finding influential spreaders can help us maximize a
tweet’s reach on Twitter based on past interactions (e.g.,
retweets). The motivation is similar to analyzing the effect
of viral spreading and influence maximization [26], [27]. The
goal is to find a small group of Twitter users (root vertices in
a graph) to efficiently spread reliable tweets and maximize
their reach over time. In [9], this was formulated as a
maximum likelihood estimation problem (see Section 3.4),
and rumor centrality was introduced to solve it optimally in
O(N) time for infinite-size, degree-regular tree graphs with
N vertices. However, the problem becomes computationally
hard for non-tree graphs. A BFS heuristic algorithm for
general graphs was proposed in [9], but it required O(N2)
time complexity due to BFS tree traversal starting from
every vertex. Distance centrality is a proven suboptimal
heuristic to approximate the optimal solution [9]. It achieves
the optimal solution for degree-regular trees, like rumor
centrality. Our MEGA framework computes the distance
center faster by reducing the number of BFSs invoked on
the graph, demonstrating that distance centrality is a more
efficient measure of influence on Twitter.

3.3 Triangle Motif Counting for Spambot Detection
Triangle motif enumeration in spambot detection involves
identifying and counting the triangle motifs.

Problem 1 (Counting triangle motifs). Given a simple undi-
rected graph G = (V (G), E(G)), if there exist three vertices
vi, vj and vk such that (vi, vj), (vi, vk) and (vj , vk) are all in
E(G), then we say vi, vj , vk form a triangle motif. The goal
is to compute triangle count for each v ∈ V (G) by:

λ(v) = |{(v, vj , vk) | v, vj , vk form a triangle}|.

3.4 Distance Center Computation for Influential
Spreader Identification
Identifying influential spreaders in online social networks
is one of the most critical issues in statistical inference
and infodemic risk management. This paper aims to find
the distance center of a mega-sized graph accurately and
efficiently.

Problem 2 (Computing the message source estimator). As-
suming a tweet spreads on Twitter following the susceptible-
infected (SI) model, how to accurately find the spreader in a
spread graph where all vertices know the tweet’s origin?

The tweet spreading follows the SI model, in which once
a vertex is “infected”, it stays in this state forever (i.e., once
a tweet is retweeted, a relationship is built between the
spreader and the retweeter, and this cannot be reversed). Let
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VI denote the set of vertices such that each vertex in VI has
at least one infected neighbor. In each time slot, one vertex
is uniformly chosen from VI to be the next infected vertex.
Given a snapshot of N infected vertices GN , we want to find

v̂ = arg max
v∈GN

P (GN |v),

where v̂ is the spreader and P (GN |v) is the probability of
having GN under the SI model assuming v is the original
message source. Note that we only focus on using the
network topology of GN to compute v̂ in this paper.

Let G = (V (G), E(G)) be a simple connected graph.
Denote the shortest distance between two vertices, say u and
v, by dist(u, v). The distance centrality of a vertex v ∈ V (G),
S(v,G), is defined as

S(v,G) =
∑

w∈V (G)

dist(v, w).

The distance center, Cdist(G), of G is a vertex that has the
smallest distance centrality.

4 MEGA FOR TRIANGLE MOTIF COUNTING

In this section, we describe how MEGA solves the triangle
counting problem for feature engineering (see Problem 1).

4.1 Graph Pruning
We remove small-degree vertices from the given graph G
such that θ < deg(u) < N ′ − 1 for all u ∈ V (G′), where G′

is the pruned graph and N ′ is the cardinality of V (G′). If a
vertex u is removed from G, then for each pair of vertices a
and b both belonging to NG(u) = {v | (u, v) ∈ E(G)}, we
check if (a, b) ∈ E(G). If (a, b) ∈ E(G), we count {u, a, b}
as a triangle motif. Hence, there are

(deg(u)
2

)
pairs need to be

checked for each removed vertex u. If N ′ < 3, then MEGA
ends here. Otherwise, we go to the next step.

In general, the threshold θ is a tunable parameter and
its optimal value depends on the graph topology and the
problem we wish to solve. We say θ is optimal if it can
largely decompose a given graph and θ ≪ N (see Appendix
C). We provide bounds on the optimal threshold θ∗ for some
special cases based on their inherent structures.

Lemma 1. For any graph G = (V (G), E(G)), if all vertices
with degree less than or equal to θ are removed to obtain
the pruned graph G′ = (V (G′), E(G′)), then

|V (G′)| ≤ 2|E(G)|
θ + 1

.

Theorem 1. For any Barabási-Albert (BA) network G with
parameters m0 and m, where m0 is the size of the initial
complete network and m is the degree of each newly added
vertex, the optimal threshold θ∗ to efficiently decompose G
is m, and it can be computed by

θ∗ =

⌈ |E(G)|
|V (G)|

⌉
.

Lemma 2. For any Erdős-Rényi (ER) random network
G(N, p), by setting θ∗ = k · degavg , where k is a positive
integer and degavg is the average degree of G, the size of the
pruned graph decreases exponentially with increasing k.

Lemma 3. For any planar graph G, the optimal threshold
θ∗ to completely decompose G is 5.

4.2 Hierarchical Clustering
We leverage a hierarchical clustering algorithm proposed in
[7], [8] to split vertices based on the BFS tree traversal. Note
that G′ may not be a connected graph even if G was. Denote
the ith connected component in G′ as Gi. Then, V (G′) =
l⋃

i=1

V (Gi), where l is the number of connected components

(e.g., l = 1 if G′ is a connected graph). Let vir be the degree
center (a vertex with maximum degree) of each connected
component Gi for i = 1, . . . , l. Then, we use vir as the root
of the BFS tree traversal for Gi. For each Gi, vertices are in
the same cluster if their distances to vir are identical. Hence,
the jth cluster of Gi, Ki,j , is defined as

Ki,j = {v ∈ V (Gi) | dist(v, vir) = j}, (3)

where Ki,0 = {vir} and Ki,1 = NG′(vir).

4.3 Computing the Number of Triangle Motifs
Based on the BFS properties, for each motif {vi, vj , vk} in
G′, there are only two possible structures:
Inter-cluster motif We call {vi, vj , vk} an inter-cluster mo-
tif, if vi, vj and vk scatter in two neighboring clusters. In this
case, one of the three vertices may be the root.
Intra-cluster motif If vi, vj and vk are in the same cluster,
then we call {vi, vj , vk} an intra-cluster motif.

In the following, we describe how MEGA counts differ-
ent structures of triangle motifs in the computing step.
1) Rooted inter-cluster motifs: Similar to the graph pruning
step, for each pair of vertices a and b both belonging to
NGi(v

i
r), we check if (a, b) ∈ E(Gi). Let λ(vir) be the

number of triangles incident to vir ∈ V (Gi). Then we have

λ(vir) ≤
(
deg(vir)

2

)
.

2) Non-root inter-cluster motifs: For each vertex v ∈ Ki,j , its
upper neighbors, N↑

Gi
(v), are defined by

N↑
Gi
(v) = NGi

(v)
⋂

Ki,j−1,

and its lower neighbors, N↓
Gi
(v), are defined by

N↓
Gi
(v) = NGi

(v)
⋂

Ki,j+1.

Thus, for each u↑
1 and u↑

2 in N↑
Gi
(v), if (u↑

1, u
↑
2) ∈ E(Gi), then

{u↑
1, u

↑
2, v} forms a motif. Similarly, for each w↓

1 and w↓
2 in

N↓
Gi
(v), if (w↓

1 , w
↓
2) ∈ E(Gi), then {w↓

1 , w
↓
2 , v} forms a motif.

Let λ(v) be the number of triangles incident to v ∈ V (Gi).
Then we have

λ(v) ≤
(
|N↑

G′(v)|
2

)
+

(
|N↓

G′(v)|
2

)
.

3) Intra-cluster motifs: Let Gi,j = (V (Ki,j), E(Ki,j)) denote
the induced subgraph of G′. Then, all intra-cluster motifs in
Gi,j can be counted in a recursive manner (i.e., applying the
feature engineering step of MEGA to count the number of
triangle motifs in Gi,j).

The triangle count of every vertex in G can be computed
via steps 1-3 of the feature engineering phase, which is
implemented by Algorithm 1 (see Appendix B).
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5 MEGA FOR DISTANCE CENTER COMPUTATION

In this section, we apply MEGA to compute the distance-
based message source estimator (see Problem 2). In sum-
mary, the framework can find the distance center for tree
graphs through the graph pruning step (Section V-A) alone.
However, for cyclic graphs, the pruning step removes leaf
vertices, after which the pruned graph undergoes further
processing in the remaining two steps (Sections V-B and V-
C) to find the distance center hierarchically using the BFS
algorithm. Note that we only consider connected graphs
in this section since we are ranking vertices in the same
connected component to investigate message spreading.

5.1 Graph Pruning

We first remove the trivial vertices that have less chance to
be the distance center in this step. Based on the statistical
property of the data, we set the threshold θ to 1 so that all
vertices in the pruned graph G′ have degrees larger than 1.
Note that if we set θ > 1, G′ will become fragmented, which
increases the computational complexity significantly.

Each vertex contains two parameters, subtree size T and
sum of removed distances D. We use a rewriting system to
update these two parameters for every vertex in the input
graph G. Note that vertices receiving messages from a given
vertex are referred to as parents p, and vertices for which
a given vertex is parent are the children of that vertex,
child(p). Initially, we set the subtree size to 1 and the sum
of removed distances to 0 for every vertex. When a vertex
v with degree 1 is removed from G, it sends the message
of (T (v), D(v)) to its parent. Subsequently, the rewriting
system updates the subtree size of each parent by

T (p) = T (p) +
∑

w∈child(p)

T (w), (4)

and the sum of removed distances by

D(p) = D(p) +
∑

w∈child(p)

[T (w) +D(w)]. (5)

This step continues until all vertices in G′ have a degree
greater than 1. Recall that the rewriting system in the θ = 1
graph pruning is equivalent to that in the Election Algorithm
[28], and it can find the distance center in a tree within
linear time complexity. However, social networks such as
Twitter have more complex structures, where billions of
users (vertices) can form millions of communities (cycles).
Thus, finding the distance center in a tree is just a special
case.

Let G′ = (V (G′), E(G′)) be the pruned graph with N ′

vertices. Then, G′ is a connected graph containing cycle(s)
and deg(v) > 1 for all v ∈ V (G′). If N ′ > 1, we go to the
next step. Otherwise, G′ is the distance center.

5.2 Hierarchical Clustering

In this step, we partition vertices in G′ into different clusters
based on the BFS tree traversal. Let vr be the root of the BFS
for G′. Similar to (3), we use the distance between vr and
all other vertices in G′ to define each cluster. Since G′ must

be a connected graph, we use Ki to denote the ith cluster in
G′. We rewrite (3) as

Ki = {v ∈ V (G′) | dist(v, vr) = i}.

That is, a vertex v is in cluster Ki if its distance from vr is i.
We can then find the distance centrality of vr , S(vr, G′), by

S(vr, G
′) = D(vr) +

maxC∑
i=1

{ |Ki|∑
j=1

[T (vj) · i+D(vj)]

}
, (6)

where maxC is the number of clusters in G′ and |Ki| is the
number of vertices in the ith cluster. Then, the total subtree
size and the sum of removed distances of each cluster is
T (Ki) =

∑
v∈Ki

T (v) and D(Ki) =
∑
v∈Ki

D(v), respectively.

The initial root vr impacts not only the number of
clusters, but also the lower bound computation of every
vertex in the next step, affecting the overall performance
of the feature engineering. Having more clusters results in
greater differences between the lower bounds of vertices.
We first identify a vertex v with the minimum degree in G′

to minimize the number of vertices in K1. Then, we choose
the root vr as a vertex with the maximum eccentricity, i.e.,
the farthest from v.

5.3 Computing the Distance-based Estimator

After selecting the root, we use the idea of computing top-
k closeness centrality [29] as a basis, which is to trace the
lower bound on the distance centrality of each vertex to
avoid running BFS starting from every vertex. We denote
the lower bound on the distance centrality of vertex v in
G′ as SLR(v,G

′). Note that if S(v,G′) < SLR(u,G
′) or

S(v,G′) ≤ S(u,G′) for all u ∈ V (G′), then we can predict
that v is the distance center of G′.

5.3.1 Computing the Cluster-based Lower Bound

To calculate SLR(u,G
′), where u ∈ Ki, we establish The-

orem 2 based on the triangle inequality to characterize the
lower bound in terms of clusters, T (Ki) and D(Ki). Note
that all information about the pruned vertices are already
stored in T (v) and D(v) for all v ∈ V (G′).

Theorem 2. Let G′ be a pruned graph and u ∈ Ki. Then,

S(u,G′) ≥
∑

0≤j≤maxC
[|i− j| · T (Kj) +D(Kj)].

The two terms, T (Kj) and D(Kj), in Theorem 2 were
computed in hierarchical clustering, and thus the complex-
ity of computing the lower bound of vertex u is only a linear
function of maxC. Note that in Theorem 2, the lower bound
on the distance centrality of every vertex in the same cluster
must be the same. Therefore, to tighten the lower bound of
each vertex, we characterize two cases when |i− j| < 2:
Case 1: We have

∑
u∈NG′ (v)

[T (u) +D(u)] as the exact distance

for v since dist(u, v) = 1 for all u ∈ NG′(v).
Case 2: If u ̸∈ NG′(v), then we have 2 · T (u) +D(u) as the
lower bound for v since dist(u, v) must be at least 2.
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5.3.2 Computing the Distance Center

We propose Algorithm 2 to compute the distance center for
the input graph (see Appendix B). We first compute SLR for
each vertex in G′ and insert it into a min-priority queue Qs

sorted in ascending order of SLR. Then, we use DeQueue to
obtain the smallest SLR in Qs and check if SLR = S. That is,
if SLR(v,G

′) is the smallest in Qs, then we do hierarchical
clustering for G′ using v as the root and compute S(v,G′)
with (6). If S(v,G′) = SLR(v,G

′), then we conclude that v
is the distance center of G′. Otherwise, we use EnQueue to
put S(v,G′) into Qs and repeat the whole process until we
get the distance center of G′.

It is worth noting that if v is the root in the first hierar-
chical clustering and S(v,G′) is the smallest in Qs, then we
only need to do BFS once. Otherwise, in the worst case, we
have to do BFS for all vertices in G′. To further tighten the
lower bound on the distance centrality for each vertex, we
recompute the lower bound of every vertex in each BFS and
update it if the bound is found to be tighter. That is, if the
recomputed lower bound of a vertex appears to be larger
than its current bound, then we update it. As we do more
BFS, the lower bound should be updated to be tighter.

5.3.3 Backtracking

Note that the distance center may be deleted in pruning
for some graphs (e.g., pseudo-tree is a connected graph
containing a single cycle). To resolve this issue, we establish
Theorem 3 to characterize the cases when the distance center
is in G′ and use Corollary 1 to find the distance center when
it was deleted in pruning.

Theorem 3. Let Cdist(G) be the distance center of G. If N ′ ≥
N/2, then V (G′) must contain Cdist(G). If N ′ < N/2 and
Cdist(G) /∈ V (G′), then Cdist(G) can be found in O(dia(G))
time, where dia(G) is the graph diameter of G.

Corollary 1. If N ′ < N/2 and the unique vertex v′ with
the minimum distance centrality in V (G′) is not Cdist(G),
then there is a unique path from v′ to Cdist(G). Moreover,
the distance centrality of each vertex along the path is
monotonically decreasing.

Based on Corollary 1, MEGA is able to find Cdist(G) in
O(dia(G)) time after Cdist(G) was deleted in graph prun-
ing. In Appendix D, we demonstrate how MEGA efficiently
finds the distance-based message source estimator for a
general cyclic graph, without compromising on accuracy
comparing with the BFS heuristic algorithm used in [9].

6 SUPERVISED LEARNING WITH GRAPH NEURAL
NETWORKS FOR INFODEMIC RISK MANAGEMENT

In this section, we show how to leverage the deep learning
architecture in graph to solve the spambot detection and
influential spreader identification problems using the infor-
mation obtained in the feature engineering step. In what
follows, we first present two vertex embedding methods
based on the number of triangles and distance centrality
of each vertex respectively, and then show how to train the
GNN models for classification in a supervised manner.

6.1 Vertex Embedding

Given a graph G = (V (G), E(G)), a traditional method for
vertex embedding in GNN model is to use neural networks
for vertices to aggregate information from their neighbors
[30]. In the k-th layer of the GNN model, the update rules
of a vertex v are given by

h
(k)
NG(v) = AGGREGATE(k)({h(k−1)

u | u ∈ NG(v)}),

h(k)
v = COMBINE(k)(h(k−1)

v , h
(k)
NG(v)),

where NG(v) is the set of the neighbors of v ∈ V (G), h(k)
v

is the vertex features of v in the k-th layer or iteration,
h
(k)
NG(v) is an intermediate variable in the k-th layer or

iteration, AGGREGATE(·) is a function (e.g., sum, mean,
max-pooling and LSTM-pooling) to aggregate information
from the neighbors of the vertex v, and COMBINE(·) is
a function (e.g., summation and concatenation) to update
the information of v combining the aggregated information
from its neighbors and itself. The design of the two functions
in GNNs is crucial and can lead to different kinds of GNNs.

However, the information aggregation step in the above
embedding method treats each neighbor equally, and ig-
nores the differences of important graph properties of these
vertices. Meanwhile, all neighbors are sampled, which may
lead to high computational complexity when the graph is
huge. In fact, different vertices with different graph proper-
ties may transmit different amounts of information to their
neighbors, so the influence of different neighbors of a vertex
can be quite different depending on their graph properties.
Instead of just exploiting the centrality information [31],
we preserve the important feature information of data. In
the following, we present two different feature-based vertex
embedding methods to preserve the information of triangle
count and distance centrality respectively.
Triangle-based Vertex Embedding: As we mentioned earlier,
the number of triangles of a vertex is an important fea-
ture for us to judge whether a user account is a spambot.
That is, a vertex with a larger number of triangles may
convey more information for spambot detection. Thus, we
propose considering the triangle count of the neighbors
when aggregating the information. To do so, we sample the
vertex’s neighbors with large triangle count, i.e., the top-n
ranked vertices according to the triangle count out of all its
neighbors. We also preserve the triangle count of each vertex
during the aggregation, which is denoted by tu. Then, we
construct the k-th layer to update a vertex v in the GNN
model as

h
(k)
TNG(v) = AGGREGATE(k)({tuh(k−1)

u | u ∈ TNG(v)}),

h(k)
v = COMBINE(k)(tvh

(k−1)
v , h

(k)
TNG(v)),

(7)
where TNG(v) is the set of the sampled neighbors of v ∈
V (G) based on the number of triangles of v’s neighbors.
Distance-based Vertex Embedding: Computing the distance
center is the first step to finding the message source, as in
a real-world scenario, there is more than one spreader in a
given network. Based on our simulation in Section 7.4.2, the
average error between the real message sources and the top-
k vertices with the smallest distance centrality is relatively
small (within 3 hops) in the retweet network. Hence, we
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Fig. 2. An example showing the differences between traditional vertex
embedding and our proposed triangle-based and distance-based vertex
embeddings, with vertex v (in gray) as the target for embedding. Gray
rectangle boxes represent neural networks that combine aggregated
information and information of v, while square boxes with a W matrix
indicate trainable parameters for aggregating information from v’s neigh-
bors. The traditional method aggregates information from all vertices,
whereas our approach aggregates only the top 2 ranked neighbors.

sample the vertex’s neighbors with small distance centrality
when aggregating the information, i.e., the top-n ranked
vertices with the smallest distance centrality out of all its
neighbors. We also preserve the distance centrality of each
vertex during the aggregation, which is denoted by su.
Then, we construct the k-th layer to update a vertex v in
the GNN model as

h
(k)
SNG(v) = AGGREGATE(k)({suh(k−1)

u | u ∈ SNG(v)}),

h(k)
v = COMBINE(k)(svh

(k−1)
v , h

(k)
SNG(v)),

(8)
where SNG(v) is the set of the sampled neighbors of v ∈
V (G) based on the distance centrality of v’s neighbors.

Fig. 2 shows the differences between traditional vertex
embedding and our proposed triangle-based and distance-
based vertex embeddings. To implement the feature-based
vertex embeddings, we can simply adjust the adjacency
matrix so that the original undirected graph becomes a
directed one. We can then use the directed GraphSAGE [32]
for the embedding.

6.2 Supervised Learning with Vertex Embedding

We propose a vertex-level classification model [33] that
incorporates our vertex embedding methods. The model
comprises two phases: message passing and classification.
The message passing phase aims to learn a function gen-
erating vertex embeddings to capture vertex relationships
based on the features of each vertex and its neighbors. The
classification phase employs a neural network to classify
each vertex by assigning a label. This approach can instan-
tiate various models through different function settings for
both phases.

For the message passing phase using the triangle-based
vertex embedding, we elaborate the vertex embedding pre-
sented in (7) for each v in each layer k as follows:

h
(k)
TNG(v) =

∑
u

tuW
(k)
1 h(k−1)

u , u ∈ TNG(v),

where W
(k)
1 is a trainable parameter, and h

(k)
v is the vertex

features of v in the k-th layer. We set the initial feature
h
(0)
v = [1, 1, . . . , 1]⊤. Then, the aggregated information and

the information of v itself are combined as follows:

h(k)
v = max

(
0, tvW

(k)
2 h(k−1)

v + h
(k)
TNG(v)

)
,

where W
(k)
2 is a trainable parameter for the combination.

Similarly, for the message passing phase with the
distance-based vertex embedding, the vertex embedding
presented in (8) for each v in each layer k can be refined
by

h
(k)
SNG(v) =

∑
u

suW
(k)
1 h(k−1)

u , u ∈ SNG(v).

We also set the initial feature h
(0)
v = [1, 1, . . . , 1]⊤. Then, the

aggregated information and the information of v itself can
be combined by

h(k)
v = max

(
0, svW

(k)
2 h(k−1)

v + h
(k)
SNG(v)

)
.

The classification phase remains the same for both vertex
embedding methods. We predict the classification label c̃v
of v using a fully connected neural network, with the vertex
feature as input:

c̃v = fl(· · · f2(Ŵ2(f1(Ŵ1h
(k)
v + b1)) + b2) · · ·+ bl),

where Ŵi and bi are trainable parameters, and fi is the
activate function, for i = 1, . . . l. To train the model, we
select Z networks for the training set and use the cross-
entropy loss function to update the learning parameters:

L(W,Ŵ,b) = − 1

Z

∑
v

[cv ln c̃v + (1− cv) ln(1− c̃v)],

where cv is the ground truth.

7 NUMERICAL SIMULATIONS ON COVID-19 INFO-
DEMIC RISK MANAGEMENT

In this section, we first assess the performance of our MEGA
framework on spambot detection and influential spreader
identification on Twitter using the following criteria:

• The effectiveness of the feature engineering step, i.e.,
the speed of counting triangle motifs (Section 7.3.2)
and the speedup of finding influential users (Section
7.4.1). We also provide more detailed experiments for
the feature engineering step in Appendix E.

• The importance of the considered features, i.e., number
of triangle motifs for spambot detection (Section 7.3.3)
and distance centrality for influential spreader identifi-
cation (Section 7.4.2).

• The performance of the GNN models in the supervised
learning step for spambot detection (Section 7.3.4) and
influential spreader identification (Section 7.4.3).

Then, we examine how spambot detection and influential
spreader identification can be applied to assess the risk
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index for COVID-19 infodemic risk management (Section
7.5).

All the experiments are conducted on a 64-bit computer
running a Windows 10 system with Intel(R) Core(TM) i7-
9700K CPU 3.60GHz and 64.00 GB of RAM configuration.

7.1 Data Collection

On December 31, 2020, WHO issued its first emergency use
validation for the Pfizer–BioNTech COVID-19 vaccine and
emphasized the need for equitable global access. Since then,
pro- and anti-vaccination comments, including inaccurate
misinformation, have been circulating online. As such, our
Twitter dataset of the COVID-19 pandemic was collected
over a period of five months, covering the initial phase of
the COVID-19 vaccine implementation. From January 1 to
May 31, 2021, we scraped over 1 million tweets that contain
any one of the following keywords: “COVID19”, “COVID”,
“Coronavirus”, “Vaccine” and “Mask” (string matching is
case-insensitive). We only search over English texts.

Due to the rate limit imposed by the Twitter API for data
collection, we ignore tweets with fewer than 50 retweets.
There are a total of 8,408 tweets recorded. For each tweet,
we mark down the author and all the users who have
retweeted the original tweet. We then build a (simple undi-
rected) retweet network with 314,376 vertices and 519,178
edges. Each vertex represents a Twitter user, and the edge
between two users means that they have retweeted each
other at least once. The retweet network may not be a con-
nected graph. The COVID-19 Twitter dataset is available at:
https://github.com/MEGA-framework/Twitter-Dataset.

We consider the retweet network instead of other types
of Twitter graphs as retweet data is more robust than the
data of other social reactions (e.g., replying and following).
The action of retweeting is often an approval or recognition
of others’ thoughts, while following and replying have been
shown to be of a different nature [34]. For example, spam
contents are less likely to be retweeted by other users.
Therefore, retweet data is more relevant in our study.

7.2 Baseline Models and Evaluation Metrics

To evaluate the classification performances of our proposed
MEGA framework on spambot detection and influential
spreader identification, we use the following three classifica-
tion models as the baseline, namely Support Vector Machine
(SVM), Logistic Regression (LR), and Random Forest (RF).
We use two widely adopted evaluation metrics to assess the
classification performance: accuracy A and F1-score F1. We
denote the true positive as TP , true negative as TN , false
positive as FP , and false negative as FN . Then, we have:

A =
TP + TN

TP + TN + FP + FN
,

F1 =
TP

TP + 1
2 (FP + FN)

.

7.3 Results of Spambot Detection

In this section, we evaluate the performance of MEGA on
spambot detection.

7.3.1 Ground Truth Construction
The Twitter API does not provide any tools or information
for us to determine if a user is a spambot, so we have
to construct the ground truth of our self-collected Twitter
dataset. We train our MEGA and the baseline models using
the Twitter Social Honeypot Dataset [35], which has 22,223
spambots and 19,276 legitimate users. As this dataset is
relatively old, we manually verify about 25% of the users. In
the training process, we use 80% of the data as the training
data and the remaining 20% as the test data with five-fold
cross-validation. The performances are listed below:

MEGA SVM LR RF

Accuracy 94.3% 82.3% 86.9% 87.6%

We then apply the trained models to label our self-collected
dataset based on the majority vote. For example, if SVM and
LR both vote for “legitimate user” (0.823 + 0.869 = 1.692)
and MEGA and RF vote for the opposite (0.943 + 0.876 =
1.819), then the label should be “spambot”. To further
validate the results, we also manually check about 10% of
users.

7.3.2 Triangle Motif Counting
We compare the MEGA framework with the following four
benchmarks based on the running time of each algorithm
for triangle motif counting:

• Stanford Network Analysis Platform (SNAP) [36]: It en-
hances flexibility and efficiency in triangle motif count-
ing by relying on the underlying graph data structure.

• NetworkX [37]: It uses the underlying graph data struc-
ture and vertex degree properties for triangle counting.

• igraph [38]: It first lists all triangles, then counts the
number of triangles a vertex belongs to.

• NetworKit [39]: It uses a triangle listing algorithm from
[40] to accelerate the triangle counting process.

These four benchmarks are single machine, single thread
graph analytics libraries that could achieve competitive per-
formance even compared to distributed graph frameworks.

In Fig. 3, we see that MEGA with optimal threshold
θ∗ = 15 performs better than the above benchmarks on
the retweet network for triangle motif counting. Thus, if
we could find θ∗ that leverages the structure of the graph
in advance, then MEGA can complete the counting task in
graph pruning with O(N) time and beats other algorithms.

The threshold θ is a critical parameter in graph pruning.
Once θ is set, there are at most

(θ
2

)
· |P (G)| pairs of vertices

need to be checked, where |P (G)| is the cardinality of the set
of pruned vertices of G. Hence, a larger θ leads to a longer
time spent for graph pruning. On the other hand, if more
vertices are pruned off from G, then the graph becomes
more fragmented. Thus, there is a trade-off between graph
pruning and hierarchical clustering, and it depends on the
threshold θ. Fig. 4 shows how θ affects the computation time
of MEGA on the retweet network. We see that MEGA with
the optimal threshold θ∗ = 15 performs significantly better.

7.3.3 Feature Correlation
To verify that the triangle count is a robust and relevant
feature for spambot detection in our Twitter dataset, we
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Fig. 3. Comparison between MEGA and the benchmarks on triangle
motif counting. The y-axis is the running time in seconds, and the x-axis
is the graph analytics libraries we considered in the experiment. The
number on top of each bar is the exact running time of the libraries.

Fig. 4. The performance of triangle motif counting with different thresh-
olds θ ranging from 0 to 500. The y-axis is the running time in seconds,
and the x-axis is the value of θ. The threshold θ = 15 gives the best
performance with running time 1.39s.

rank the importance of the following features:
Graph-based: (i) Triangle count, (ii) Eccentricity, (iii) Degree
centrality, (iv) Betweenness centrality, (v) Distance centrality,
(vi) PageRank centrality, (vii) Eigenvector centrality, (viii)
Harmonic centrality, and (ix) Clustering coefficient.
User-based: (i) Number of followers fin, (ii) Number of
friends (i.e., number of accounts a user is following) fout,
and (iii) Reputation ( fin

fin+fout
).

Content-based: (i) Vectorized text of the original tweet, (ii)
The length of the original text, (iii) Average word length of
the original text, (iv) Vectorized text of the tweet without
stop words (i.e., filtered text), (v) The length of the filtered
text, (vi) Average word length of the filtered text, and (vii)
The length ratio of filtered text to original text.

We compute the chi-squared statistics between each
feature and the class label to rank the importance of the
features for spambot detection. In Table 1, the triangle count
is ranked as feature number 1 out of 19. Such a remarkably
high correlation makes this feature well worth using for
spambot detection. In Fig. 5, we also see that the triangle
distribution of legitimate users is different from that of
spambots.

7.3.4 Classification Performance

We compare MEGA, which applies GNN with the triangle-
based vertex embedding method, with the baseline models
for spambot detection. In Fig. 6(a), we see that MEGA
achieves the highest accuracy of 92.1% among all the con-
sidered learning models. Meanwhile, the F1-score of MEGA
is also the highest (89.3%) in Fig. 6(b). This shows that
our triangle-based vertex embedding is robust in spambot
detection.

TABLE 1
Top 10 important features for spambot detection.

Rank Feature

1 Triangle count
2 Reputation
3 Betweenness centrality
4 Degree centrality
5 Harmonic centrality
6 The length of the original text
7 The length of the filtered text
8 Eigenvector centrality
9 Average word length of the original text
10 Vectorized text of the original tweet

Fig. 5. Comparison of the triangle count distributions between legitimate
users and spambots. A log scale is used for both x and y axes.

7.4 Results of Influential Spreader Identification

In this section, we assess the performance of MEGA on
influential spreader identification.

7.4.1 Distance Center Computation

We compare the MEGA framework with the algorithm
presented in [29] for distance center computation. The
work in [29] has been shown to outperform other existing
algorithms for finding the exact and approximate top-k
closeness centrality. In addition to the running time, we
also assess the performance improvement based on the
algorithmic speedup. The speedup suggested by [29] is given

by
|V (G)| · |E(G)|
|Ev(G)|

, where |Ev(G)| is the number of edges

that have been visited by an algorithm in G.
We extract the largest (strongly) connected component

of the retweet network for evaluation. It has 308,147 vertices
and 513,399 edges, and the graph diameter is 18. The solu-
tion in [29] uses the level-based and neighborhood-based
lower bound (NBBound) to compute the top-k closeness
centrality of the input graph G directly. It calculates the
lower bound for every vertex in G that may also take those
trivial vertices (leaves) into consideration when computing
the top-k closeness centrality. If the number of vertices and
edges we need to handle is always less than the NBBound
after pruning, the number of edges visited by our algorithm
must be less than the NBBound for every BFS. Thus, the
more vertices we have removed in pruning, the larger the
speedup we can reach. In this case, the running time must
also be lesser for every BFS. In the retweet network, more
than 73% of vertices were removed in pruning. Thus, in Fig.
7, we see that the running time and speedup of MEGA are
better than the NBBound.
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(a) Accuracy (b) F1-score

Fig. 6. Classification performances of MEGA and the baseline models
on spambot detection.

(a) Running Time (b) Speedup

Fig. 7. Comparison between MEGA and the top-k closeness centrality
algorithm proposed by [29] on distance center computation based on
the running time and speedup. We also show the performance of the
textbook algorithm on this problem.

7.4.2 Feature Correlation

We verify the hypothesis that the distance centrality is an
essential feature for finding multiple message sources. Here,
we also use the largest (strongly) connected component of
the retweet network for evaluation. Since there are 5,195
tweets in this network, we identify top 5,195 vertices with
smallest distance centrality and largest rumor centrality
respectively. Fig. 8 shows the average error of using the
distance-based feature is only 2.37 hops from the real source
of 5,195 tweets, while the rumor centrality produces an error
of 2.66 hops. Thus, the distance centrality is a more reliable
feature in finding the message sources in Twitter than the
rumor centrality.

7.4.3 Classification Performance

we compared MEGA using GNN with distance-based ver-
tex embedding to baseline models for identifying multiple
message sources. Fig. 9 shows that the average performance
of all the learning models is not as good as in spambot
detection because the number of spreaders in the dataset
is much lesser than those who retweet. Here, MEGA has
the highest accuracy of 80.4% and highest F1-score of 77.2%
among all the considered learning models, showing that
our distance-based vertex embedding is another promising
approach in influential spreader identification.

7.5 Infodemic Risk Index Evaluation

In this paper, we propose to solve the problems of spambot
detection and influential spreader identification for evaluat-
ing the IRI. Recalling the IRI equations (1) and (2) in Section

Fig. 8. Histograms of the error for finding multiple message sources us-
ing the distance centrality and rumor centrality on the largest connected
component of the retweet network.

(a) Accuracy (b) F1-score

Fig. 9. Classification performances of MEGA and the baseline models
on influential spreader identification.

3.2, we can determine the message reliability rm of user u
by identifying if u is a spambot such that

rm =

{
1 if u is not a spambot
0 otherwise.

Let Sm(u) be the distance centrality of a message m posted
by u in the retweet network (i.e., the shortest distance for
the message to travel from u to all other users in the retweet
network). Then, we can redefine the exposure of a message
posted by u, Ku, by 1

Sm(u) . The idea is that, for a given
graph, if a message can easily reach all other users (i.e., small
distance centrality), then its exposure should be higher. The
definition of the original IRI is more related to severity of
the spread of rumors related to COVID-19. The fake news
may be circulated and widely spread depending on the
severity of the rumor spreading events. Thus, finding the
sources of rumors is valuable to policymakers for infodemic
control. We replace the unverified and verified accounts
with spreaders and retweeters.

The original message reliability rm is determined by
identifying if u is an unreliable source spreading fake news.
Therefore, to compute the original IRI for our analysis, we
have to identify if the tweet content is real or fake. We
use the Support Vector Machine (SVM) model with the
training data containing 10, 700 fake and real news related
to COVID-19 from [41] to identify whether a tweet is a piece
of fake news (misinformation from unverified sources) or
real news (useful information from reliable sources such as
government authorities and news channels). The training
data was collected from various fact-checking websites and
social media, and the veracity of each news was manually
verified in [41]. Using the class-wise balanced training data
with the term frequency-inverse document frequency (TF-
IDF) features, the SVM classifier has a test accuracy of
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93.32% for fake news detection. We then apply the trained
SVM classifier to our Twitter dataset. To further validate
the classification results, we also use Google Fact Check
Explorer and Coronavirus Rumor Control system to man-
ually verify the veracity of each tweet. Personal comments
about COVID-19 without a reliable source are considered
fake news. There are totally 2,599 real news and 5,809 fake
news. We give examples of real and fake news of our Twitter
dataset below:
Fake News: None of these masks will help you against #Covid 19
#COVID2019.
Real News: 70 Covid-19 vaccines are under development, with 3
in human trials, the @WHO says #CoronavirusPandemic.

Fig. 10 shows the modified IRI worldwide. We also
analyze the original and modified IRI of top 15 countries
with the most retweets, namely the United States (US),
India (IN), United Kingdom (UK), Australia (AU), Canada
(CA), Malaysia (MY), South Africa (SA), Pakistan (PAK),
Ireland (IE), Philippines (PH), China (CN), Thailand (TH),
Singapore (SG), Nigeria (NG), and France (FR). In Fig. 11
and 12, we see that although the original IRI is averagely
larger than the modified IRI, but the distributions are quite
the same. This result is as expected, as spambots usually
have a large number of fake followers to increase their
influence (i.e., larger Ku in the original IRI), but their
messages indeed are unlikely to be retweeted by all the
followers (i.e., lower Ku in the modified IRI). The original
IRI is based on the number of fake news, while the modified
IRI is based on the number of spambots. Therefore, having
similar IRI distributions implies that most fake news comes
from spambots.

Regarding the COVID-19 vaccination status, the coun-
tries with high IRI values have low vaccination rates (see
Fig. 13). During the initial phase of the COVID-19 vaccine
implementation, there was a vast amount of unfounded
rumors about deaths after receiving a particular COVID-
19 vaccine or even after administering two injections of a
particular vaccine, it cannot protect against certain virus
variants. This situation is reasonable as the general public
had little knowledge of the vaccine and the virus. More
accurate information from experts and the WHO boosts con-
fidence in COVID-19 vaccines, leading to higher vaccination
rates in communities. However, the media environment is
quite different across different countries. Fake news and
spambots may not easily be verified due to the high cost
of fact-checking. This explains why some countries, such as
South Africa and Pakistan, with low online discourse, have
a relatively large IRI and low vaccination rate.

8 CONCLUSION

Our proposed system, MEGA (Machine learning-Enhanced
Graph Analytics), employs graph neural networks to learn
the underlying statistics of graph data and compute info-
demic risk scores for users in online social networks. By
combining graph analytics with AutoML to detect spambots
and influential spreaders, MEGA outperforms existing tech-
niques. Specifically, we demonstrate how optimizing hyper-
parameters in vertex embedding of graph neural networks
preserves subgraph features and enables accurate computa-
tion of distance centrality. MEGA showcases how leveraging

Fig. 10. The modified IRI worldwide. The modified IRI of each country
aggregated over five months, is color-coded on the map. The bar indi-
cates different exposure levels; 1 means high exposure, and 0 means
low exposure.

Fig. 11. Original IRI of 15 considered countries. We compute the original
IRI based on (1) and (2).

Fig. 12. Modified IRI of 15 considered countries. We compute the
modified IRI based on the changes in Section 7.5.

Fig. 13. Vaccination rate of 15 considered countries. The vaccination
rate is based on the percentage of the population that received at least
one dose of a COVID-19 vaccine.
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statistical features of graph datasets can facilitate efficient
feature engineering, reduce the overall computational com-
plexity of processing massive graphs, and compute accurate
infodemic risk scores.

In our current work, we utilize triangle count and dis-
tance centrality for ranking the importance of vertices in ver-
tex embedding. However, there is a need to preserve more
than just one feature for embedding. In future research,
we plan to extend the MEGA framework to address other
computationally challenging graph representation learning
problems, and improve the pipeline from social listening
to infodemic risk measure computation for automated fact-
checking. Incorporating advanced language models such as
ChatGPT [42] into future research also offers a promising
direction for enhancing the accuracy and efficiency of auto-
mated fact-checking and infodemic risk management.

APPENDIXES

This section contains the appendixes of the paper. In Ap-
pendix A, we provide the proofs of Lemma 1− 4 and Theo-
rem 1−2 of the main paper. We present the pseudocodes for
the triangle motif counting algorithm and distance center
computing algorithm of the feature engineering step of
MEGA in Appendix B. In Appendix C, we analyze the
time complexity of the proposed triangle motif counting
algorithm of our MEGA framework. In Appendix D, we
provide an illustrative example to demonstrate how the
feature engineering step of MEGA computes the distance
center for single message source detection. In Appendix
E, we provide more detailed experiments to assess the
performance of the feature engineering step of MEGA for
triangle motif counting and distance center computation.

APPENDIX A
PROOFS

A.1 Proof of Lemma 1
Proof. According to the degree sum formula, the sum of the
degrees of all vertices in a finite graph is twice the number
of edges in that graph. Since the degree of every vertex in G′

must be at least θ+1, the sum of the degrees of all vertices in
G′ must be greater than or equal to θ + 1 times the number
of vertices in G′. That is,

(θ + 1) · |V (G′)| ≤
∑

v∈V (G′)

deg(v) = 2|E(G′)|.

Since G′ is a pruned graph of G, the number of edges in G′

must be less than or equal to that in G. Hence, we have

|V (G′)| ≤ 2|E(G′)|
θ + 1

≤ 2|E(G)|
θ + 1

.

A.2 Proof of Theorem 1
Proof. We denote a BA network with parameters m0 and m
as G and the initial complete network of m0 vertices in G as
Gm0

, where m0 > m. Then, we have

∀v ∈ G \Gm0
, deg(v) ≤ m.

If we set θ∗ = m, it is obvious that the size of the pruned
graph must be equal to m0 which is the size of Gm0 . If
m = m0 − 1, then we can completely decompose G.

A.3 Proof of Lemma 2

Proof. Let G(N, p) be an ER random network. Then, the
distribution of the vertex degrees is Poisson as the graph
size N goes to infinity. Thus, we can use the Chernoff bound
[43] to compute the upper bound of the size of the pruned
graph. Let v be any vertex in G(N, p) and θ∗ = kNp be the
optimal threshold for pruning, where k is a positive integer,
then we have

prob(deg(v) ≥ θ∗) ≤ (eNp)θ
∗
e−Np

(θ∗)θ∗

=
(Np

θ∗

)θ∗

· eθ
∗−Np

=
(1
k

)kNp

· e(k−1)Np

< e−Np ·
( e
k

)kNp

.

Therefore, we can have a simple upper bound for the size of
the pruned graph, N ′, as follows:

N ′ < e−Np ·
( e
k

)kNp

·N.

Note that for an ER random network G(N, p), the value
Np is the average degree of the graph, which is a constant.
Hence, the size of the pruned graph decreases exponentially
as k increases. It is worth noting that the key property used
to prove Lemma 2 is that the probability distribution of a
vertex has degree k satisfies the Poisson distribution when
the size of the graph is large enough.

A.4 Proof of Lemma 3

Proof. Let G = (V (G), E(G)) be a planar graph. It is known
that the average degree of G is strictly less than 6. It implies
that there must be at least one vertex with degree less than
or equal to 5 in G. After removing such vertices from G,
there is always at least one new vertex to prune since any
subset of a planar graph is also a planar graph. Ultimately,
G can be completely decomposed.

A.5 Proof of Theorem 2

Proof. Let v ∈ Kj , where j is an integer such that 0 ≤ j ≤
maxC. Let ṽ denote the set of pruned vertices such that v
is the ancestor of these pruned vertices (e.g., v5 ∈ ṽ4 in Fig.
14). First, we consider the distance from vertex u to all the
vertices in ṽ including v itself. Without loss of generality, we
assume that the common ancestor w of u and v is in level h.
Then, we have

d(u, v) = |h− i|+ |h− j| ≥ |i− j|,

where the equality holds if u = w or v = w. Then, for other
vertices in ṽ, we have∑

x∈ṽ

d(u, x) =
∑
x∈ṽ

[d(u, v) + d(v, x)]

= T (v) · d(u, v) +D(v)

≥ T (v) · |i− j|+D(v).
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Hence, we have

S(u,G) ≥
∑

0≤j≤maxC

{ ∑
v∈Kj

[T (v) · |i− j|+D(v)]

}

=
∑

0≤j≤maxC

[
|i− j| ·

∑
v∈Kj

T (v) +
∑
v∈Kj

D(v)

]
=

∑
0≤j≤maxC

[|i− j| · T (Kj) +D(Kj)].

A.6 Proof of Theorem 3

Proof. First, we show that G′ must contain Cdist(G) when-
ever N ′ ≥ N/2. We prove this part by contradiction.
Assume that N ′ ≥ N/2 and the distance center vc ∈ G\G′.

To prove this theorem, we define an edge (u, v) as a
bridge if the removal of (u, v) disconnects G. Assume (u, v)
is a bridge. Let Cv

u and Cu
v denote the connected component

containing u and v respectively after removing (u, v).

Lemma 4. If edge (u, v) is a bridge in G, then we have

S(u,G) = S(v,G) + |Cu
v | − |Cv

u|. (9)

Proof. Let u and v be two vertices of G such that (u, v) is a
bridge in G. Then, for any vertex vi ∈ Cu

v and uj ∈ Cv
u , we

have

dist(vi, uj) = dist(vi, v) + 1 + dist(uj , u).

Hence, the distance centrality of u in G, S(u,G), can be
rewritten in terms of the distance centrality of u and v in Cv

u

and Cu
v respectively. We have

S(u,G) =
∑
w∈G

dist(u,w)

=
∑

w∈Cv
u

dist(u,w) + 1 +
∑

w∈Cu
v

dist(u,w)

= S(u,Cv
u) + 1 +

∑
w∈Cu

v

[dist(v, w) + 1]

= S(u,Cv
u) + 1 + S(v, Cu

v ) + |Cu
v |.

By following the same approach, we have

S(v,G) = S(u,Cv
u) + 1 + S(v, Cu

v ) + |Cv
u|.

Combining two results above, we have

S(u,G)− S(v,G) = |Cu
v | − |Cv

u|.

Lemma 5. Let G′ be the pruned graph and v ∈ G\G′. Then,
v is either a degree-1 vertex or an endpoint of a bridge.

Proof. Assume that v is not an endpoint of a bridge. Then, v
must be contained in a cycle of G. The degree of v must be
larger than or equal to 2 during pruning, which implies that
v ∈ G′ and contradicts the assumption that v ∈ G\G′.

By Lemma 5, we conclude that vc must be an endpoint
of a bridge in G. We consider two distinct cases based on

the distance between vc and G′ in the following, which is
defined as usual by dist(vc, G

′) = min
w∈G′

{dist(vc, w)}.

Case 1: Assume that dist(vc, G′) = 1. Then, there is only
one vertex u ∈ G′ such that dist(vc, u) = 1 and (u, vc)
is a bridge by Lemma 5. Moreover, we have S(vc, G) =
S(u,G) + |Cvc

u | − |Cu
vc
| by Lemma 4. Since |Cvc

u | ≥ N ′ ≥
N/2, we have S(vc, G) ≥ S(u,G), which contradicts the
assumption that vc is the distance center.
Case 2: Assume that dist(vc, G′) ≥ 2. From Case 1, we can
deduce that for any two vertices u and v in G\G′ and (u, v)
is a bridge with dist(u,G′) < dist(v,G′). Then, S(u,G) <
S(v,G). This implies that, for all v with dist(v,G′) ≥ 2,
there is a neighbor u of v such that S(u,G) < S(v,G), which
is a contradiction.
Therefore, we conclude that if N ′ ≥ N/2, then G′ must
contain the distance center.

Now, let us consider the case that Cdist(G) /∈ G′. Note
that for each pruned neighbor u of v′ ∈ G′, we know that
(v′, u) is a bridge of G. Hence, we can compute S(u,G)
immediately by using Lemma 4. In particular, since v′ has
the minimum distance centrality on G′, there is a unique
pruned neighbor of v′, say u′, such that S(u′, G) < S(v′, G).
Since Cv′

u′ is a tree, we can apply the result of Theorem 3 in
[23] to complete the rest of the proof.

APPENDIX B
PSEUDOCODES

B.1 Triangle Motif Counting
The triangle motif counting algorithm (i.e., the computing in
the feature engineering step) is implemented by Algorithm
1, where l is the number of disconnected components after
graph pruning, maxC is the total number of clusters in Gi,
and MEGA(Gi,j) is the recursive function of the feature
engineering step for triangle motif counting in Gi,j .
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Algorithm 1: Triangle Motif Counting

Input : Graph G′, vertex sets Ki,j , number l,maxC
Output: Triangle count λ(v) of each vertex v ∈ V (G)
for i = 1, 2, . . . , l do

for a, b ∈ NGi
(vir) do

if (a, b) ∈ E(G) then
λ(vir)← λ(vir) + 1
λ(a)← λ(a) + 1
λ(b)← λ(b) + 1

end
end
remove vertex vir from Gi

for j = 1, 2, . . . ,maxC do
for v ∈ Ki,j do

N↑
G′(v)← NG′(v)

⋂
Ki,j−1

N↓
G′(v)← NG′(v)

⋂
Ki,j+1

for a, b ∈ N↑
G′(v) or a, b ∈ N↓

G′(v) do
if (a, b) ∈ E(G) then

λ(v)← λ(v) + 1
λ(a)← λ(a) + 1
λ(b)← λ(b) + 1

end
end
Gi,j ← (V (Ki,j), E(Ki,j))
MEGA(Gi,j)

end
end

end
return λ

B.2 Distance Center Computation

Algorithm 2 describes the feature engineering step of MEGA
for distance center computation in the input graph G. Based
on Theorem 3, if N ′ < N/2, where N ′ is the cardinality
of V (G′) and N is the cardinality of V (G), we can use
Corollary 1 to backtrack the removed distance center in G.

Algorithm 2: Distance Center Computation

Input : Graph G, graph G′, lower bounds SLR

Output: distance center of G, Cdist(G)
Qs ←EnQueue(vr , S(vr, G′))
foreach v in V (G′)\{vr} do

Qs ←EnQueue(v, SLR(v,G
′))

end
while continue = true do

(v, SLR(v,G
′))← DeQueue(Qs)

if S(v,G′) = SLR(v,G
′) then

Cdist(G
′)← v

continue←false
else

Qs ←EnQueue(v, S(v,G′))
end

end
if N ′ ≥ N/2 then

Cdist(G)← Cdist(G
′) (see Theorem 3)

end
return Cdist(G)

APPENDIX C
TIME COMPLEXITY OF TRIANGLE MOTIF COUNTING

The time complexity of the graph pruning step depends
on the number of pairs of vertices that we need to verify
(whether an edge exists between them). Let P (G) be the
set of pruned vertices of G with threshold θ, i.e., P (G) =
{v ∈ V (G) | v /∈ V (G′)}. Then, the time complexity of the
pruning step is bounded above by

(θ
2

)
· |P (G)|. Assume that

θ ≪ N . Then, the time complexity of the pruning step is
bounded above by O(N) since |P (G)| ≤ N .

In hierarchical clustering, we select a vertex vir as an
optimal root of the BFS for Gi to obtain the distances from
vir to any other vertex in Gi. Hence, the time complexity of
the hierarchical clustering step is O(|V (G′)| + |E(G′)|) =
O(|E(G′)|) since we only consider graphs with |V (G′)| ≤
|E(G′)| in the triangle motif counting problem.

In the computing step, each vertex v has three types of
neighbors: the neighbors in the upper cluster N↑

G′(v), the
neighbors in the lower cluster N↓

G′(v), and the neighbors in
the same cluster N→

G′(v). Therefore, the number of pairs of
vertices that we need to check for each vertex v is at most(
|N↑

G′(v)|
2

)
+

(
|N↓

G′(v)|
2

)
+

(
|N→

G′(v)|
2

)
≤
(
degmax

2

)
,

where degmax is the maximum degree of G′. Thus, the time
complexity of the computing step is O(N ′ ·

(degmax

2

)
).

We thus conclude that the total time complexity of the
feature engineering step of MEGA for solving the triangle
motif counting problem is O(|E(G′)|+N ′ ·

(degmax

2

)
).

APPENDIX D
ILLUSTRATIVE EXAMPLE OF DISTANCE CENTER
COMPUTATION

We use an example to illustrate the difference of finding the
message source estimator between the feature engineering
step of MEGA and the BFS heuristic algorithm in [9]. Using
the same example as in [9], we have a spread graph as
shown in Fig. 14. There are 5 vertices received the message
(v1 to v5), and we want to find the distance-based message
source estimator of this spread graph using MEGA.

The input graph has five vertices (v1 to v5) that received
the message, and our goal is to find the distance-based
message source estimator using the MEGA framework. In
the first step of graph pruning with θ = 1, we remove
v5 and update its parent v4 such that T (v4) = 2 and
D(v4) = 1, resulting in the pruned graph G′. We then use
every vertex in the pruned graph as the root to perform BFSs
and determine the worst-case performance. Starting with v1
as the root, we obtain the following results:

S(v1, G
′) = 0 + 1 + 3 + 2 = 6

SLR(v2, G
′) = 1 + 0 + 1 + 5 = 7

SLR(v3, G
′) = 2 + 1 + 0 + 3 = 6

SLR(v4, G
′) = 1 + 2 + 1 + 1 = 5.

Since SLR(v4, G
′) is the smallest, we need to check if

S(v4, G
′) = SLR(v4, G

′) by using v4 as the root for the sec-
ond BFS tree traversal. As we have S(v4, G

′) = SLR(v4, G
′)

and the lower bound of every vertex remains unchanged,
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Fig. 14. Example illustrating how MEGA finds the distance-based mes-
sage source estimator of a spread graph. There are totally 5 vertices
received the message (in gray color). After graph pruning, we have a
pruned graph G′. We then select v1 to v4 as the root in hierarchical
clustering respectively and see how many BFSs we have to build for
each root.

we find that v4 is the distance-based message source esti-
mator of G′. Since N ′ > N/2, based on Theorem 3, we
conclude that v4 is the message source of G.

Similarly, for the roots v2 and v3, we need to perform
two BFS tree traversals as well. However, for the root v4, we
have

S(v4, G
′) = 1 + 2 + 1 + 1 = 5

SLR(v1, G
′) = 0 + 1 + 2 + 3 = 6

SLR(v2, G
′) = 1 + 0 + 1 + 5 = 7

SLR(v3, G
′) = 2 + 1 + 0 + 3 = 6.

Since S(v4, G
′) is already the smallest, we conclude that v4

is the message source of G by using only one BFS tree. As
such, in the worst case, we only need to perform BFS twice
for finding the distance-based message source estimator of
the spread graph. Meanwhile, v4 is also identified as the
rumor center using the BFS heuristic algorithm in [9] but it
requires to construct BFS trees starting from every vertex in
the spread graph. Thus, in this example, the number of BFSs
performed and the number of edges visited by MEGA are
both less than that of the algorithm in [9].

APPENDIX E
EXPERIMENTAL PERFORMANCE EVALUATION

In this section, we provide more detailed experiments to
assess the performance of the feature engineering step of
MEGA for triangle motif counting and distance center com-
putation on (simple undirected) social networks.

E.1 Triangle Motif Counting on Social Networks

We evaluate the performance of the feature engineering step
of MEGA on the triangle motif counting problem using
the social networks provided by Stanford Large Network
Dataset Collection (SNAP) [44].

E.1.1 Optimal Threshold Tuning

Fig. 15 shows how the threshold θ affects the computation
time of the feature engineering step of MEGA for triangle
motif counting on eight real-world networks provided by
SNAP. We also compare the performance of MEGA using
the degree center and a random vertex as the BFS root
in hierarchical clustering since other centrality measures
such as PageRank require global information from all other
vertices that must increase the computational complexity.
We see that MEGA with the degree center performs better
than that with a random vertex. We also note that finding
an optimal threshold for an arbitrary graph is not a straight-
forward task unless we further exploit the inherent structure
of the graph.

Based on Lemma 1, we use a data-driven (statistical)
model to approximate the optimal threshold θ∗ for MEGA.
We generate 6,000 synthetic networks in which the optimal
thresholds θ∗ are computed. Each network has 1,000 ver-
tices, and the number of edges of each network is not fixed.
Note that the number of vertices of the input graph is not a
critical parameter for computing θ∗. In Fig. 16, we see that
the gradient of the blue line, which is a linear regression
model that fits the results, is relatively small that keeps θ∗

always less than 100, even the graph size starts to increase.
We also note that noisy data only appear when the graph
size is comparatively small. Therefore, the optimal threshold
θ∗ computed by this model must satisfy the condition of
θ∗ ≪ N and balance the trade-off for large-scale networks.

E.1.2 Evaluation on Social Networks

We compare MEGA with the algorithm in [45], which is
an award-winning work of the MIT/Amazon/IEEE Graph
Challenge. The algorithm in [45] assigns direction to each
edge based on the degree of each vertex. It implies that, for
each vertex v, there are

(deg+(v)
2

)
pairs of vertices needed to

be checked, where deg+(v) is the outdegree of v. Hence, its
time complexity is O(|E(G)|+N ·

(deg+
max
2

)
), where |E(G)| is

the time complexity of the direction assignment and deg+max

is the maximum outdegree. This time complexity is the
same as that of MEGA (cf. Appendix C), and this is why
we choose it as a baseline. In Fig. 17, we see that MEGA
with θ∗ outperforms the algorithm in [45] on different social
networks by averagely 25.3 times faster.

E.1.3 Evaluation on Synthetic Random Networks

We compare the performances of MEGA and the algorithm
in [45] on ten large-scale synthetic random networks gener-
ated by the BA model and the ER model respectively.

For BA network, we randomly generate the two param-
eters (m0, m) for the BA model so as to obtain ten random
networks, where each network contains 1 million vertices
and 9, 999, 945 edges. We use Theorem 1 to compute the
optimal threshold θ∗ for each BA network such that MEGA
can optimally decompose the BA networks in pruning. In
Fig. 18(a), we see that although some vertices have a large
degree, MEGA can still be able to decompose the networks
with θ∗ and outperform the algorithm in [45]. Moreover,
since we only execute the pruning step with a small thresh-
old (θ∗ ≪ N ), the time complexity of MEGA is in O(N).
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(a) facebook (b) CA-CondMat (c) ca-HepPh (d) com-dblp

(e) email-Enron (f) loc-gowalla (g) com-youtube (h) as-skitter

Fig. 15. The performance of MEGA on eight real-world networks with different thresholds θ ranging from 0 to 100. The y-axis is the running time in
seconds, and the x-axis is the value of θ. We also compare the performance of MEGA using the degree center (blue) and a random vertex (yellow)
as the BFS root for hierarchical clustering.

Fig. 16. Optimal threshold tuning on 6,000 synthetic networks based on
Lemma 1. The y-axis is the value of the optimal threshold θ∗, and the
x-axis is the graph size |E(G)| of each network. The blue line is a linear
regression model that fits the results.

Fig. 17. Comparison between MEGA and the algorithm in [45] (which we
set as baseline) on six social networks. The primary y-axis (blue) is the
running time t in seconds, and the secondary y-axis (green) is the graph
size |E(G)|. A log scale is used for these two axes, and we multiply t
by 10 to avoid negative values (i.e., primary = log(10 · t) seconds and
secondary = log(|E(G)|)). The number on top of each bar is the exact
running time of both algorithms.

Similarly, we generate ten ER random networks with the
same size as the BA networks. In Fig. 18(b), we observe that
MEGA beats the algorithm in [45] with θ∗. Note that the
probability of a given vertex having degree greater than θ∗

in the ER networks is less than 8%, which implies that the
ER networks are largely decomposed in pruning.

E.2 Distance Center Computation on Social Networks
In this section, we assess the performance of the feature
engineering step of MEGA for distance center computation
on different social networks provided by SNAP [44].

We consider both performance improvement and accu-
racy on single message source detection. We first compare
MEGA with the algorithm presented in [29] based on the
speedup which has been defined in Section 7.4.1 and then
compare the accuracy of single message source detection
with the work in [9].

E.2.1 Evaluation on Social Networks
The graph pruning of our MEGA performs very well on
graphs with large diameter, outperforming the NBBound
proposed in [29]. However, the efficacy of graph pruning
in small-world networks is relatively low since the graph
diameter of such networks is small. To further increase the
speedup of MEGA, we utilize the Multi-Source BFS (MS-
BFS) [46]. The idea is motivated by the observation that,
when running a large number of BFSs sequentially, most
of the edges are visited multiple times, which might dete-
riorate the overall performance. The MS-BFS algorithm ad-
dresses this problem by running BFSs from multiple sources
concurrently. When a set of BFSs visits the same vertex, this
vertex will be visited only once, and its information will be
shared with all BFSs in the set. Thus, a large number of visits
can be shared by multiple BFSs when applying the MS-BFS
algorithm. In Fig. 19, we see that MS-BFS greatly increases
the speedup of MEGA.

E.2.2 Single Message Source Detection in Social Networks
We perform simulations on six social networks and compare
the performances of our MEGA framework with the BFS
heuristic in [9]. For each graph, we randomly select a
message source vertex and let the message spread to 100
vertices. We then apply MEGA and the BFS heuristic in [9]
respectively to find a source estimator. Note that the error
indicates the graph distance from the source estimator to
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(a) BA random networks (b) ER random networks

Fig. 18. Comparison between MEGA and the algorithm in [45] (which we set as baseline) on ten BA random networks (left) and ten ER random
networks (right) respectively. Each random network has 1M vertices and 9.9M edges. The primary y-axis (blue) is the running time in seconds, and
the secondary y-axis (yellow) is the maximum degree of each random network.

Fig. 19. Comparison between MEGA and the algorithm in [29] (which we
set as baseline) on five social networks. The primary y-axis (blue) is the
speedup y, and the secondary y-axis (green) is the graph size |E(G)|.
A log scale is used for these two axes. The number on top of each bar
is the exact speedup of both algorithms.

the real source vertex. We perform over 500 simulations
and calculate the average error and speedup for each graph.
In Fig. 20, we can observe that the speedup of our MEGA
framework is significantly larger than that of the BFS heuris-
tic in [9] and there is only a slight difference in accuracy
(average error) between these two approaches.

APPENDIX F
SMALL-WORLD ANALYSIS

We have identified three parts in which finding the most
prominent vertices of the graph is required: (1) finding the
root for BFS in hierarchical clustering for triangle counting,
(2) finding the root for BFS in hierarchical clustering for dis-
tance center computation, and (3) using distance centrality
to find influential vertices. To address (1), we suggest using
the degree center as the root, as it does not require additional
complex computation. In contrast, other approaches could
lead to increased computational complexity, and choosing a
random root would be meaningless. By choosing the degree
center as the root, it’s possible to minimize the total number
of clusters and potentially reduce computational complexity.
However, further analysis is required for (2) and (3), which
we will discuss below.

To perform our analysis, we generate five small-world
networks using the Watts-Strogatz model, with each net-
work containing 50, 100, 500, 1,000, and 2,000 vertices,
respectively. In each network, each vertex is connected to
60% of its nearest neighbors in a ring topology, with each
edge having a rewiring probability of 0.5. We identify hubs

(a) Facebook (ego network) (b) Facebook (cluster network)

(c) Facebook (page-page network) (d) Twitter (retweet network)

(e) Twitch (user-user network) (f) GitHub (developer-developer
network)

Fig. 20. Histograms of the error for MEGA (yellow) and the BFS heuristic
in [9] (blue) on six different types of social networks with 100 vertices
received the message in the spread graph. The green dotted line is the
average speedup for each error and the average error is the average
distance (in terms of hop count) between the real source and the
estimators calculated by both methods over 500 simulations.

as vertices with high degree, low distance centrality, or
high betweenness centrality. The number of edges for each
network is listed below:

50 Vertices 100 Vertices 500 Vertices 1,000 Vertices 2,000 Vertices
750 3,000 75,000 300,000 1,200,000

For (2), we suggest selecting a vertex v with minimum
degree in the pruned graph, followed by selecting a vertex
with the largest eccentricity (i.e., maximum distance away
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from v) as the root. We compare the performance of this
approach with using the degree center as the root, as it is
not appropriate to use hubs with low distance centrality or
high betweenness centrality as the root in this step when
our main objective is to identify the distance center. The
results below indicate that for small-world networks, using
the degree center can reduce the algorithm’s running time,
even though the speedups of both approaches are the same.
As the majority of vertices have low distance centrality
and high degree centrality, most neighboring vertices can
be reached by a small number of hops. Therefore, the
speedups for both approaches should be almost equivalent.
Additionally, the efficacy of the graph pruning step of the
MEGA framework in small-world networks is relatively low
since the graph diameter of such networks is small, and the
graph pruning is not triggered. As a result, the framework’s
average performance on small-world networks is only mod-
erate, although the speedups appear relatively large, they
are only proportional to the number of edges in the graphs.
However, in the retweet network, our proposed approach
outperforms the small-world analysis approach. Therefore,
we agree that if the input graph exhibits small-world net-
work properties, the small-world analysis approach can
provide better performance in terms of running time. Still,
if the input is unlikely to be a small-world network, our
proposed approach is more efficient.

For (3), when dealing with small-world networks that
have more than 100 vertices, we randomly choose a message
source vertex and allow the message to propagate to 100
vertices (at most) for each message spread graph. For small-
world networks with 100 vertices or less, we randomly
choose a message source vertex and allow the message to
propagate to the entire graph. To find the source estima-
tor, we utilize distance centrality (low), degree centrality
(high), and betweenness centrality (high). For small-world
networks, we use MEGA to compute distance centrality to
find the distance center, Stanford Network Analysis Plat-
form (SNAP) to compute betweenness centrality to find the
betweenness center and SNAP to find the degree center.
In the retweet network, we use the same methods used
in small-world networks to identify the top 5,195 vertices
with the smallest distance centrality, largest betweenness
centrality, and largest degree centrality, respectively. The
error indicates the graph distance from the source estimator
to the real source vertex. We conduct over 500 simulations
and calculate the average error and average running time
for each centrality measure in each small-world network.
The results below show that in small-world networks, the
average errors for the hubs with high degree and high
betweenness centrality are slightly higher than those for
distance centrality. Additionally, in the retweet network, the
performance of using distance centrality is better than that
of degree and betweenness centrality. While using small-
world analysis could potentially decrease computational
costs since degree centrality is the fastest in finding the hubs,
betweenness and distance centrality require much longer
time, especially for betweenness centrality. The trade-off is
that the accuracy will be lower if such a faster approach
is applied. Therefore, we choose distance centrality as it is
more accurate, but we also optimize the process of finding
hubs with low distance centrality to balance the trade-off.
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TABLE 2
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Fig. 21. Comparison of the average error and running time (in seconds) in identifying prominent vertices in the retweet network using distance
centrality (MEGA), betweenness centrality, and degree centrality as the metrics.
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