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Abstract 
Background: Urgent Suspected Cancer (2WW) referrals have been successful in improving early 
cancer detection but are increasingly a major burden on NHS services. This has been exacerbated by 
the COVID-19 pandemic.   
 
Method: We developed and validated tests to assess the risk of any cancer for 2WW patients.  The 
tests use routine blood measurements (FBC, U&E, LFTs, tumour markers), combining them using 
machine learning and statistical modelling.  Algorithms were developed and validated for nine 2WW 
pathways using retrospective data from 371,799 referrals to Leeds Teaching Hospitals Trust 
(development set 2011-16, validation set 2017-19). A minimum set of blood measurements were 
required for inclusion, and missing data were modelled internally by the algorithms. 
 
Findings: We present results for two clinical use-cases.  In use-case 1, the algorithms correctly 
identify 20% of patients who do not have cancer and may not need an urgent 2WW referral. In use-
case 2, they identify 90% of cancer cases with a high probability of cancer that could be prioritised 
for review. 
 
Interpretation:  Combining a panel of widely available blood markers produces effective blood tests 
for cancer for NHS 2WW patients. The tests are cost-effective, can be deployed rapidly to any NHS 
pathology laboratory with no additional hardware requirements, and are of particular value during 
the COVID-19 pandemic.  
 
Funding: Aspects of this work were supported by Innovate UK, MRC, Leeds City Region 
Enterprise Partnership (LEP), NIHR Leeds In Vitro Diagnostic Co-operative, CRUK CanTest 
Collaborative, and PinPoint Data Science Ltd  
 
 
 
 
 
 
 
 
 
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 27, 2020. ; https://doi.org/10.1101/2020.10.23.20218198doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2020.10.23.20218198
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

Background 
 
A major NHS cancer policy to diagnose cancer earlier led to the introduction of Urgent Suspected 
Cancer referrals. These referrals are predicated on the risk of symptomatic patients having cancer.1 
Trusts assess patients within two weeks (‘two-week wait’ (2WW) referral). The 2WW pathways have 
contributed to improving outcomes; higher general practice use of referrals for suspected cancer is 
associated with lower mortality for the four most common types of cancer (prostate, breast, lung, 
and colorectal).2 
 
This approach places a major strain on diagnostic services on NHS England, with over 2 million 2WW 
referrals annually, and a 10% year-on-year increase in referrals over the past decade.3 This highlights 
an unsustainable burden on existing services, workforce and financial resources. Whilst there is 
variation between cancer pathways, only 7% overall of 2WW referral patients are diagnosed with 
cancer.3 Many patients are therefore subject to unnecessary psychological distress, as well as being 
exposed to diagnostic tests which may inadvertently cause harm. Clearly there is a need to improve 
the efficiency of these pathways. 
 
These challenges are exacerbated by the current COVID-19 crisis.  The NHS capacity to assess 2WW 
referrals is reduced, and a backlog of referrals continues to build.3,4 These unprecedented challenges 
urgently require new solutions. COVID-19 has presented an opportunity for GPs to permanently 
change how they use emerging technologies.5 
 
Many biomarkers have been evaluated for their use in cancer diagnosis; however only a few are 
currently used in either primary or secondary care settings. A systematic mapping review identified 
94 ctDNA studies alone, highlighting how much more work is required prior to clinical use.6 
Companies like GRAIL and Freenome are pursuing this, with clinical trials ongoing.7,8 There is also 
evidence that signals from a range of different analytes can be usefully combined via machine 
learning.9  
 
Using such approaches to triage cancer referrals should bring benefits to patients, health-systems 
and the economy. For example, a rule-out test for symptomatic patients, like those referred to the 
NHS 2WW, could identify those with very low cancer risk, allowing many patients without cancer to 
avoid unnecessary procedures and freeing up diagnostic capacity for those at greater risk. 
 
The work presented in this paper addresses the top three priority areas identified by Badrick et al 
(2019), including: a simple, non-invasive, painless and convenient test to detect cancer early; a blood 
test to detect some or all cancers early that can be included into routine care; and a test that is 
easily accessible to General Practice.10  
 
We report the development and validation of a set of machine learning algorithms to provide a 
calibrated risk probability of cancer (a score between zero and one, higher values indicating greater 
risk of cancer) for triaging symptomatic patients. A calibrated risk probability has a variety of clinical 
uses. This paper focuses on the two use-cases for the NHS 2WW:  
 
Use-Case 1 - a rule-out test when patient has a very low risk of cancer, allowing initial management 
in primary care. 
 
Use-Case 2 - a way of identifying patients at high risk of having cancer to fast-track them for further 
tests. 
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Methods 
 
Methodological Design and Source of Data 
This work is a single centre, retrospective diagnostic prediction study (classified as a Type 2b study 
by the TRIPOD statement.11  The prediction algorithms were developed and validated on a large data 
set from a single geographic area, split chronologically into two independent cohorts.   
 
The data set contained 371,799 consecutive 2WW referrals in the Leeds region from 2011-2019. The 
development cohort was composed of 224,669 consecutive patients with an urgent suspected 
cancer referral in Leeds between January 2011 and December 2016.  The diagnostic algorithms 
developed were then externally validated on a similar consecutive sample of 147,130 patients 
(between January 2017 and December 2019). Both development and validation sets were selected 
using the same inclusion and exclusion criteria and both received the same pre-processing, 
consisting of removing greater-than (“>”) symbols and setting less-than (“<”) values to zero. This is a 
simple imputation for the case where a pathology laboratory returns a result outside the reportable 
range.  Because the chosen machine learning algorithms are not sensitive to scaling of individual 
variables, it was not necessary to normalise the inputs.  
 
Participants 
Patients were selected because they received a 2WW referral to Leeds Teaching Hospitals NHS Trust 
during the above timeframe. Referrals were included for all 2WW pathways, and all patients over 
the age of 18 were included in the cohort. Patients were included if they had a minimum set of 
blood counts and biochemistry measurements available.  Patients from all 2WW pathways were 
included in the development set; patients from the nine 2WW pathways at LTHT considered in this 
paper were included in the validation set. Patients not fulfilling these criteria were excluded from 
the analysis. All patients were followed up to 12 months after the conclusion of their referral, or 
until February 2020. Patients in the validation set (i.e. referred from January 2017 onwards) only 
required the outcome of the 2WW referral and therefore the possibility of censoring of outcomes up 
to 12 months did not affect the validation results. 
 
Outcome 
The algorithms were trained to predict whether or not a patient would receive a cancer diagnosis. 
Outcome labels were derived from ICD10 diagnostic codes from the Leeds secondary care database. 
‘Cancer’ was defined as any patient diagnosed with a malignant (ICD10 ‘C’ codes) or in situ 
(appropriate subset of ICD10 ‘D’ codes) neoplasm as the result of their referral or within the 
subsequent 12-month period for the purposes of model development.  Diagnoses as the result of an 
urgent referral were used as outcomes in the validation analyses, to match the intended clinical 
setting. Benign neoplasms were defined as ‘Not Cancer’. The full list of ICD10 codes designated as 
‘cancer’ are in the supplementary materials.   
 
Predictors 
The variables for each patient include a full blood count, a range of biochemistry measurements, a 
panel of standard tumour markers, plus age and sex. All predictors were included on their natural 
scale (i.e. they were not normalised or dichotomised). 
 
As a retrospective cohort, blood measurements were used where they were available in the 
database up to 90 days prior to referral or up to 14 days post referral. This was done to seek a 
reasonable balance between missing data and possible bias (for example if blood measurements 
were made after a diagnosis had been established). In routine clinical use, all model predictors 
would be available at the time. 
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Sample Size 
The protocol stated the design as predicated on a goal of achieving a Negative Predictive Value 
(NPV) of 0.99 or greater. If we assume that we would like to determine the size of the distance from 
the 2.5% centile of the NPV to the point estimate (i.e. the distance between the lower bound of the 
95% confidence interval (CI) and the point estimate), we can therefore determine the number of 
patients required in the denominator of the NPV calculation. For a 0.05 lower CI size, we require 100 
patients in the denominator; for a 0.02 lower CI size we require 300 patients in the denominator. 
With a design goal of achieving 20% rule-out rate, this would therefore require approximately 
(100)/(0.2) = 500 total cases per pathway for a 0.05 lower CI size, or (300)/(0.2) = 1500 total cases 
per pathway for a 0.02 lower CI size. 
 
Management of Missing Data 
Missing data is a key issue for this cohort as many patients did not have bloods in this timeframe 
(see Tables S1, S2 in the supplementary materials). Patients were identified who had full blood 
counts and a minimum subset of biochemistry data, and this subset was used to train the 
algorithms. The core algorithms use a gradient boosting model including an inbuilt method for 
imputing missing data. 
 
Statistical Analysis Methods 
The goal of the algorithms is to produce a well-calibrated prediction of the likelihood that a patient 
has cancer. The type of model required is a probabilistic classifier—a model that predicts the 
probabilities of a given patient belonging to one of several distinct classes. 
 
The development set was used to identify appropriate models and calibration methods and to tune 
the hyperparameters for those models. Methods and hyperparameters were compared using 5-fold 
cross-validation. This was concluded and results locked down before validation. 
   
The model structure selected using the development set is a combination of a gradient boosting 
method, followed by polynomial logistic regression (i.e. a modified version of Platt scaling) to 
calibrate the resulting predictions.  Prior to any analysis variables were selected based on: cost and 
relevance, availability in NHS pathology labs and prior knowledge from medical literature that they 
might reasonably be expected to contain some cancer-relevant information. Variable selection in the 
statistical sense (i.e. using the development data set) was not carried out and the gradient boosting 
algorithm used in this work is able to down weight any input variables which are of lesser 
importance. 
 
The validation set was used to validate the locked-down algorithms. After this no changes were 
made to the algorithms, results are presented below. 
 
Role of the funding source 
Aspects of this work have been supported by awards from MRC ‘Proximity to Discovery’, Local 
Enterprise Partnership, and Innovate UK. Richard Neal, Bethany Shinkins, Geoff Hall and Michael 
Messenger are funded by the NIHR Leeds In Vitro Diagnostic Co-operative. PinPoint Data Science Ltd 
funded the data science work and time contributions of Richard Savage, Matt Neal, Kat Lloyd, Jim 
Skinner, Giles Tully, Nigel Sansom, and Rosie Ferguson. This research is linked to the CanTest 
Collaborative, which is funded by Cancer Research UK [C8640/A23385], of which RDN is an Associate 
Director, MM was a member of Senior Faculty, and BS was part-funded 
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Figure 1: CONSORT flow diagram for this work. 
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Findings 
Figure 1 shows a CONSORT flow diagram for this work. 
 
Tables 1 and 2 show the total number of cases per pathway, and the number of those cases meeting 
the inclusion criteria.  Tables 3 and 4 show the age and sex demographics of the included patients, 
by pathway and by development/validation set. 
 
Table 5 shows test performance characteristics for nine urgent referral pathways for use-case 1 
(rule-out). The goal here is to successfully identify 20% of non-cancer patients (a specificity of 0.2) 
who are at very low risk of cancer, so that other possible causes of their symptoms can be 
considered rather than continuing with a 2WW referral. 
 
Table 6 shows test performance characteristics for use-case 2 (triage), to identify patients at higher 
risk of cancer who would be considered for priority through the urgent referral pathway. The goal 
here is to successfully red-flag 90% of cancer cases (a sensitivity of 0.9) for priority investigation.  
 
Table 1: Total Number of Cases per Pathway (2011-2019) 

Pathway 2011-2016 2017-2019 Total 

Breast 60673 36561 97234 

Lower GI 31966 22331 54297 

Upper GI 18986 11938 30924 

Gynaecological 16533 11599 28132 

Urological 20209 13326 33535 

Lung 7607 3237 10844 

Haematological 2273 1323 3596 

Head and Neck 22594 14558 37152 

Skin 38605 29239 67844 

Key Pathways Total 219446 144112 363558 

All Pathways Total 224669 147130 371799 

 
Table 2: Number of Cases Meeting Bloods Criteria  

Pathway 

Development Set Validation Set 

# Cancer # Non-
cancer Prevalence # Cancer # Non-

cancer Prevalence 

Breast 807 7571 9.6 424 5219 7.5 

Lower GI 1257 11401 9.9 856 9361 8.4 

Upper GI 662 5317 11.1 428 4337 9.0 
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Gynaecological 407 3098 11.6 218 2278 8.7 

Urological 1836 4677 28.2 1143 3063 27.2 

Lung 687 1380 33.2 177 616 22.3 

Haematological 403 654 38.1 180 343 34.4 

Head and Neck 546 4293 11.3 346 3177 9.8 

Skin 1468 3910 27.3 1287 3427 27.3 

 
Table 3: Age Demographics 

Pathway 

Development Set Validation Set 

Age 25th 
percentile 

Age 
median 

Age 75th 
percentile 

Age 25th 
percentile 

Age 
median 

Age 75th 
percentile 

Breast 36 48 64 35 48 62 

Lower GI 59 69 78 59 69 78 

Upper GI 57 68 77 55 67 76 

Gynaecological 49 57 69 46 54 66 

Urological 58 68 77 59 69 78 

Lung 58 69 78 57 67 76 

Haematological 43 63 76 43 62 75.5 

Head and Neck 47 60 72 47 59 72 

Skin 52 69 80 52 69 80 

 
Table 4: Sex Demographics 

Pathway 
Development Set Validation Set 

# Female (%) # Male (%) # Female (%) # Male (%) 

Breast 7345 (87.67) 1033 (12.33) 5146 (91.19) 497 (8.82) 

Lower GI 6889 (54.42) 5769 (45.58) 5529 (54.12) 4688 (45.88) 

Upper GI 3346 (55.96) 2633 (44.04) 2746 (57.63) 2019 (42.37) 

Gynaecological 3505 (100.00) 0 (0.00) 2495 (99.96) 1 (0.04) 

Urological 1700 (26.10) 4813 (73.90) 904 (21.49) 3302 (78.51) 

Lung 947 (45.82) 1120 (54.19) 363 (45.78) 430 (54.22) 
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Haematological 506 (47.87) 551 (52.13) 227 (43.40) 296 (56.60) 

Head and Neck 2755 (56.93) 2084 (43.07) 2080 (59.04) 1443 (40.96) 

Skin 2924 (54.37) 2454 (45.63) 2614 (55.45) 2100 (44.55) 

 
Table 5: 20% Rule-out 

Pathway 

Proportion of non-
cancers ruled-out 

 (specificity) 
(95% CI) 

Negative Predictive Value 
(95% CI) 

Sensitivity 
(95% CI) 

Breast 0.2036  
(0.1926–0.2143) 

0.9936  
(0.9883–0.9981) 

0.9776  
(0.9596 - 0.9933) 

Lower GI 0.2002  
(0.1921–0.2081) 

0.9823  
(0.9762–0.9877) 

0.9348  
(0.9135 - 0.9543) 

Upper GI 0.2017  
(0.1901–0.2137) 

0.9880  
(0.9806–0.9946) 

0.9580  
(0.9323 - 0.9804) 

Gynaecological 0.2040  
(0.1871–0.2209) 

0.9895  
(0.9799–0.9979) 

0.9718  
(0.9462 - 0.9942) 

Urological 0.2002  
(0.1864–0.2141) 

0.9525  
(0.9358–0.9680) 

0.9681  
(0.9568 - 0.9785) 

Lung 0.2031  
(0.1704–0.2331) 

0.9630  
(0.9281–0.9924) 

0.9673  
(0.9364 - 0.9933) 

Haematological 0.2095  
(0.1694–0.2542) 

0.9375  
(0.8795–0.9868) 

0.9697  
(0.9408 - 0.9938) 

Head and Neck 0.2001  
(0.1862–0.2139) 

0.9748  
(0.9623–0.9858) 

0.9267  
(0.8917 - 0.9580) 

Skin 0.2002  
(0.1868–0.2130) 

0.9406  
(0.9232–0.9570) 

0.9609  
(0.9493 - 0.9717) 

 
 
 
Table 6: 90% Cancer rule-in 

Pathway 

Proportion of non-cancers ruled-out  
(i.e. not red-flagged) 

(specificity) 
(95% CI) 

Positive Predictive Value 
(95% CI) 

Breast 0.4582  
(0.4450–0.4715) 

0.0890  
(0.0793 - 0.0991) 
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Lower GI 0.2723  
(0.2637–0.2811) 

0.0642  
(0.0587 - 0.0697) 

Upper GI 0.3363  
(0.3227–0.3503) 

0.0732  
(0.0644 - 0.0822) 

Gynaecological 0.4674  
(0.4473–0.4879) 

0.1134  
(0.0972 - 0.1303) 

Urological 0.3548  
(0.3379–0.3710) 

0.3044  
(0.2878 - 0.3208) 

Lung 0.3625  
(0.3238–0.3987) 

0.2541 
 (0.2178 - 0.2906) 

Haematological 0.4330  
(0.3807–0.4849) 0.4249 (0.3722 - 0.4759) 

Head and Neck 0.2733  
(0.2579–0.2885) 

0.0804  
(0.0703 - 0.0911) 

Skin 0.3905  
(0.3745–0.4068) 

0.3230  
(0.3067 - 0.3392) 
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Figure 2: shows stratification of patients on the 2WW breast pathway using the relevant algorithm 
presented in this work, compared to the standard care pathway. Given an urgent care pathway 
where the number of referrals exceeds the pathway capacity to see patients within two weeks, 
use of the test to stratify patients into risk categories (right) leads to a larger proportion of 
patients with cancer being seen when compared to the standard care pathway (left), in which 
patients are seen on a first-come, first-served basis. 
 
Patients highlighted in red are identified as being at high-risk for cancer (red-flagged), so can be 
expedited for further diagnostic testing.  Patients highlighted in green are identified as being at 
very low risk for cancer (green-flagged), allowing for initial management in primary care rather 
than immediate referral to secondary care. 
 
The sliders on the left-hand side show the number of referrals, the number of patients that the 
pathway can handle in a given time-frame (the pathway capacity), the percentage of cancers 
which are green-flagged (i.e. setting a very low false negative rate), and the percentage of cancers 
that are red-flagged (i.e. identifying cases with high-risk, so that they can be expedited for further 
diagnostic testing).  Collectively, this represents a possible approach to using the algorithms to 
improve the triage of patients referred to a 2WW pathway. 
 
An interactive version of this is available at https://www.pinpointdatascience.com/patient-test-
stratification 
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Interpretation 
 
Summary of main findings 
This paper reports the development and validation of a set of statistical machine learning algorithms 
based on routine laboratory blood measurements that can predict cancer outcomes for 
symptomatic patients referred urgently from primary care for possible cancer diagnosis. 
 
Each algorithm is trained and validated as a test to provide decision support for one of the nine NHS 
2WW pathways. Each test produces a calibrated probability that the patient on that 2WW pathway 
has any type of cancer. These calibrated probabilities can be used in a range of clinical contexts; in 
this paper we consider two principal use-cases. In use-case 1, the tests are used to rule-out patients 
whose risk of cancer is very low, allowing clinicians to identify patients for whom investigations of 
possible non-cancer causes of their symptoms might be more appropriate. In use-case 2, higher-risk 
patients are red-flagged so that their onwards journey through the 2WW pathway can be expedited.  
 
Table 5 shows relevant test performance characteristics for use-case 1.  With a goal of 20% rule-out 
and corresponding Negative Predictive Values and Sensitivity, which respectively give the proportion 
of test-negative results which are correct (i.e. non-cancer cases) and the proportion of cancer cases 
that are correctly identified as cancer. 
 
Table 6 shows relevant test performance characteristics for use-case 2. Assuming a goal of correctly 
red-flagging 90% of the cancer cases and presenting the proportion of non-cancer cases that are 
correctly not red-flagged. 
 
More test performance characteristics can be found in Supplementary Tables S1 and S2. 
 
Figure 2 shows an example of stratification via a test, compared with the existing standard care 
pathway. In this example, 500 patients present to the breast pathway, which is overloaded and only 
able to see 400 of these patients within two weeks of their referral. The standard care pathway is 
modelled as first-come first-served, and so the proportion of patients with cancer is the same in the 
patients seen and the patients not seen. Using the test for stratification, the patients are stratified 
into high, medium and low-risk groups. Patients are then seen in risk order - in this example, all of 
the high-risk patients are seen, and some of the medium-risk patients are seen. Under stratification, 
far more of the patients with cancer are seen, and of the patients not seen, a far smaller proportion 
have cancer.  An interactive version of this is available at 
https://www.pinpointdatascience.com/patient-test-stratification 
 
Discussion of main findings within the context of the literature 
This work is novel, innovative, and potentially of huge importance for the management of patients 
referred urgently for suspected cancer. The tests are based upon a panel of routine blood 
measurements that: are already in common usage in NHS laboratories; work across a range of 
cancers; can easily be integrated with existing NHS systems. The tests have already been integrated 
with Mid-Yorkshire Hospitals NHS Trust Laboratory systems. 
 
The tests can both identify patients at higher risk of cancer, such that they can be prioritised for 
assessment and diagnostic investigations, while also identifying a significant proportion of patients 
at very low risk who may not need further investigation for suspected cancer. Patients in both 
groups stand to benefit, either from expedited testing, or from not being exposed to iatrogenic harm 
and unnecessary cancer worries. The tests can be set at different thresholds in different cancers and 
within different health settings, making them responsive to local needs, capacity and priorities. 
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COVID has reduced diagnostic capacity and efficiency, this test could be an effective and rapid 
solution at this time of crisis.  
 
 
 
Strengths 
The principal strengths of this work are: 
 

● It is based on well-validated, low-cost clinical assays already available at scale in NHS 
pathology laboratories. 

● The tests could therefore be deployed across the UK very rapidly, with no additional 
hardware requirements. 

● The tests are CE marked and are currently undergoing service evaluation in the West 
Yorkshire and Harrogate Cancer Alliance. 

● The performance estimates are conservative due to missing data and the historical nature of 
the blood measurements; prospective evaluation will not suffer from these drawbacks 

● Even biomarkers with limited individual performance are of value in this approach if they 
contribute complementary information 

● The algorithms are designed to be flexible, allowing thresholds to be changed according to 
clinical need, for example Use-Case 2 during the COVID-19 pandemic 

● The large numbers reported, the robust analysis and reporting in line with TRIPOD and 
PROBAST.11,12  

● There is the potential to improve performance using the pipeline of new biomarkers being 
developed for diagnostic, predictive or prognostic purposes.   

  
 
Limitations 
The principal limitations of this work are: 
 

● That the development and validation was done only in one centre.  
● There is a possible source of bias, in that the subset of patients who had retrospective blood 

data may not be representative of the overall 2WW cohort.  
● We have only reported the validation on a retrospective sample; a prospective evaluation is 

needed. 
●  The validation set meets the defined sample size criteria (1500 total cases) for 7 of the 9 

2WW.  95% CI are provided for all results to make clear the level of uncertainty present due 
to sample sizes. 

● The remaining (smaller) 2WW pathways as recorded in the clinical data were also 
considered (Testicular, Brain/CNS, Sarcomas, Children's Cancer, Acute Leukaemia, HPB, 
Thyroid Cancer, Renal, other cancer), but we did not develop algorithms for these as the 
available sample sizes were judged too small to train and validate effective models. 
  

 
Implications for policy research and practice 
Until we have undertaken a prospective evaluation of the performance of the algorithms it is not 
possible to predict how this will be used. However, we do envisage use of the tool, as part of clinical 
triage, to both prioritise those at higher levels of risk and de-prioritise those at the very lowest levels 
of risk, in conjunction with appropriate safety netting. We also need to fully understand the views of 
patients, clinicians, and commissioners on the acceptability and utility of the tests.  
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