1		Prediction and control of COVID-19
2		infection based on a hybrid intelligent model
3		
4		Gengpei Zhang 1, Xiongding Liu 2 *
5		1 China Three Gorges University, Yichang, Hubei, China, 2 School of Automation
6		Science and Engineering, South China University of Technology, Guangzhou,
7		Guangdong, China
8		* 201771338@yangtzeu.edu.cn
9		Abstract
10		The coronavirus (COVID-19) is a highly infectious disease that
11		emerged in the late December 2019 in Wuhan, China, and it has
12		caused a worldwide outbreak, which represents a major threat to
13		global health. It is important to design prediction research and control
14		strategies to crush its exploding. In this study, a hybrid intelligent
15		model is proposed to simulate the spreading dynamics of COVID-19.
16		First, considering the control measures, such as government
17 10		Investment, media publicity, medical treatment and law enforcement.
18		The infection rates are optimized by genetic algorithm (GA), then a
19		modified susceptible-infected-quarantined-recovered (SIQR) model
20		into the SIOR model to design the hybrid intelligent model to further
21		optimize other perspectors of the system model to obtain the optimize
22		predictive model and control measures. This study provide a reliable
23 24		model to predict cases of infection and death and reasonable
2 1 25		suggestion to control COVID-19
23 26		
27		Introduction
28		In the past six months, Chinese people have been on a high level of
29		containment due to the outbreak of the coronavirus 2019 throughout
30		China [1]. However, due to the convenient of global transportation,
31		the virus has rapidly spread to all corners of the world. The
32		coronavirus was first discovered in Wuhan, at the early stage, due to
33		people lack of knowledge about the virus and the scarcity of medical
34		resources, people were not aware of the virus. Relatively little knows
35		about the disease, people neglect to control it in its early stages, until
36		the earliest official announcement that the disease can be spread
37		from person to person on January 20, 2020 [2]. Then, the
38		government took a series of measures to prevent the spread of the
39	NOTE: This preprint reports new research	เก่ารุศสรรณกาะประเมณียน 2 โลยไห้สูงพี่เมลา ปณิหิปจพาย แรมปรรณยะเป็นเลา คุณสก.

cities closured, with cities across the country sealing

40

off.

Governments took many measures by closing down public places, broadcasting propaganda, isolating people in their own homes, etc., which leads to the increased awareness of self-protection for people. The epidemic has been successful control in China, but now the world is not optimistic, with over 40 million people now cumulatively diagnosed worldwide. The cumulative number of deaths is over 1.2 million, especially in countries such as the United States, Brazil, Russia, and India, the pandemic is still quite severe today [3,4]. Therefore, each countries and states should adopt prevention and control strategies. Currently, it is very important to establish and analyze disease-spreading model to predict disease development trends in order to control and prevent the spread of the COVID-19.

Due to the outbreak of disease, vaccines and medicine treatments for the disease are still being researched, non-drug treatment becomes the main strategy to slow down the spread of the disease. The purpose of most of these prediction and control measures is to reduce the probability of infection spreading during direct or indirect contact [5]. For example, paying attention to personal hygiene and wearing a mask, keeping social distancing and closing some public space such as schools and workplaces, in order to decrease the opportunities of propagation from person to person. Other measures like cutting off the way of transmission of diseases, such as disinfection in public places, improving the level of sanitation in public places and so on. All of these measures can alleviate the propagation of the epidemic [6-9]. How to quantify the impact of various prevention and control strategies on disease spreading is of great significance to guide disease control.

A common method utilizes mathematical modelling to describe the spreading dynamics of infectious diseases, like Ebola, SARS. This can accurately describe the spread of disease among individuals in theoretical framework to guide the development of the prevention and control measures [10-13]. There are many researchers studied epidemic spreading have proposed some epidemic model and obtained some meaningful results. The classical epidemic models like susceptible-infected (SI), susceptible-infected-recovered (SIR), (SEIR), susceptible-exposed-infected-recovered susceptible-infected-quarantined-recovered-susceptible (SIQRS) [14-19]. Most of these models are applicable to describe disease spreading with a long incubation period, such as COVID-19. Based on data-driven, a modified SEIR model was proposed to analysis and prediction COVID-19 spread [20]. Considering the effect of guarantine, B. K. Mishra et.al proposed three guarantine models to analyze COVID-19 spreading [21]. Other recent studies, some

41

42

43

44

45

46

47

48 49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65 66

67

68

69

70

71

72

73

74

75

76

77

78 79

80

81 82

researchers have considered the effects of the basic reproductive number, international conveyance, and some stochastic based regression models to prediction and control the COVID-19 disease [22,23]. However, traditional epidemic spreading models consider that all infected individual have the same infection rate, and the prediction of disease development trend has certain limitations. Although data-driven disease spreading models can accurately describe infection rates, the impact of government prevention and control measures on infection rates has not been quantitatively in detail. These measures, such as the laws, medical supplies, media coverage and investment, can reduce the spread of the disease. It is necessary to rationally arrange the optimal prevention and control strategies with limited resources to minimize the death rate.

To solve this problem, the GA and ANN hybrid method is proposed to optimize epidemic dynamics model and predict the COVID-19 spreading [24-27]. Genetic algorithm is an adaptive global optimization search algorithm formed by simulating the genetic and evolutionary process of biological species in the natural environment [28]. It uses the viewpoint of biogenetics and realizes the improvement of individual adaptability through the mechanism of natural selection, heredity and variation. Artificial intelligence (AI) is considered one of the most successful achievements of computer science, simulating the behavior of the human brain in data analysis. One of the AI branches is the artificial neural network (ANN). This information processing system, by a simulating strategy like communication between brain neurons, has become a tool for analyzing complex and real systems [29]. In recent years, ANN models have been developed to overcome the difficulties presented by health issues.

This article focuses on how to quantify the impact of the government's prevention and control measures on the infection rate, then to obtain the optimal model of disease spreading and the most effective prevention and control strategy. Based on the proposed SIQR model, the hybrid artificial neural network (ANN) model embedded the genetic algorithm for predicting the COVID-19 in this article, and it introduces the important prediction and control strategies led by the government as well as the massive support participation from the public into the prediction calculation process. Furthermore, this article simulates the development of the epidemic based on the proposed hybrid prediction model and predicts the trend of the epidemic. Due to the fluctuation of virus detection capability, the epidemic data of China shows a sudden change on February 12 and 13, the data consistency is reduced. As a developing country,

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

Brazil shows the epidemic data with periodicity and consistency, and then this article takes the Brazil data as analytic target. The simulation results based on the epidemic data of Brazil show that the proposed hybrid model could provide a basis for estimating the law of virus spread, and achieve accurate and robust performance. Moreover, the prediction results of our hybrid ANN-GN model is agree with the actual epidemic development trend, which demonstrates that the openness, transparency, and efficiency of data releasing are very important for establishing a modern epidemic prevention system.

The remainder of this article is organized as follows. Section "A hybrid model of COVID-19 spreading dynamics" introduces the framework of the proposed hybrid epidemic spreading model. Section "Methods" explains the method of GA and ANN to predict epidemic spreading. Section "Simulation results and discussion" provides the simulation results based on the epidemic data of Brazil and gives some discussion. The conclusions are provided at last.

A hybrid model of COVID-19 spreading dynamics

In this section, we establish a mathematical model on COVID- 19 based on some assumptions. There are some literatures proposed models mainly based on real clinical data, predict and control measures. In this paper, we modified the previous model proposed in [18], and then extend the model structure by designing different infection rate. The model network diagram and the interaction individual components demonstrated in Fig 1. Every individual in network can only exist one of four independent states, namely, susceptible, infected, guarantined and recovered. For simply, it can be denoted by S, I, Q, and R, respectively. Each link represents the transformation relationship between nodes. Here, infected individuals include symptomatic infected individuals and asymptomatic infected individuals. Susceptible individual is infected with probability m (M1, M2, M3 and M4) if it is connected to an infected individual. Infective individuals are quarantined with probability α . In the process of isolation, the asymptomatic infected individuals turn into symptomatic infected individuals with the probability ω . Quarantined individuals are treated with drugs that move into the recovered individuals with probability β . Some recovered individuals will relapse into infection due to their weakened immunity with probability γ . The probability of death during isolation is λ . Here, set a switch of city lockdown by the death rate, infection probability m is different based on the city situation (lockdown or not). The lockdown infection probability m is much lower for the strict government regulation.

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

perpetuity. All rights reserved. No reuse allowed without permission.

169	
170	
171	

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189 190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

Fig 1. The flow diagram of the SIQR model.

According to the epidemic spreading, the dynamic equations can be written as follows:

$$\begin{cases} \frac{dS_{k}(t)}{dt} = -mS_{k}(t) \\ \frac{dI_{k}(t)}{dt} = mS_{k}(t) + \gamma R_{k}(t) - \alpha I_{k}(t) \\ \frac{dQ_{k}(t)}{dt} = \alpha I_{k}(t) - \beta Q_{k}(t) - \lambda Q_{k}(t) \\ \frac{dR_{k}(t)}{dt} = \beta Q_{k}(t) - \gamma R_{k}(t) \end{cases}$$
(1)

Using the normalization condition, the probability of death can be obtained:

$$D = \frac{\lambda \alpha m \gamma}{\alpha \gamma (\lambda + m) + m \gamma ((\lambda + \beta) + \alpha \beta m)}$$
(2)

In this paper, the proportion of death is a very important parameter. It not only depicts the fatality rate of the disease in the process of transmission, but also reflects the effectiveness of prevention and control measures. For example, the money invested by the government can improve the medical level and effectively cut off the transmission route of the virus. Increasing publicity and awareness of prevention and control will also reduce the risk of infection. Law enforcement can also affect the spread of diseases, such as city closures and home quarantine. This paper argues that due to the strict control and isolation measures taken by the government during the epidemic, the infected cases cannot infect susceptible people after quarantine. However, asymptomatic infected persons also have some ability to transmit, and it is difficult to detect. Therefore, there is a certain relationship between the number of newly infected cases on Day t and the number of infected cases in the past k days. Moreover, the infection rate of patients is closely related to the time of infection. Since government measures can inhibit the spread of the disease, the infection rate of newly infected cases may vary from time to time on t day over the past k days. Further analyzing this difference and assigning different weights to different measures, we quantified the contribution of different measures to the infection rate at time t in newly infected cases. Then, the weighted accumulation was used to estimate the infection rate so as to establish the relevant epidemic air defense modeling.

In addition, in order to study the relationship between the prediction and control measures with infection rate of the SIQR epidemic spreading model, the method of GA and LSTM are used to optimize the spreading model. This paper considers the relationship

medRxiv preprint doi: https://doi.org/10.1101/2020.10.22.20218032; this version posted October 28, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in

perpetuity. All rights reserved. No reuse allowed without permission.

between the rate of disease transmission and the measures taken by the government against the disease. The main factors include government investment, medical level, media publicity and law enforcement. Firstly, genetic algorithm is used to estimate the infection rate of the model, taking the acceptable mortality rate as fitness function and taking it as a basis for city closure parameters. At the same time, GA is further used to obtain the optimal means of government control by taking the minimum mortality rate as fitness function. The mutation law of GA is based on the interaction of four government measures. Furthermore, the infection rate bias and mortality bias were estimated through the LSTM network, the number of infected people was estimated by combining with the SIQR model, and the relevant parameters of the model were modified to obtain the best transmission model and predict the spread of the disease. By combining these two approaches, the optimal model of disease spreading and the optimal prevention and control strategies can be obtained, which can predict the number of infected and death cases based on the spreading model and development trend. The proposed framework is shown in Fig 2.

Methods

Epidemiological investigation and modeling are effective tools to study the spread of epidemic diseases and have played their due roles in the prevention and control of public health events with global impact, such as SARS, MERS and H1N1 influenza. Many researchers have also achieved some results in novel coronavirus research using epidemiology and modeling analysis. The study of J. Chan et al. [30] found the first evidence of human-machine transmission. Then, some researchers combined with the analysis of some early cases and gave the mean incubation period and mean infection cycle of novel coronavirus. Traditional models of disease transmission believe that the number of new infections is related to the number of infected and vulnerable people, but these models lack in-depth analysis of parameters in the process of disease transmission. In the process of disease transmission, the implementation of different control measures has a great impact on the prevention and control of disease and the suppression of disease transmission. For example, the government's publicity of disease prevention and control, the formulation of relevant laws and regulations, financial investment and other measures can affect the spread of disease. The study found significant differences in the rates of infection among people of different ages. The main purpose of this paper is to study the impact of government measures on the spread

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

of disease and to minimize the mortality rate, and to consider the impact of different age groups on the spread of disease, finally, we can obtain the optimized measures and the best performance model to prediction, as showing in Fig 2.

Fig 2. The hybrid model for COVID-19 prediction.

Unlike the traditional SIQR epidemic spreading model, which consists of a single infected rate to describe the probability of infection. In this paper, we proposed a dynamic strategy to better represent the real world and the new COVID-19 disease. It mainly considers the impact of various measures taken by the government on the control of disease spreading. This paper considers the impact of government investment, media publicity, medical treatment and law enforcement on the rate of disease spreading, and its parameters are set as mi, i=1, 2, 3, 4, respectively. In addition, ki is the weight of each measure. Thus, the rate of disease spreading can be written as:

$$m = \sum_{i=1}^{4} k_i m_i \tag{3}$$

The GA is mainly used to optimize parameters of the model, it can be divided as two parts, and the first part describes that using the GA to optimize the conditions of city closure. First initialization model, set the initial value, with acceptable mortality as a condition of judgment. According to data analysis and relevant government regulations, a three-day mortality rate greater than 0.045 is defined here as an unacceptable mortality rate. When this unacceptable mortality rate is reached, will update and save the neural network parameters, as a basis for the sealing city.

unacceptable mortality rate =
$$\frac{\lambda \alpha m \gamma}{\alpha \gamma (\lambda + m) + m \gamma ((\lambda + \beta) + \alpha \beta m)} \ge 0.045$$
 (4)

At the same time, further to run the model, with the minimum mortality as fitness function, further update neural network parameters by genetic algorithm.

minimum mortality =
$$\frac{\lambda \alpha m \gamma}{\alpha \gamma (\lambda + m) + m \gamma ((\lambda + \beta) + \alpha \beta m)}$$
 (5)

Using twice the genetic algorithm, the approximate optimized neural network parameters, namely the control measures taken by the government can be obtained. Further, the LSTM algorithm is used to modify other parameters of the model, and the historical data is compared with the data calculated by the model, such as the number of infections and deaths, to determine whether the system has reached the minimum error. The number of infections and deaths are further predicted. The flow chart of COVID-19 prediction algorithm is shown in Fig 3.

248

249

250

251

252 253

254 255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

289	
290	Fig 3. The flow chart of COVID-19 prediction algorithm.
291	
292	New data on the daily increase in the number of infected cases
293	can be obtained. Using the same method, it is also possible to
294	process the number of new deaths per day.
295	$\int \Delta I(t) = I(t) - I(t-1) $
295	$\int \Delta D(t) = D(t) - D(t-1) \tag{6}$
296	Here, $I(t)$ is the cumulative number of infected cases in the
297	previous t-day, <i>I(t-1)</i> is the cumulative number of infected cases in the
298	previous t-day, and ΔI is the new number of infected cases in the
299	first t-day. $D(t)$ is the cumulative number of deaths in the first t-day.
300	$D(t-1)$ is the cumulative number of deaths in the first t-day, and ΔD
301	is the additional number of deaths on the first t-day.
302	
303	Fig 4. The LSTM method.
304	
305	In order to get a more accurate model, the model parameters
306	need to be further processed. The GA has optimized the weight
307	parameters in the neural network, and other model parameters are
308	optimized through the optimized neural network model. Here, LSTM
309	neural network is used to optimize the model parameters. We
310	collected historical data from February 26 to October 13 in Brazil, to
311	train neural network. Here we discussed the model parameters
312	through two judgments. First, when the mortality rate of the model
313	reaches an unacceptable mortality rate, the neural network
314	parameters of the closed city are used to process the system model
315	parameters, and then the mortality rate and infection rate are further
316	compared with the actual data. By obtaining the minimum model error,
317	the optimized model parameters are finally obtained. Here, let the
318	actual infected rate be $\ riangle$ I and the infected rate under the regression
319	exponential function be $\ riangle$ l', and use the neural network to predict
320	the deviation between the actual mortality and the regressive
321	infection rate. Similarly, the same approach can be applied to
322	mortality and obtained $\ \triangle D$ and $\ \triangle D'$. Assuming that B= $\ \triangle I' + \ \triangle D'$ is
323	the deviation characteristic of the prediction, the LSTM method can
324	be used to predict the model. The flow diagram of the prediction is
325	shown in Fig 4.
326	S_{R1} is the number of vulnerable infected persons on the first day,
327	I_{R1} is the number of real-time infected cases on the first day, I_{P1} is the
328	number of infected cases predicted on the first day, M_1 is the initial
329	model. Where S_{RX} is the number of vulnerable infected persons on
330	day X, I_{RX} is the number of real-time infected cases on day X, I_{PX} is

the predicted number of infected cases on day X, and M_{X} is the mode
on Day X.

Simulation results and discussion

Based on GA in Fig 1, we computed the vulnerability coefficient ki of four government measures. Without city lockdown, the infection probability m of government investment, media publicity, medical treatment and law enforcement are 0.174, 0.717, 0.021 and 0.853. With city lockdown, the infection probability m of government investment, media publicity, medical treatment and law enforcement are 0.085, 0.219, 0.107 and 0.349. There are two significant government measures media publicity and law enforcement, and the law enforcement is more important. Make a globally observation, each country invested huge amounts of money for COVID-19, and most medical workers tried their best to save lives. The difference of epidemic prevention results comes from the media publicity and law enforcement. Enhancing the influence of media can build a strong basis of epidemic prevention by offering the meaning of prevention measures. Considering the exception of inconsiderate and non-media audiences, the risk of disease spreading still exist. The efficiency of law enforcement is the crucial insurance to save the effort of medical workers.

We simulated the disease development and analyze the output of the model in 231 days with real epidemic data available from Brazil (February 26 to October 13). Fig 5a represents the number of predicted and confirmed per days, the model predicts infected per days of the last 17 days before October 13. Considering the lockdown from March 21 to July 31, the government realized the necessity of quarantine. From the data trend of infection confirmed per days over this period, the law enforcement shows insufficient efficiency. Supposing the government gave the best performance to control the disease, we performed the simulation about the development of infection and death per days. Fig 5b is the infected prediction with best performance of government; the possible infected number would much lower with effective government effort. With the comparison between Fig 5a and Fig 5b, it is obvious that there is a great impact on the prediction in the middle and later period due to the large changes in the data after government make best moves. Fig 5c is the daily-infected prediction error of model for last 17 days. Considering the enormousness of infection confirmed number, Fig 5c shows the accuracy of model prediction without best performance of government.

331 332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

	To better understand the model performance, we simulated
	deaths in Brazil. Fig 6a represents the number of new death cases
	per day, this indicates that at the beginning of the epidemic, due to
	limited understanding of disease transmission and limited detection
	efforts, there will be omissions in disease statistics, leading to a
	similar increase trend with the infected cases. Meanwhile, Fig 6a
	represents the new predicted death cases per days of the last 17
	days before October 13, which shows the difference with daily new
	death cases. Fig 6b is the daily death prediction with best
	performance of government. While the continuous improvement of
	detection methods and the continuous promotion of detection scope
	will be carried out, the government could strengthen the control of the
	disease, so the daily death cases would gradually decrease. Fig 6c is
	the daily death prediction error of model for last 17 days. Combine
	Fig 6a, we can see that the LSTM method have a good performance
	to predict COVID-19 disease. The method can predict the trend of the
	disease over a longer period with the performance of government.
Fig 6. Brazil death c	ases. a) Death of prediction and confirmed per days, b) Death prediction with best government performan
c) Death prediction	error.
	Conclusions
	Based on the SIQR disease-spreading model, this paper seeks the
	best government performance from the four aspects by GA; and then
	proposed a hybrid prediction model with LSTM network. By analyzing
	Brazil data from February 26 to October 13, we analyzed new
	infected cases, new death cases per day. It is found that media
	publicity and law enforcement have more contribution to reduce
	transmission rate. With best government performance, the tread of
	COVID-19 in Brazil could make a difference. The prediction results of
	this model are highly consistent with the actual enidemic cituation
	this model are highly consistent with the actual epidemic situation,
	which proves that the hybrid model proposed in this paper can
	which proves that the hybrid model proposed in this paper can efficiently analyze the transmission law and development trend of the

411 References 412 Huang C, Wang Y, Li X, Ren L, Zhao J, et al. (2020) Clinical features 1. 413 of patients infected with 2019 novel coronavirus in Wuhan, China. 414 Lancet 395: 497-506. https://doi.org/10.1016/S0140-6736(20)30183-5

415	2.	Ye F, Xu S, Rong Z, Xu R, Liu X, et al. (2020) Delivery of infection
416		from asymptomatic carriers of COVID-19 in a familial cluster. Int J
417		Infect Dis 94: 133-138. <u>https://doi.org/10.1016/j.ijid.2020.03.042</u>
418	3.	Crokidakis N (2020) Modeling the early evolution of the COVID-19
419		in Brazil: Results from a
420		Susceptible-Infectious-Quarantined-Recovered (SIQR) model. Int J
421		Mod Phys C: 2050135-2050144.
422		https://doi.org/10.1142/s0129183120501351
423	4.	Bhatraju PK GB, Nichols M, Kim R, Jerome KR, Nalla AK,
424		Greninger AL, Pipavath S, Wurfel MM, Evans L, Kritek PA, West
425		TE, Luks A, Gerbino A, Dale CR, Goldman JD, O'Mahony S,
426		Mikacenic C. (2020) Covid-19 in Critically Ill Patients in the Seattle
427		Region - Case Series. New Engl J Med 382: 2012-2022.
428		https://doi.org/10.1056/NEJM0a2004500
429	5.	Bai Y, Yao L, Wei T, Tian F, Jin D-Y, et al. (2020) Presumed
430		Asymptomatic Carrier Transmission of COVID-19. JAMA 323:
431		1406-1407. <u>https://doi.org/10.1001/jama.2020.2565</u>
432	6.	Lai C-C, Liu YH, Wang C-Y, Wang Y-H, Hsueh S-C, et al. (2020)
433		Asymptomatic carrier state, acute respiratory disease, and
434		pneumonia due to severe acute respiratory syndrome coronavirus
435		2 (SARS-CoV-2): Facts and myths. J Microbiol Immunol 53: 404-412.
436		https://doi.org/10.1016/j.jmii.2020.02.012
437	7.	Lan L XD, Ye G, Xia C, Wang S, Li Y, Xu H. (2020) Positive RT-PCR
438		Test Results in Patients Recovered From COVID-19. JAMA 323:
439		1502-1503. <u>https://doi.org/10.1001/jama.2020.2783</u>
440	8.	Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, et al. (2020) The
441		Incubation Period of Coronavirus Disease 2019 (COVID-19) From
442		Publicly Reported Confirmed Cases: Estimation and Application.
443		Ann Intern Med 172: 577-582. <u>https://doi.org/10.7326/M20-0504</u>
444	9.	Linton N, Kobayashi T, Yang Y, Hayashi K, Akhmetzhanov A, et al.
445		(2020) Incubation Period and Other Epidemiological Characteristics
446		of 2019 Novel Coronavirus Infections with Right Truncation: A
447		Statistical Analysis of Publicly Available Case Data. J Clin Med 9:
448		538. https://doi.org/10.1101/2020.01.26.20018754
449	10.	Zhou Y, Ma Z, Brauer F (2004) A discrete epidemic model for SARS
450		transmission and control in China. Math Comp Model 40:
451		1491-1506. <u>https://doi.org/10.1016/j.mcm.2005.01.007</u>
452	11.	Poletto C, Pelat C, Levy-Bruhl D, Yazdanpanah Y, Boelle PY, et al.
453		(2014) Assessment of the Middle East respiratory syndrome
454		coronavirus (MERS-CoV) epidemic in the Middle East and risk of
455		international spread using a novel maximum likelihood analysis
456		approach. Euro SurvII 19: 20824.
457		https://doi.org/10.2807/1560-7917.es2014.19.23.20824

458 1:	2.	Zhang Q, Sun K, Chinazzi M, Pastore Y Piontti A, Dean NE, et al.
459		(2017) Spread of Zika virus in the Americas. Proc Natl Acad Sci 114:
460		4334-4343. https://doi.org/10.1073/pnas.1620161114
461 1:	3.	Nishiura H (2011) Real-time forecasting of an epidemic using a
462		discrete time stochastic model: a case study of pandemic influenza
463		(H1N1-2009). Bio Med Eng OnLine 10: 15.
464		https://doi.org/10.1186/1475-925x-10-15
465 14	4.	Yang M, Chen G, Fu X (2011) A modified SIS model with an
466		infective medium on complex networks and its global stability.
467		Physica A 390: 2408-2413.
468		https://doi.org/10.1016/j.physa.2011.02.007
469 1.	5.	Li T, Liu X, Wu J, Wan C, Guan Z-H, et al. (2016) An epidemic
470		spreading model on adaptive scale-free networks with feedback
471		mechanism. Physica A 450: 649-656.
472		https://doi.org/10.1016/j.physa.2016.01.045
473 10	6.	Daley DJ, Kendall DG (1964) EPIDEMICS AND RUMOURS.
474		Nature 204: 1118. <u>https://doi.org/10.1038/2041118a0</u>
475 1	7.	Zhu G, Fu X, Chen G (2012) Spreading dynamics and global
476		stability of a generalized epidemic model on complex
477		heterogeneous networks. Appl Math Model 36: 5808-5817.
478		https://doi.org/10.1016/j.apm.2012.01.023
479 1	8.	Li T, Wang Y, Guan Z-H (2014) Spreading dynamics of a SIQRS
480		epidemic model on scale-free networks. Commun Nonlinear Sci
481		Numer Simul 19: 686-692.
482		https://doi.org/10.1016/j.cnsns.2013.07.010
483 1	9.	Zhang J, Sun J (2014) Stability analysis of an SIS epidemic model
484		with feedback mechanism on networks. Physica A 394: 24-32.
485		https://doi.org/10.1016/j.physa.2013.09.058
486 2	.0.	Zhang Y, Yu X, Sun H, Tick GR, Wei W, et al. (2020) Applicability
487		of time fractional derivative models for simulating the dynamics
488		and mitigation scenarios of COVID-19. Chaos Soliton Fract 138:
489		109959. <u>https://doi.org/10.1016/j.chaos.2020.109959</u>
490 2	1.	Mishra BK, Keshri AK, Rao YS, Mishra BK, Mahato B, et al. (2020)
491		COVID-19 created chaos across the globe: Three novel quarantine
492		epidemic models. Chaos Soliton Fract 138: 109928.
493		https://doi.org/10.1016/j.chaos.2020.109928
494 2	2.	Alkahtani BST, Alzaid SS (2020) A novel mathematics model of
495		covid-19 with fractional derivative. Stability and numerical
496		analysis. Chaos Soliton Fract 138: 110006.
497		https://doi.org/10.1016/j.chaos.2020.110006
498 2	3.	Mandal M, Jana S, Nandi SK, Khatua A, Adak S, et al. (2020) A
499		model based study on the dynamics of COVID-19: Prediction and

500		control. Chaos, Solitons & Fractals 136: 109889.
501		https://doi.org/10.1016/j.chaos.2020.109889
502	24.	Car Z, Baressi Šegota S, Anđelić N, Lorencin I, Mrzljak V (2020)
503		Modeling the Spread of COVID-19 Infection Using a Multilayer
504		Perceptron. Comput Math Method M 2020: 5714714.
505		https://doi.org/10.1155/2020/5714714
506	25.	Arora P, Kumar H, Panigrahi BK (2020) Prediction and analysis of
507		COVID-19 positive cases using deep learning models: A
508		descriptive case study of India. Chaos Soliton Fract 139: 110017.
509		https://doi.org/10.1016/j.chaos.2020.110017
510	26.	Haghshenas SS, Pirouz B, Piro P, Na KS, Cho SE, et al. (2020)
511		Prioritizing and Analyzing the Role of Climate and Urban
512		Parameters in the Confirmed Cases of COVID-19 Based on
513		Artificial Intelligence Applications. Int J Environ Res Public Health
514		17: 3730. <u>https://doi.org/10.3390/ijerph17103730</u>
515	27.	Wu X, Hui H, Niu M, Li L, Wang L, et al. (2020) Deep
516		learning-based multi-view fusion model for screening 2019 novel
517		coronavirus pneumonia: A multicentre study. Eur J Radiol 128:
518		109041. <u>https://doi.org/10.1016/j.ejrad.2020.109041</u>
519	28.	Miralles-Pechuán L, Jiménez F, Ponce H, Martínez-Villaseñor L
520		(2020) A Deep Q-learning/genetic Algorithms Based Novel
521		Methodology For Optimizing Covid-19 Pandemic Government
522		Actions. arXiv e-prints: arXiv:2005.07656.
523	29.	Wong Z, Zhou J, Zhang Q (2018) Artificial Intelligence for
524		infectious disease Big Data Analytics. Infect Dis Health 24: 44-48.
525		https://doi.org/10.1016/j.idh.2018.10.002
526	30.	Chan JF-W, Yuan S, Kok K-H, To KK-W, Chu H, et al. (2020) A
527		familial cluster of pneumonia associated with the 2019 novel
528		coronavirus indicating person-to-person transmission: a study of a
529		family cluster. Lancet 395: 514-523.
530		https://doi.org/10.1016/S0140-6736(20)30154-9
531		

GA

