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We model the propagation of an infection, in a population, as a simplified age-

dependent branching process. We analytically estimate the fraction of population,

needed to be infected or immuned, to achieve herd immunity for an infection. We

calculate this estimation as a function of the incubation period of the contagion,

contact probability among the infected and susceptible population, and the proba-

bility of disease transmission from an infected to a susceptible individual. We show

how herd immunity is strongly dependent on the incubation period, and it may be

extremely difficult to achieve herd immunity in case of large incubation period. We

derive the distribution of generation time from basic principles, which, by far, has

been assumed in an ad hoc manner in epidemiological studies. We quantify the suc-

cess probability of quarantine measures before achieving herd immunity, and discuss

a novel method for designing effective quarantine measures in the absence of any

pharmaceutical interventions. We also compare the effectiveness of an early imposi-

tion against a delayed imposition of lockdown, of the same duration, in mitigating

infection from a population.
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I. INTRODUCTION

The propagation of an infectious disease in a population can be viewed as a branching

process where an infected individual comes in contact with susceptible individuals in the

population, and transmits the infection to the susceptible individuals with some probability

of transmission. Branching process model of infection propagation has been widely used to

study the propagation of HIV, Rabies etc. infections, both in the population, as well as in the

cells or tissues of an infected individual [1–3]. There are many reasons for which a stochastic

model of an infectious disease is much preferable than its deterministic counterparts [4, 5].

Due to the inherent randomness of the infectious diseases, arising from the incubation period

of the contagions [6–9], infectious period of the infected individuals [10–13], contact and

transmission probabilities etc. [14, 15], a stochastic model is preferable than a deterministic

one[16–19]. However, as all the models have their own advantages and limitations, both of

the stochastic [17, 20] and deterministic [21] models, and sometimes a combination of the

two [22], are used to model infectious diseases, as per their suitability.

Here we model the propagation of an infectious disease as an age-dependent branching

process under some assumptions (described in detail in the later sections). Like every other

model, this simplified model also has limitations, and sometimes could be inappropriate

to capture the detailed dynamics of some specific disease. However, our goal here is to

present some new interesting theoretical results of the disease propagation, and the effects of

interventions, under simplified assumptions. This is of particular relevance due to the current

situation of SARS-CoV-2 pandemic when researchers, around the globe, are searching for

the best exit strategies from the lockdown restrictions [23]. We show that under reasonable

assumptions, a simplified age-dependent branching process model of infection propagation

can give rise to many important insights about the infection dynamics. We derive a few

general theorems on age-dependent branching process, and apply them to study our model

of infectious disease, to quantitatively understand the difficulty for a population to achieve

herd immunity, depending on the incubation period of the contagion, social interactions,

and transmission probability of the contagion from an infected to a susceptible individual.
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A recent study have shown that the herd immunity for SARS-CoV-2 can be achieved at a

population wide infection rate at ∼ 43%, considering the effect of heterogeneities present

into the population [24]. However, we show here that this ∼ 43% infection rate cannot

be uniform over all population, since the herd immunity depends on the other factors as

well, such as the rate of contacts (which is higher in densely populated countries, than the

less populated countries), incubation period of the contagion (which varies with the climate

[25, 26]) etc. Also, we quantify the success probabilities of various quarantine measures in

mitigating the infection. The distribution of generation time for an infectious disease [27, 28]

is a very important quantity to understand the transmission potential, and to calculate the

basic reproduction number which is a key parameter to estimate the epidemiological state

of an infection in a population [29, 30]. In this paper, a general theorem on generation time

is derived which can have large applicability in the study of infectious disease, as well as any

kind of age-dependent population dynamics using branching process, such as cell divisions

[31, 32], growth of microbial colonies [33, 34] etc. We apply this general theorem to derive

the distribution of generation time for our model.

In section II we introduce our age-dependent model of infection propagation. Section

III presents the derivation of the functional dependence of herd immunity threshold on

the incubation period, contact and transmission probability, and fraction of susceptible

populations. We study the success probabilities of various quarantine measures, depending

on the state of the infection in the population, and compare early vs. later lockdown in a

hypothetical population in sections IV and V, respectively. In section VI we prove a general

theorem to derive the distribution of generation time from the generating function of the

first generation progenies of any general age-dependent branching process, and apply it to

derive the distribution of generation time for our model. We present a concise summary of

this work in section VII.

II. MODEL OF INFECTION PROPAGATION USING AN AGE-DEPENDENT

BRANCHING PROCESS

To map the infection propagation with a branching process, we identify an infected in-

dividual to be the ancestor of the individuals to whom it transmits the infection directly.

The individuals who are directly infected by an ancestor, are called the progenies of the first
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generation. The individuals who are infected directly by a progeny of the first generation,

are called the progenies of the second generation, and so on. The set of all progenies or

descendants of an individual is called a line. If the number of descendants at the rth gen-

eration is zero for an individual, its line is called extinct at the rth generation. Now, let an

ancestor gives rise to n number of progenies with probability pn, where n ∈ Z+, the set of

all non-negative integers. Then the function

G(s) =
∞
∑

n=0

pns
n, (1)

is the generating function for the distribution of number of progenies in the first generation.

We now state a well-known theorem which establishes the basic reproduction number as a

key parameter to determine the fate of the infection in the population, using the generating

function of the first generation progenies.

Theorem 1. Let G(s) be the generating function of a branching process for which the average

number of progenies created by an ancestor be µ. If µ ≤ 1, the process dies out with probability

one. If however, µ > 1 the probability xr that the process terminates at or before the rth

generation tends to the unique root x < 1 of the equation s = G(s).

See [35, 36] for a proof of theorem 1.

In the infectious disease literature, the average number of first generation progenies

(newly created infections) created by an ancestor (primary infected individual) is termed as

basic reproduction number, symbolically denoted by R0 [29, 30]. Therefore, it is clear from

theorem 1 that the infection will die out after sufficient time when R0 ≤ 1, which is called

the herd immunity.

The assumptions of our model are as follows.

Assumption 1: The number of contacts made by an infected individual, with other indi-

viduals in the population, is a Poisson process with a rate α.

Assumption 2: Contacts made by the individuals in the population are independent of

each other.

Assumption 3: The rate of contacts is constant over time, unless any intervention is

imposed, such as quarantine measures.
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Assumption 4: The incubation period and infectious period are used synonymously, be-

cause of the uncertainty of the initiation of the infectiousness in an individual carrying the

contagion.

Assumption 5: Incubation period is memoryless.

Assumption 6: The fraction of susceptibles in the population varies very slowly with re-

spect to the incubation/infectious time period.

The motivation behind assumption 1 is that the Poisson process is the most suitable

model for the number of events occurring in a memoryless fashion [37]. Also, assumption

5 says that the number of days, during which an infected individual remains infectious

(or incubation period of the contagion, according to our convention) is also a memoryless

random variable. This means, the time period over which an infected individual remains

infected, starting from a particular time instant, does not depend on the time period over

which the individual has already been infected. In other words, the probability that an

infected individual remains infected at least for t1 + t2 days, given that it has already been

infected for t1 days, is the same as the initial probability that it remains infected for at

least t2 days. This assumption leads us to take the incubation time period exponentially

distributed with a mean incubation time λ [37]. Therefore, the incubation time period of

the contagion in an infected individual has the density function

f(t) =











1
λ
e−

t

λ if t ≥ 0,

0 if t < 0.
(2)

We now prove a general theorem to derive the generating function for the number of first

generation progenies, created by an ancestor, in an age-dependent branching process; and

apply it to calculate the number of contacts made by an infected individual for our model.

Theorem 2. Let X(t) be a continuous time stochastic process with atomic distribution

P(X(t) = n) = pn(t), and generating function G(s,t), where n is any non-negative inte-

ger. Let X1(t) be the process X(t) with survival time T which is a continuous non-negative

random variable with distribution function F (t) = P(T ≤ t). Then the generating function

G1(s, t) of the process X1(t) is given by

G1(s, t) =

∫ t

0

G(s, t′)dF (t′). (3)
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Proof. The given condition, P(X(t) = n) = pn(t), implies the probability that X(t) = n,

when the process survives at least for time t, is pn(t). Since the survival time T is distributed

as F (t), the probability that X1(t) = n is

P(X1(t) = n) =

∫ t

0

P(X1(t
′) = n | T = t′)dF (t′)

=

∫ t

0

P(X(t′) = n)dF (t′) =

∫ t

0

pn(t
′)dF (t′).

Therefore, the generating function for X1(t) is

G1(s, t) =
∞
∑

n=0

P(X1(t) = n)sn =
∞
∑

n=0

∫ t

0

snpn(t
′)dF (t′).

Now, identifying

∞
∑

n=0

P(X1(t) = n)sn = E(sX1(t)),

as an expectation value on a discrete/atomic measure, and applying Fubini’s theorem for

changing the order of summation and integration, we obtain

G1(s, t) =

∫ t

0

(

∞
∑

n=0

snpn(t
′)

)

dF (t′) =

∫ t

0

G(s, t′)dF (t′).

An important point to note here is that, in general, the function G1(s, t) could be the

generating function of an improper distribution [37], i.e., G1(1, t) ≤ 1. In other words, the

total probability that the number of progenies will be n = 0, 1, 2, 3, ... etc., up to time t,

could be less than or equal to 1.

Corollary 3. If a Poisson process with rate α has exponentially distributed survival time

with mean λ, then the generating function for the process at time t is given by

C(s, t) =
1− e−t(α−αs+ 1

λ
)

1 + αλ(1− s)
(4)

Proof. A Poisson process with rate α, has the generating function

G(s, t) =
∞
∑

n=0

P(X(t) = n)sn =
∞
∑

n=0

e−αt (αt)
n

n!
sn

=
∞
∑

n=0

e−αt (αts)
n

n!
= e−αt(1−s). (5)
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Using theorem 2 and equation 5, we therefore obtain the generating function for a Poisson

process with exponentially distributed survival time having mean λ as

C(s, t) =
1

λ

∫ t

0

G(s, t′) e−
t
′

λ dt′ =
1

λ

∫ t

0

e−αt′(1−s) e−
t
′

λ dt′

=
1− e−t(α−αs+ 1

λ
)

1 + αλ(1− s)
.

Remark 4. Since |s| < 1 and α, λ > 0, we have (α − αs + 1
λ
) > 0. Therefore, taking

limit t → ∞, in equation (4), we obtain the generating function for the process, described in

corollary 3, at the steady state as

C(s) =
1

1 + αλ(1− s)
. (6)

III. HARDNESS OF HERD IMMUNITY

In our model of infection dynamics, an infected individual makes contacts with other

individuals as a Poisson process with rate α, and remains infectious for an exponentially

distributed random time period, having mean λ. Therefore, the generating function for the

number of infectious contacts (contacts made while the person is still infectious) made by

an infected individual up to time t, and during its full lifetime are given by C(s, t) and C(s)

in equations (4) and (6) respectively.

We now recall a theorem for deriving the generating functions for compound distributions,

which we shall use for some of our calculations.

Theorem 5. Let N be a non-negative integral valued random variable with generating func-

tion G(s) and let {Xi} be a sequence of independent and identically distributed (iid) non-

negative integral valued random variables with generating function R(s). Then the generating

function for the compound random variable SN = X1 +X2 + ...+XN is G(R(s)).

For a proof of theorem 5 see [35].

With our model assumptions, let us further assume that at time t the fraction of sus-

ceptibles present in a population be ps, and the probability of disease transmission from

an infected individual to a susceptible individual, who have been in an infectious contact,

be pc. Therefore, the probability of generating a new infected individual from a random

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 26, 2020. ; https://doi.org/10.1101/2020.10.22.20216481doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.22.20216481
http://creativecommons.org/licenses/by-nd/4.0/


8

contact (either with susceptible or with already infected/immuned) with an infected indi-

vidual is pspc. This event of creating a new infected individual, from a random contact with

an infected individual, can be thought of as a Bernoulli trial X with success probability

P(X = 1) = pspc and P(X = 0) = 1 − pspc. The generating function corresponding to this

Bernoulli trial is

B(s) = (1− pspc) + pspcs = 1− pspc(1− s). (7)

Now, the number of newly infected individuals from an existing infected individual, in time

t, is the sum of N number of Bernoulli trials X, where N is a random number representing

the number of infectious contacts made by the infected individual. Therefore, using theorem

5, from equation (4) and (7) we obtain the number of newly infected individuals, from an

existing infected individual, in time t from the onset of its infection, has generating function

C(B(s), t) =
1− e−t(α−αB(s)+ 1

λ
)

1 + αλ(1−B(s))

=
1− e−t(αpspc(1−s)+ 1

λ
)

1 + αλpspc(1− s)
. (8)

Taking limit t → ∞ in equation (8) we get the generating function for the same at steady

state as

C(B(s)) =
1

1 + αλ(1− B(s))
=

1

1 + αλpspc(1− s)
. (9)

Equation (9) can also be obtained directly from equation (6), by replacing s by B(s) from

equation (7). Note that here we are using assumption 6, i.e. the fraction of susceptibles

ps, in the population, is constant over the infectious time period of an individual. Figure

1 shows the probability of the number of first generation progenies created by an infected

individual, for different incubation periods of the contagion (evaluating the Taylor series

coefficients of C(B(s)) in equation (9)). Equation (9) is the generating function for the

number of newly created infected individuals, by an existing infected individual throughout

its whole infectious period. Therefore, the average number of new infections generated by

an existing infected individual is

d

ds
C(B(s))

∣

∣

∣

∣

s=1

= αλpspc. (10)

Recalling the definition of basic reproduction number R0 for an infectious disease, as the

average number of new infections generated by an existing infected individual, we identify
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FIG. 1. (Color online) Probability distributions of the number of newly created infections from

an existing infected individual. Horizontal axis is represents the number of new infections created,

and the vertical axis represents the corresponding probabilities. Red circle, blue square, and green

diamond plots are for λ = 10, 20, and 50, respectively. α = 10, ps = 0.5, pc = 0.05 for all plots.

that equation (10) gives the R0 for our model of infection propagation. It is clear from

equation (10) that R0 is a function of the fraction of susceptibles present in the population

(ps), probability of disease transmission (pc), the rate of contacts between the individuals in

the population (α), and the average incubation period (λ). Now, using theorem 1 we can

conclude that the disease will die out over time, with probability one, if R0 = αλpspc ≤ 1,

i.e. if

ps ≤
1

αλpc
. (11)

Inequality (11) has many significant implications about the achievement of herd immunity.

First of all, it gives an upper bound for the fraction of susceptibles in the population, below

which the infection in the population dies out with probability one, which is known as the

herd immunity in epidemiological terminology. It is also evident from inequality (11) that

when the mean incubation period (λ) is high, the upper bound of ps is small. This means,

to achieve herd immunity in the case of a contagion with high incubation period, (1 − ps)

(which is close to 1) fraction of total population must be either immuned or infected, and

hence, very hard to achieve. Proper use of personal protective equipments (PPE), like masks,

hand sanitizers, face shields etc. can reduce the probability of disease transmission (pc), and

hence helps to achieve herd immunity easily. Alternatively, imposing quarantine measures

can reduce the rate of contacts between infected and susceptible population (α), and helps

to achieve herd immunity. Therefore, in absense of any pharmaceutical interventions, like

vaccines or other medicines, the alternative way to mitigate infection is by the use of PPE
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and/or quarantine measures. There is a popular misconception that quarantine measures

actually do not help to mitigate infection, rather just slow down (so called “flattening the

curve”) its propagation to avoid overwhelming the healthcare systems. However, it is clear

from inequality (11) that the quarantine measures can also help to achieve the herd immunity

and mitigate the infection faster in the population.

IV. SUCCESS PROBABILITY OF QUARANTINE MEASURES

Having obtained the generating function for the number of new infections, generated by

an existing infected individual, in equation (9), we can now view our infection propagation

model as the following branching process.

1. Every infected individual is a particle which is capable of generating new particles

of the same kind.

2. Every particle has probability pk (k = 0, 1, 2, ...) of generating exactly k new particles

during its lifetime.

3. The direct descendants of nth generation form the (n+ 1)st generation.

4. The particles of each generation acts independent of each other.

Denoting the generating function for the number of first generation progenies created by an

ancestor, in the above stated branching process, as G(s), we now recall another theorem for

calculating the extinction probability of the line of a single ancestor.

Theorem 6. For a branching process, as stated in above four points, the extinction prob-

ability of a line, i.e. the probability that there will be no particle present at large time, is

given by the minimum of the positive root x of the equation x = G(x), and 1.

See [35, 36] for a proof of theorem 6.

In our model of infection propagation, the generating function for the number of first

generation progenies (newly generated infections) from a single infected individual is given

by C(B(s)) in equation (9). Therefore, the extinction probability of all progenies (of all

generations, i.e. the line of an ancestor) of an infected individual is obtained by solving the
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equation x = C(B(x)), which is same as the quadratic equation

αλpspcx
2 − (αλpspc + 1)x+ 1 = 0. (12)

Here we make a strong use of assumption 6, which assumes that ps varies so slowly that it

remains almost constant for a line of an ancestor. This assumption can be supported by

realizing that the line of an ancestor is likely to be in the same region or environment in

the population. Equation (12) has two roots, 1 and 1/αλpspc. Therefore, with the help of

theorem 6, the extinction probability for all progenies or line of an infected individual is

given by

pe = min

{

1

αλpspc
, 1

}

. (13)

Figure 2 shows the extinction probability pe as the abscissa of the point where the curves

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

s

h
Hs
L

FIG. 2. (Color online) The black solid curve is the plot for h(s) = C(B(s)), for α = 10, λ = 10, ps =

0.5, pc = 0.05, and the red dashed curve is h(s) = s straight line. The extinction probability of

all progenies or line of an ancestor is the minimum value of s ∈ [0, 1] at which these two curves

intersect, which is 0.4 in this example.

h(s) = s and h(s) = C(B(s)) intersect.

According to our model of infection propagation, an infected individual remains infec-

tious for an exponentially distributed time (incubation period of the contagion) with mean

incubation period λ. We now intend to calculate how many individuals will remain infected

after time t = T if we start observing a fixed NI number of infected individuals from time

t = 0.

Theorem 7. Let the incubation period TI of a contagion has a distribution function P(TI ≤

t) = F (t). If we start observing NI number of infected individuals, each infected from time
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t = 0, then the generating function for the number of individuals who will still remain

infected after time t = T is given by

H(s) = [F (T ) + (1− F (T ))s]NI (14)

Proof. An infected individual remains infectious after time T , only when TI > T . Since the

incubation time TI has distribution function F (t),

P(TI > T ) = 1− P(TI ≤ T )

= 1− F (T ).

Now, we can think of NI number of Bernoulli trials with success probability (1 − F (T )).

The total number of successes of these Bernoulli trials results the number of individuals who

will still remain infectious after time T . In other words, this number is given by the random

variable SNI
= X1 + X2 + ... + XNI

, where each Xi is a Bernoulli random variable with

P(Xi = 1) = 1− F (T ), and P(Xi = 0) = F (T ). The generating function for each Bernoulli

trial Xi is [F (T ) + (1− F (T ))s]. Therefore, using theorem 5 we obtain the generating

function of SNI
as

H(s) = [F (T ) + (1− F (T ))s]NI .

Corollary 8. Let the incubation period of a contagion be exponentially distributed with

mean λ. If we start observing NI number of infected individuals from time t = 0, then the

generating function for the number of individuals who will still remain infected after time

t = T is given by

H(s) = (1− e−
T

λ + e−
T

λ s)NI (15)

Proof. As the exponential distribution is memoryless, we need not worry about the instants

when each individual got infected. Therefore, we can assume that all of the NI individuals

got the infection, simultaneously at t = 0, i.e. the time we start our observation. Since the

incubation period TI is exponentially distributed with mean λ, its distribution function is

given by

F (t) = P(TI ≤ t) =

∫ t

0

1

λ
e−

t
′

λ dt′ = 1− e−
t

λ .

Therefore, using theorem 7, we obtain the desired result.
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Figure 3 shows the probabilities of the number of remaining infected individuals (among

those who are being observed) after the time duration of observation, by plotting the Taylor

series coefficients of equation (15).
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FIG. 3. (Color online) Probability distribution for the number of infected individuals remain-

ing after the withdrawal of quarantine measure. The horizontal axis denotes the number of in-

fected, remaining after T = 40 days of quarantine. The average incubation period λ, of the

contagion, is taken to be 20 days. The number of infected NI at time t = 0 is taken to be

100, 200, 300, 400, and 500, for the red circle, blue square, green diamond, orange inverted triangle,

and black triangle plots, respectively.

We now prove a theorem which will have very useful applications in calculating the

extinction probability of the infectious disease by quarantine measures.

Theorem 9. Let N number of iid Bernoulli trials, each having success probability p, are

performed, where N is a positive integral valued random variable with generating function

Q(s). Then the probability of obtaining all success is Q(p).

Proof. Let P(N = k) = qk, for k = 0, 1, 2, ... . Then by the definition of generating function

Q(s) =
∞
∑

k=0

qks
k.

By conditioning on the number of trials N , we obtain the probability of all success in random

number of Bernoulli trials as

P(All success) =
∞
∑

k=0

P(k success | N = k)P(N = k)

=
∞
∑

k=0

pkqk = Q(p).
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Theorems 7 and 9 together can be used to estimate the success probability of any quar-

antine measure in mitigating infection. Here we assume an ideal quarantine measure where

no contact between an infected person and a susceptible person occurs. Let at some point

of time there be NI number of infected individuals present in the population. Let an ideal

quarantine measure is imposed at that time for next T days, and after T days the quar-

antine is withdrawn. During the quarantine period T , some infected individuals can be

recovered and others will remain infected. The generating function for the number of indi-

viduals (NR), who will still remain infectious after T days of quarantine, is given by H(s)

in equation (15). After the quarantine is withdrawn, the remaining infected individuals will

again start interacting with the susceptible individuals in the population and create new

infections. The probability that the number of all progenies of a single infected individual

will be zero, after sufficient time, is given by pe in equation (13). Now, the event that the

total number of progenies of all the remaining NR number of infected individuals is zero

after sufficient time, is equivalent to the event that NR number of iid Bernoulli trials, each

having success probability pe, results all successes. Since NR has the generating function

same as in equation (15), using theorem 9, we obtain the probability that the infection will

be mitigated after sufficient time from the withdrawal of quarantine is

H(pe) = (1− e−
T

λ + e−
T

λ pe)
NI . (16)

As T → ∞ in equation (16), the extinction probability H(pe) → 1. This implies that as

the duration of quarantine increases, the probability of infection mitigation becomes higher.

Also, when pe = 1, i.e. αλpspc ≤ 1 (by equation (13)), and hence herd immunity is achieved,

H(pe) = 1, i.e. the infection is mitigated with probability one. Figure 4 shows the probability

of zero infection as a function of the duration of quarantine, before achieving herd immunity.

V. EARLY IMPOSITION OF LOCKDOWN CAN SOMETIMES BE LESS

EFFECTIVE THAN A DELAYED IMPOSITION

We now study our infection propagation model in a toy population, and see some counter-

intuitive results. Let the size of the total population be N = 10000, among which NI number

of individuals are infected at time t = 0. Therefore, the number of susceptibles at time t = 0
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FIG. 4. (Color online) Extinction probabilities of the infection as a function of the duration of

quarantine. Horizontal axis represents the duration of quarantine, and vertical axis represents the

corresponding extinction probabilities. Black solid, red dashed, blue dotted, and green dot-dashed

curves are for NI = 10, 100, 500, and 1000 respectively. α = 10, λ = 20, ps = 0.5, pc = 0.05 are

taken for all plots.

is N − NI . Hence, the fraction of susceptibles in the population is ps = (N − NI)/N . Let

the transmission probability pc be 0.05. Let us consider that there is no relapse of infection,

i.e., if someone has ever been infected, they cannot be susceptible anymore, even after their

recovery, or end of their infectious period. Consequently, the fraction of susceptibles cannot

be higher than (N − NI)/N for any t ≥ 0. If we now calculate the extinction probability

as in equation (16), as a function of lockdown/quarantine duration, we obtain Figure 5.

We see in Figure 5 that when NI = 8500, the infection dies out with higher probability
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FIG. 5. (Color online) Extinction probabilities of the infection as a function of the duration of

quarantine, in a toy population of size N = 10000. Horizontal axis represents the duration of

quarantine, and vertical axis represents the corresponding extinction probabilities. Black solid, red

dashed, and blue dot-dashed curves are for NI = 5000, 6000, and 8500, respectively. α = 10, λ =

20, pc = 0.05 are taken for all plots.
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than the situation when NI = 5000 or 6000, upon the imposition of quarantine measures

of same duration. It is to be noted that none of these three cases have achieved herd im-

munity threshold, as αλpspc > 1 for all three cases. The reason for this is, as the size of

the infected (or immune, after recovery from infection) population increases, the fraction

of susceptibles ps, in the population, decreases. Therefore, the probability of an infectious

contact (contact between an infected and an susceptible individual) decreases. Hence, it is

a tug of war between the number of infected NI , and the fraction of remaining susceptibles

ps = (N −NI)/N , in the population, to maximize the probability of total extinction, H(pe)

in equation (16). This therefore implies that imposing an early quarantine measure may not

always be most effective, unless the quarantine is maintained sufficiently long to mitigate

infection fully. Otherwise, it is a better strategy to let the infection spread into the popula-

tion up to some time to ensure the number of remaining susceptibles is relatively low, and

then impose the quarantine measure for the same duration. The later strategy will then

have a higher probability of success in mitigating infection from the population.

It is to be noted here that after the withdrawal of lockdown the infection still keeps on

propagating in the population to some extent, even before eradication, if it at all happens.

Therefore, it needs a detailed calculation (recursive and possibly numerical) to comment on

the total number of infections occurring before it is eradicated from the population [16, 17].

However, it is also to be understood that when NI number of people become infected at

some point of time, not all of them remains infected at that time instant. So, the extinction

probabilities in figure 5 is prone to underestimation. Therefore, to decide on the best

strategy for mitigating an infection from a population, using quarantine measures, it needs

an extensive analysis, to save both economy and healthcare system in an optimized way.

VI. THE DISTRIBUTION OF GENERATION TIME

The generation time for an infectious disease is defined as the time interval between the

onset of infection in an individual to the first generation of another new infected individual

by the primary infected individual [27]. We now calculate the distribution of the generation

time for our model of infectious disease. To derive the distribution function of the generation

time we need to use the generating function for the tail of a discrete random variable. More

specifically, let N be a non-negative integral valued random variable having distribution
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P(N = k) = pk (possibly improper distribution), for k ∈ {0, 1, 2, ...}. Let M be defined

as the tail of N having distribution P(M = k) = P(N > k) = pk+1 + pk+2 + ... = qk, for

k ∈ {0, 1, 2, ...}. We now prove a theorem which gives the relation between the generating

functions of N and M .

Theorem 10. If the generating function of N is P (s), then the generating function for its

tail M is given by

Q(s) =
P (1)− P (s)

1− s
. (17)

Proof. The proof goes exactly in the same line as in [35], where the generating function for

the tail distribution is derived for a proper distribution. By definition,

Q(s) = q0 + q1s+ q2s
2 + q3s

3 + ...,

where qk = pk+1+pk+2+ ..., for k ∈ {0, 1, 2, ...}. Therefore, the coefficient of sn in (1−s)Q(s)

equals qn − qn−1 = −pn when n ≥ 1, and equals q0 = p1 + p2 + p3 + ... = P (1) − p0 when

n = 0. Therefore,

(1− s)Q(s) = P (1)− p0 −
∞
∑

n=1

pns
n = P (1)− P (s),

and hence the desired result.

We now derive a general theorem to calculate the distribution of generation time, with

the help of theorem 10.

Theorem 11 (Generation time distribution). Let G(s, t) be the generating function for the

number of first generation progenies, created by an ancestor of an age-dependent branching

process up to time t, with steady state generating function G(s), i.e. limt→∞ G(s, t) = G(s).

Let the number of progenies created by the ancestor throughout its lifetime be greater than

or equal to m. Then the time τm, required to create the first m number of progenies by the

ancestor, has the distribution

P(τm ≤ t) =

∂(m−1)

∂s(m−1)

(

G(1,t)−G(s,t)
1−s

)∣

∣

∣

s=0

d(m−1)

ds(m−1)

(

G(1)−G(s)
1−s

)∣

∣

∣

s=0

, (18)

and hence, the generation time τ has the distribution

P(τ ≤ t) =
G(1, t)−G(0, t)

G(1)−G(0)
. (19)
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Proof. The event that τm ≤ t is same as the event that the number of progenies N(t),

created up to time t, is greater than or equal to m. This implies

P(τm ≤ t) = P(N(t) ≥ m | N(∞) ≥ m)

= P(N(t) > m− 1 | N(∞) > m− 1)

=
P(N(t) > m− 1, N(∞) > m− 1)

P(N(∞) > m− 1)

=
P(N(t) > m− 1)

P(N(∞) > m− 1)
. (20)

Identifying P(N(t) > m − 1) as the tail distribution of the branching process under con-

sideration, at time t, using theorem 10 we conclude that its generating function has the

form

Q(s, t) =
G(1, t)−G(s, t)

1− s
,

and P(N(t) > m − 1) is the coefficient of sm−1 of the Taylor series expansion of Q(s, t)

with respect to s. Similarly, P(N(∞) > m − 1) is the coefficient of sm−1 in the Taylor

series expansion of Q(s), where Q(s) = limt→∞ Q(s, t). Hence, substituting these values of

P(N(t) > m− 1) and P(N(∞) > m− 1) in equation (20) we obtain equation (18). Finally,

we obtain equation (19) from equation (18), for m = 1.

Having obtained the general procedure to derive the distribution function of generation

time, we now apply theorem 11 to derive the distribution of generation time for our model.

In our model we have G(s, t) = C(B(s), t). Therefore, using equations (8) and (19), we

obtain the distribution function for generation time as

P(τ ≤ t) =
C(B(1), t)− C(B(0), t)

C(B(1))− C(B(0))

=
αλpspc − e−

t

λ (1 + αλpspc) + e−t(αpspc+
1
λ
)

αλpspc
. (21)

Therefore, the density function for the generation time is given by

g(t) =
d

dt
[P(τ ≤ t)]

=
(αpspc +

1
λ
)

αλpspc
e−

t

λ (1− e−tαpspc) (22)

Figure 6 plots the probability density function g(t), for the generation time, in case of two

different incubation periods. As seen from the plot that the mode of the distribution does
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not change much with the incubation period. Dependence on other parameters can also be

checked, and it can be shown that decreasing α, ps, and pc will shift the mode towards right,

as it is evident that decreasing these parameters will delay the generation of a new infection.
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FIG. 6. (Color online) Probability density function for the generation time. Black solid curve is

for λ = 10; and red dashed curve is for λ = 20. Other parameters for both the curves are taken to

be α = 10, ps = 0.5, pc = 0.05.

VII. CONCLUSION

We model the propagation of an infectious disease, in a population, as an age-dependent

branching process, under reasonable assumptions. We obtain that the achievement of herd

immunity is highly dependent on the incubation period of the contagion, and is difficult to

achieve when the incubation period is high. We show that how the mass use of PPE can help

to achieve herd immunity, and to eradicate the infection faster from the population. We also

calculate the success probability of various quarantine measures, and show by considering

a hypothetical situation that an early imposition of lockdown may not always be a better

strategy against a delayed imposition of lockdown of the same duration. Finally, we derive

a general theorem to calculate the distribution of generation time, which can be used in the

study of any system, modeled as age-dependent branching process. We apply this general

theorem to derive the generation time distribution for our model of infection propagation,

and obtain a two parameter (effectively) distribution which can be used in epidemiological

studies, as a logical replacement of hitherto used ad hoc distributions, such as gamma

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 26, 2020. ; https://doi.org/10.1101/2020.10.22.20216481doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.22.20216481
http://creativecommons.org/licenses/by-nd/4.0/


20

distribution, log-normal distribution etc.
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