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A mathematical model of COVID-19 is presented
where the decision to increase or decrease social
distancing is modelled dynamically as a function
of the measured active and total cases as well as
the perceived cost of isolating. Along with the cost
of isolation, we define an overburden healthcare
cost and a total cost. We explore these costs by
adjusting parameters that could change with policy
decisions. We observe that two disease prevention
practices, namely increasing isolation activity and
increasing incentive to isolate do not always lead
to optimal health outcomes. We demonstrate that
this is due to the fatigue and cost of isolation. We
further demonstrate that an increase in the number
of lock-downs, each of shorter duration can lead to
minimal costs. Our results are compared to case data
in Ontario, Canada from March to August 2020 and
details of expanding the results to other regions are
presented.

1. Introduction
As of January 2021 there have been over 87 million cases
of COVID-19 worldwide, over 630 000 cases in Canada,
and over 200 000 cases in the province of Ontario. The
early stages of the outbreak focused on mathematical
modelling of disease dynamics such as transmission and
the basic reproduction number [1,2].
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It quickly became clear that asymptomatic spreading was important and that undetected
infections were important to consider in models [3]. This caused a global policy shift towards
travel restrictions, community closures, and social distancing implementations. The impacts of
mathematical modelling on policy are documented in [4].

The implementation of non-pharmaceutical intervention (NPI) such as social distancing
quickly became an important mathematical modelling task (cf. [5–8]). The majority of these
models focus on fixed policy implementations such as reducing contacts on a given date and
reinstating them on another. There are two main issues with this, the first is that it requires
knowledge of the implementation and relaxation times. While this can be explored in model
simulations and optimized for best results, its independence from the model itself can make
it hard to adapt to other diseases, strains, or important factors. A second problematic issue is
that it assumes an instantaneous policy compliance, i.e., that people will immediately reduce
contacts upon implementation and stop upon relaxation. While this can be impacted by an
adherence parameter, it does not allow for a dynamic response which is more realistic of human
choice. Therefore a dynamical social distancing model that reacts to the disease dynamics is more
realistic.

A dynamic intervention strategy where intervention was turned on and off based on the
state of the epidemic was considered in [8] where a decrease in both total infections and social
distancing duration was observed compared to a fixed-duration intervention which they also
considered. However, modelling the dynamics of intervention entirely on the disease progression
assumes that people will immediately distance or relax at some threshold. This suggests that a
periodic solution will emerge centered around the critical disease threshold and this appears to
happen in [8]. While it is quite realistic that disease dynamics drive people into isolation, it is a
separate mechanism, namely the cost of staying home, that people consider when relaxing their
isolation habits. Cost is seldom considered in models, with most of the focus on larger economic
influence [9,10]. These economic factors certainly play a role in individual cost but psychological
factors such as loneliness and habit displacement are important as well.

For this paper we propose a differential equation model for the spread of COVID-19 with
separate dynamics for isolation and relaxation dependent on disease progression and relaxation
cost respectively. The disease progression information typically comes from media reports and
has been investigated in the context of infectious diseases such as influenza (cf. [11–14]) and is
usually used to reduce the susceptibility of individuals who are positively influenced by media.
The relaxation cost is less often considered and its inclusion recognizes that repeated lock-downs
would have diminishing returns as the cost to stay home becomes too overwhelming. A dynamic
response model allows for more realistic policy strategies for disease mitigation and mortality
prevention. Our model focuses on the spread of the disease in Ontario, Canada, but could be
adapted with other parameters to other regions.

Our study is outlined as follows. In section 2 we introduce the model and the dynamic
response functions for social distancing and relaxation. We also introduce the parameters
including those which we fit to data from [15]. We define health, economic, and total costs of
the pandemic. The health cost is based on overloading existing healthcare resources while the
economic cost is the personal or societal cost of social distancing. We show the excellence of fit
to our data in section 3 and present a series of results based on different scenarios where policy
parameters that control distancing and relaxing are varied. We consider scenarios where both
health and relaxation costs are equally weighted or where health cost is much more strongly
influencing the total cost. We consider a modification to the relaxation rate so that it depends on
both cost and cases and see that multiple outbreak peaks can occur. We discuss the implications
and conclusions of our work in section 4.
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2. Model
We consider a mathematical model for COVID-19 consisting of classes of people with various
exposure to the disease. These classes are listed in Table 1 where we note that the removed
groups include people who have died from the virus which we do not separately consider. For
each of the population classes we assume there are three levels of social distancing indicated
by a variable subscript zero, one, or two. If the subscript is 0 then there is no social distancing,
subscript 1 indicates that there is social distancing which reduces the contact probability by some
percentage while for subscript 2, the contact probability is zero, i.e. full isolation. We introduce
a further subscript, M which represents the mitigation of spread due to individuals who have
tested positive and are isolated. We assume that only P , IS , and IA populations can test positive
and that these people will immediately and completely isolate effectively placing them in the
social distance 2 category for the duration of their disease.

We follow the usual SEIR model framework (cf. [16,17]) which we illustrate in Figure 1 with
equations detailed in Appendix A.
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Figure 1: Graphical representation of the SEIR model used throughout the manuscript. We use
fading to indicate a reduction in transmission which comes from distancing/isolation and also
from the asymptomatic disease carriers being less infectious. These effects are quantified by
δ and α respectively in the full model detailed in Appendix A. For a condensed graphical
representation, we have indicated a representative parameter on particular arrows, however in
general each parameter has a subscript (i, j) indicating the originating and terminal compartment
respectively, details of which are in the main text. The parameter µ indicates distancing to a
higher category while ν indicates relaxing down to a lower category. F (Ij) represents the force
of infection indicating that susceptible people require interaction with one of the infected classes
for successful disease transmission. The portion of the model in the green rectangle is the model
when social distancing and testing is not considered.

For the model we assume that vital statistics are not important on the time scales we consider
so we take a fixed populationN . We also normalize the model by another populationNcrit which
is the amount of people needing healthcare resources that puts the system at full capacity. Figure 1
shows the various model parameters which are summarized in Table 1. Each transition parameter
has a subscript (i, j) with i the originating class and j the terminal class. The exception to this is
βi,j where i is the class of the susceptible person and j the class of the infected contact.
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Table 1: Variable and Parameter Definitions

Definition Value Comment

S Susceptibles, people who can catch the virus 0.9998N Initial Condition

E Exposed, people who have caught the disease but are not yet infectious 0 Initial Condition

P Pre-symptomatic, people who are infectious but have not had the disease long
enough to show symptoms

0 Initial Condition

IS Infected-symptomatic, people who are infectious and have started showing
symptoms

2.00×
10−4N

Initial Condition

IA Infected-asymptomatic, people who are infectious but never show symptoms 0 Initial Condition

RS Removed-symptomatic, people who were symptomatic and infectious, but are
no longer infectious

0 Initial Condition

RA Removed-asymptomatic, people who were asymptomatic and infectious, but
are no longer infectious

0 Initial Condition

N Population of Ontario 13448494 2016 Census

Ncrit Critical population at which healthcare resources are overwhelmed 81301 Chosen

R0 Basic reproduction number 2.40 [18,19]

β Transmission rate of disease after coming in contact with the infected class 0.223 d−1 See (2.10)

δ Reduction in transmission due to social distancing in class 1 0.250 Chosen

α Reduction in transmission due to being asymptomatic 0.500 Chosen

σ Rate at which exposed class enter pre-symptomatic class 2.00 d−1 [18]

φ Rate at which pre-symptomatic class can beging showing symptoms 4.60−1

d−1
[18,20,21]

Q Proportion of infected individuals who show symptoms 0.690 Median value

γ Rate at which an infected person is no longer infectious 10.0−1

d−1
[22]

µmax Maximal rate at which someone moves from a less socially distant class to a
more socially distant class

1.00 d−1 Chosen

νmax Maximal rate at which someone moves from a more socially distant class to a
less socially distant class

1.00 d−1 Chosen

µI Rate at which people showing symptoms choose to isolate 0.010 d−1 Chosen

q0 Proportion of S0 socially distancing into S1 0.9 Chosen

q2 Proportion of S2 relaxing social distancing into S1 0.6 Chosen

qI Proprotion of symptomatic individuals IS0 who isolate into IS1 0.6 Chosen

ρA Testing rate for someone not showing symptoms to test positive 8.70×
10−3 d−1

See Appendix B

ρS Testing rate for someone showing symptoms to test positive 3.48×
10−2 d−1

See Appendix B

Mc Critical active cases to induce social distancing 2.09×
103/Ncrit

See Appendix B

M0 Active cases that leads to half the maximal rate of social distancing 4.18×
103/Ncrit

See Appendix B

kc Critical approximate disease doubling rate to induce social distancing 16.2−1

d−1
See Appendix B

k0 Approximate disease doubling rate that leads to half the maximal rate of social
distancing

4.06−1

d−1
See Appendix B

Cc Critical cost to induce social relaxation 50 d Chosen

C0 Cost that leads to half the maximal rate of social relaxation 100 d Chosen

We make the following assumptions about the model parameters:

(i) the parameters δ, σ, φ, γ, and Q are constant and the same for each social distancing class
as the disease progression characteristics are unaffected by social distancing. The social
distancing partition parameters q0, q2, and qI are also constant.
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(ii) βS0IS0
= β a constant which incorporates both contact and disease transmission

probability. We assume that people not showing symptoms shed a lower viral load and
hence reduce transmission by a constant factor α and that those in social distancing class 1
reduce their contacts by a constant factor of δ, effectively also reducing their transmission.
For example, βS0IA0

= αβ, βS1IS0
= δβ, and βS1IA1

= αδ2β.
(iii) people in the infected symptomatic class IS0

choose to isolate at a constant rate µI with
qI going into IS1

and (1− qI) going into IS2
. They stay in the social distancing class until

they have recovered from the disease, i.e., νI = 0. Furthermore, this means that someone
already social distancing in state 1 or 2 who becomes symptomatic remains in that social
distance class. We note that individuals in IS0

, IS1
, and IS2

know that they are sick but
have not tested positive for the disease. If they test positive, they transition to ISM

and
are completely quarantined.

(iv) there are two testing rates ρA and ρS for asymptomatic (including presymptomatic)
and symptomatic individuals respectively with ρS > ρA as we assume that symptomatic
people are more likely to seek out a test as they have symptoms. Asymptomatic people
are likely to only seek a test out of curiosity, if they believe, through contact tracing or
otherwise, they have come into contact with someone who has the virus, or through
targeted testing initiatives. Despite the fact that testing numbers fluctuate with the
progression of the disease we take the testing rates to be constant which makes them
an effective testing rate. This is consistent with studies estimating global infections per
symptomatic test case (cf. [23,24]). To help restrict the model we take ρS = 4ρA which is a
similar value as observed in [24] who compared data to Germany, South Korea, and the
USA.

(v) we assume that only people in the P , IS or IA classes will test positive if a test is
administered. Therefore, we explicitly assume people in the E class do not have a high
enough viral load to shed.

(vi) people who have tested positive are isolated (effectively put in social class 2) until
recovery and cannot transmit the disease. This ignores infections to family members
living in a household with an isolated member or infections to healthcare workers who
are conducting tests or treating COVID-19 patients. See [25] for considerations of a model
with household structure included.

(a) Social Distancing and Testing
Since people without symptoms are unaware of whether they have the virus or not, we assume
that both social distancing and relaxing rates are independent of the disease class they are in. We
therefore define µ as the rate of social distancing from state 0 with proportion q0 going to state 1
and (1− q0) going to state 2. We similarly define ν as the rate of decreasing social distance from
state 2 with proportion q2 going to state 1 and (1− q2) going to state 0. We define those social
distancing from state 1 to state 2 as µ/2 to account for the fact that anybody in state 1 has already
undergone one transition and so they should be slower at making a secondary transition. For a
similar reason we define the social distancing relaxation from state 1 to state 0 as ν/2.

Testing provides two important quantities reported by the media that can help inform social
distancing, the total number of casesM and the active casesMA (each also scaled byNcrit) which
are defined by

Ṁ =ρS(IS0
+ IS1

+ IS2
) + ρA(IA0

+ IA1
+ IA2

+ P0 + P1 + P2), (2.1a)

MA =PM + ISM
+ IAM

. (2.1b)

If the disease is in the exponential phase of spread then the doubling rate can be deduced from
the cumulative case information, M , to yield

kM =

dM
dt

M ln 2
. (2.2)
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We assume that this can approximate the doubling rate at all times and is what locally drives
social distancing. However, while the disease growth rate is important, it should be weighed
against the number of active cases as well and therefore we propose a social distance transition
function

µ= µmax

(
[kM − kc]+

[kM − kc]+ + k0 − kc

)(
[MA −Mc]+

[MA −Mc]+ +M0 −Mc

)
, (2.3)

where µmax is the maximal rate of social distancing, [·]+ is defined such that,

[·]+ =max(·, 0).

Social distancing is not something that people want to do and the parameters kc andMc represent
critical doubling rates and active case numbers respectively below which people will not social
distance which is the role of the maximum function. These parameters can be thought of as policy
parameters since implementing lock-downs, closing businesses, and halting social gatherings will
impact these values. The parameters k0 andM0 represent doubling rates and case numbers where
social distancing reaches its half-maximum.

We assume that social relaxation, ν, is proportional to the cost of social distancing, c, in dollars,
which we model as

ċ= κNcrit ((S2 + E2) + (1− δ)(S1 + E1)) . (2.4)

The parameter κ is the cost per person per day of being in social distancing class 2. Those in social
distance state 1 effect their transmissibility by a factor δ and we assume this comes at a reciprocal
burden cost of (1− δ) relative to κ. For example, if δ= 1 then the 1 and 2 states are both fully
isolated and contribute an equal maximal cost. The parameter Ncrit appears in (2.4) because of
the scaling on the populations. We only include susceptible and exposed classes in (2.4) because
we assume there is a greater benefit to having transmitting classes (Pi, Ii) stay home. Arguably,
exposed people who will soon become infectious should stay home too, but as they would test
negative, they would think they are healthy and therefore we assume they contribute to the cost.
For simplicity we ignore the cost of recovered people social distancing which will be invalid if
many people have recovered but policy prevents them from returning to their workplaces etc. As
written, the cost accumulates with time. We could remedy this by including a decay factor −µcc
in (2.5) but we assume that the time scale of recovery is much longer than that of the pandemic.
Since c does not factor in day-to-day economic costs in non-pandemic times, it is normalized so
that zero cost represents the cost of society pre-pandemic. Similarly then the maximum additional
costs come from those isolating completely in social distance state 2.

Defining cost as we have in (2.4) attributes a single dollar amount, κ to social distancing. This
is a general opportunity cost which will vary from person to person and include direct economic
costs in the form of people staying home from their jobs, but also indirect economic costs such as
the psychological tolls of being isolated for a long period of time. As we have not stratified our
model by demographics such as age and poverty level, we are not able to capture demographic
effects on the cost. This generality in the model means that identifying an actual dollar amount
per day, κ, is difficult. Instead, we define

c= κNC

allowing us to eliminate κ in (2.4) to yield,

Ċ =
Ncrit

N
((S2 + E2) + (1− δ)(S1 + E1)) . (2.5)

With this definition, C is measured in days. Since κN represents the cost per day of every person
in the population being full isolated then C represents the equivalent cost in days of the entire
province isolating. Interpreting a reasonable value of κwill allow governments and policy makers
to transform the cost into a daily total in dollars.
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Defining the relaxation cost using (2.5), we propose ν be modelled by

ν = νmax
[C − Cc]+

[C − Cc]+ + C0 − Cc
(2.6)

where νmax is the maximal rate at which social distancing can be relaxed, C0 is the cost which
triggers the half-maximal rate, and Cc is the cost required to trigger social relaxation. Cc is also
a policy parameter as mental health promotion, economic stimulus, and wage subsidy programs
can influence the cost people can endure before social relaxation.

To understand the true cost of the pandemic we must balance the relaxation cost, C, with the
overburden healthcare cost, H , which we define as

H =
∑
i

∫ t1i
t0i

MA dt, (2.7)

where t0 is the time where active cases exceedNcrit/2 and t1 is the time they return belowNcrit/2.
We choose this value as many provinces use this as an indicator of overload since by the time cases
reachNcrit resources are completely overwhelmed. An alternative definition of the healthcare cost
could be to integrate over the whole duration of the pandemic. In this formulation zero health cost
could only come from having no cases at all. Additionally, it means that a very small daily active
caseload sustained over several years could be equivalent or worse to an extreme overload of the
system over a couple of weeks. By defining (2.7) we are assuming that the healthcare system has
measures in place to manage caseloads below Ncrit/2. Even small case numbers will contribute
to death and chronic illness, but we assume that below Ncrit/2 these are solely a function of the
diease, while above the threshold, the impact on healthcare strain is likely a contributing factor.

The choice of integrating H in (2.7) balances intensity of the outbreak along with duration.
The sum allows for multiple outbreaks where the hospital resources are exceeded. The reason we
measure active cases is that we assume all COVID-19 cases entering the hospital will be tested.
Realistically a portion of the untested symptomatic cases will also impact the healthcare system
and therefore this can be considered an underestimated cost. Having defined the overburden
healthcare cost we can then define the total cost as

CT = ω
H

H∞
+ (1− ω)

C

C∞
, (2.8)

where H∞ is the overburden healthcare cost with no social distancing intervention (µmax = 0)
and C∞ is the largest isolation cost allowable. We define ω as a weighting factor between the two
cost contributions.

(b) Parameter Determination
We first consider a variant of the full model that does not include social distancing or testing
(green-dash rectangle of Figure 1) which is given by,

Ṡ =− Ncrit

N
(βSPSP + βSISSIS + βSIASIA)

Ė =
Ncrit

N
(βSPSP + βSISSIS + βSIASIA)− σE

Ṗ =σE − φP

İS =QφP − γSIS

İA =(1−Q)φP − γAIA

ṘS =γSIS

ṘA =γAIA.

(2.9)
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This reduced model represents the disease transmission dynamics prior to widespread
knowledge of COVID-19. Following [18] we assume that people without symptoms are half as
infectious as those with symptoms and therefore take α= 1/2.

The disease free state is [S,E, P, IS , IA, RS , RA] = [N/Ncrit, 0, 0, 0, 0, 0, 0] and we identify the
basic reproduction numberR0 as the non-zero eigenvalue of the next generation matrix produced
from (2.9) (cf. [26,27]),

R0 =
β(γSγA + 2QφγA + φγS(1−Q))

2φγSγA
. (2.10)

Taking R0 from measurements such as the studies in [18,19] which estimate R0 = 2.4 we can
rearrange (2.10) to determine a value for β.

We assume that this base transmission rate between the susceptible and symptomatic
populations is the same as that between S0 and IS0

in the social distancing model (A 1), i.e.
βS0IS0

= β. The parameters considered for the base model are presented in Table 1 and we
comment on some of the assumptions made.

As of July 16, 2020, the hospitalization rate of COVID-19 in Ontario Canada was 12.3%
and there were approximately 10000 hospital beds available for people which together define
Ncrit = 81301. We choose µmax = νmax = 1 under the assumption that people generally need at
least one day to change their routines. We arbitrarily assume that C0 = 2Cc and that k0 = 4kc to
help constrain the model. This means that the relaxation cost needed to initiate the half-maximum
rate is twice as many days as the onset of social relaxation while the disease needs to double twice
for the half-maximal social distancing rate to occur. We chose Cc = 50 based on Ontario imposing
a stage-one lock-down in March 2020 that lasted almost 100 days coupled with the fact that it did
not impact the entire province.

We predicted the values of kc, Mc, and ρA (recalling that ρS = 4ρA) by fitting our model
to active and total case data from [15] between March 10, 2020 August 18, 2020 inclusive. We
used a non-linear least squares method for the fitting, the details of which are in Appendix B.
Using the Ncrit scale we can convert the values of Mc and M0 from Table 1 to 2090 and 4180
people respectively. The values of µI , q0, q2, and qI are arbitrarily chosen. However, as is seen in
Appendix B where a sensitivity analysis is performed, these parameters are not very influential
on model results. The most influencing parameter is µI . Considering that at the half-maximal
rates, the social distancing rate is µ= 1/4 and that a recent study from [28] suggested that up to
90% of Americans go into work sick then a further 90% reduction would yield µI ≈ 0.025 which
is the same order of magnitude to the chosen value.

We took a median value for the symptomatic rate, Q, of 69% following a variety of studies (see
[29–34]).

3. Results
We simulated (A 1) using MATLAB 2020a with parameters in Table 1. We took March 10, 2020 as
the initial time with an initial condition that 0.02% of the population was infected with symptoms
and placed the remaining 99.98% of the population in the susceptible class.

We demonstrate the results from data-fitting the parameters kc, Mc, and ρA in Figures 2a and
2b. Comparing data to simulation, we observe a difference in the early peak-time of 4.7 days and
a difference in peak active cases of 359 people. We extend our simulation beyond August 18, 2020
and compare to data up to January 6, 2021 in Figures 2c and 2d. We see that the fit is good until
around the end of September 2020. We discuss how to improve this fit in Appendix B where we
also discuss comparisons to social mobility data.
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Figure 2: Comparison between simulation and data from [15]. Data is fitted from March 10 to
August 18, 2020 ((a) and (b)) and then projected ((c) and (d)) with unfitted data from August 19,
2020 to January 6, 2021. Improvements to fit are discussed in Appendix B.

We observe the impact of the disease on total cost (2.8) by simulating the full model (A 1) and
varying the critical threshold at which people social distance (Mc) and the critical cost before
social relaxation begins (Cc). We consider 1/4, 1/2, 2, and 4 times the base values given in Table
1. The value for kc from data fitting is already quite extreme and we do not vary this. We plot heat
maps for the total costCT in Figure 3 for different weights ωwith the maps coloured relative to the
maximal and minimal costs. We compute H∞ by simulating the model with parameters in Table
1 and taking µmax = 0. We take C∞ as the highest cost that emerges from all of the simulations.
We note that ω= 0 is just the relaxation cost C given by (2.5) scaled by C∞ while ω= 1 is just the
overburden health cost H given by (2.7) scaled by H∞.
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(f) ω= 1. CT =H/H∞ withH given by (2.7).

Figure 3: Total cost (2.8) from varying Mc and Cc in the model (A 1) with other parameters
fixed from Table 1 (excluding C0 and M0 which are appropriately updated). M∗c and C∗c refer
to the base values in Table 1. In these simulations H∞ = 292.7 and C∞ = 230 days. Ascending
the vertical axis corresponds to increased vigilance (lower required active cases before social
distancing) while moving left-to-right on the horizontal axis corresponds to increased spending
(longer tolerance before relaxing).

ReducingMc means that people require less active cases before triggering their social distance
behaviour. If we denote this behaviour as vigilance then smaller values of Mc lead to increased
vigilance. Therefore, in Figure 3 vigilance increases from bottom-to-top as Mc decreases. Cc

increases from left-to-right which corresponds to a higher tolerance for social distancing meaning
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that people delay their relaxation behaviour. We associate this to increased spending as people
can absorb more cost.

When ω is small, corresponding to more weight being put on relaxation cost, Figure 3
intuitively shows that increasing Cc increases the total cost. This changes when ω approaches one
where increasing Cc can decrease total cost. This is also intuitive because when ω= 1 there is no
contribution of social distancing to the total cost, but the advantage that people are staying home
and not getting sick. Therefore, encouraging that behaviour only leads to better outcomes. These
two different behaviours suggest that there is a value of ω where both increasing and decreasing
Cc may lead to increased total costs. Indeed this phenomenon can be observed in Figure 3e where
the optimal spending occurs at Mc =M∗c /4 and Cc =C∗c .

A very non-intuitive trend occurs in Figure 3 which is that increasing vigilance (smaller Mc)
increases total cost. The only exception to this is in Figure 3f when Cc = 4C∗c and the minimum
total cost occurs whenMc =M∗c . To understand this result, we focus on the case ω= 1 where only
the overburden health cost is considered. First consider Cc =C∗c /4 and Mc =M∗c . As vigilance
increases, we expect that maximum active case load to decrease as people are social distancing
with greater frequency. We see that this indeed the case in Figure 4a as we change from M∗c to
M∗c /2. However, we also see that the duration of the epidemic straining healthcare resources is
longer and the small decrease in peak is not enough to overcome this duration. We contrast this
case to when Cc = 4C∗c and a minimum overburden healthcare cost is observed at Mc =M∗c . The
active case load is plotted in Figure 4b for 2M∗c , M∗c , and M∗c /2. Increasing vigilance from 2M∗c
to M∗c decreases the peak and increases the duration. However, unlike the case in Figure 4a, the
depression is significant enough to cause an overall decrease in total cost. However, as vigilance
is increased further to M∗c /2, the peak increases and duration decreases leading to an increase in
cost.

(a) ω= 1, Cc =C∗c /4. (b) ω= 1, Cc = 4C∗c .

Figure 4: Comparison of active cases corresponding to Figure 3f for different parameter values.

The non-intuitive result that higher vigilance leads to worse outcomes can be explained by
isolation fatigue. A higher vigilance causes people to enter isolation too early. Once they hit a
certain cost threshold they relax back to their regular social habits and then cannot sustain further
isolation when the second wave of the pandemic arrives.

We define H∞ in the case when no social distancing occurs and therefore the relative
overburden healthcare cost H/H∞ tends to its maximum value of one as social distancing is
relaxed. However, as demonstrated in Figure 3 increasing vigilance can also lead to H/H∞
tending to one. This suggests that for every spending level, Cc, there is an optimal social
distancing Mc to minimize the overburden health cost. Indeed this is the case as demonstrated in
Figure 5 for the case ω= 1 and Cc =C∗c /4 where we report the critical number of active cases to
isolate, Mc as a percentage of the population N . The value M∗c is indicated by the black line and
demonstrates that based on the data from Ontario, social distancing vigilance was initially too
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severe. This is a very important policy result since if isolation is too vigilant then the fatigue from
isolation cost has a very negative impact long term. This result can easily be extended to other
regions by using different parameters.

M
c
*

Figure 5: Overburden health cost, H , given by (2.7) (equivalent to total cost (2.8) when ω= 1)
when Cc =C∗c /4 and Mc is varied as a percentage of the total population N . The dashed black
line indicates the value M∗c fitted from Ontario Public Health data [15].

Plots of all of the active cases and costs for the scenarios in Figure 3 can be found in the
supplementary material along with the populations of each isolation class to visualize the impact
of social distancing and relaxation. The cumulative number of symptomatic-infected people for
each scenario is plotted in Figure 6.
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(a) M∗c /4. (b) M∗c /2.

(c) M∗c . (d) 2M∗c .

(e) 4M∗c .

Figure 6: Total cumulative symptomatic cases (plotted as a percentage of the total population).
The baseline case refers to no social distancing, i.e. µmax = 0.

It can be seen that decreasing vigilance causes a more uniform accumulation of cases while
increasing relaxation cost delays the peak of infection. In all cases, the same number of total people
are infected as in the baseline case where testing occurs but no social distancing happens. This is
expected as complacency and fatigue from non-pharmaceutical interventions eventually force
the cost of social distancing to be too high for people to remain away from others. However, these
delays can provide time for vaccination and other medical efforts to minimize the impact of the
disease.

(a) Multiple Secondary Waves
The model as derived only allows for one large secondary wave following the peak in Ontario
around early May 2020. Since the relaxation rate, ν, is solely a function of relaxation cost (2.5)
which is always increasing, isolation fatigue becomes too overwhelming that there is resistance
for prolonged isolation. This model is likely appropriate for regions that have a strong aversion to
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social distancing. For other regions, it is likely that relaxation will be a function of cost and active
cases as people will prioritize their health in a sustained outbreak and thus not want to relax if
case numbers are sufficiently large. If we refer to the rate in (2.6) as ν0 then we propose modifying
ν to

ν = ν0 [ηMc −MA]+ , (3.1)

where η is a concern factor and is the number of critical cases Mc that stops social relaxation
regardless of cost. Implementing this change allows for secondary infection peaks as evidenced in
Figure 7 where we use parameters in Table 1 and arbitrarily take η= 1/2 for Figure 7a and η= 1/5

for Figure 7b. It is important to note that these changes do not impact the initial peak fitted to data
in Figure 2 and only alter future projections. Furthermore, as of January 2021, Ontario is still in
the midst of its first secondary peak. For these reasons, it is difficult to estimate η as several peaks
will need to have occurred.

(a) η= 1
2 . (b) η= 1

5 .

Figure 7: Comparison of true active cases (dashed blue), tested active cases (solid green), and
cost (solid red) for two values of η. The grey-dashed line is the hospital resources Ncrit and the
black-dashed line is Ncrit/2 from which the health cost is measured.

We repeat the cost analysis as in Figure 3 for the modified relaxation cost (3.1), however we fix
Mc =M∗c , the value from Table 1 and instead modify η. The results are presented in Figure 8.
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(a) ω= 0. CT =C/C∞ with C given by (3.1).

C
c
* /4 C

c
* /2 C

c
* 2C

c
* 4C

c
*

1/4

1/2

1

2

4

0.5277

0.3671

0.2661

0.2119

0.53

0.3786

0.2732

0.2362

0.5291

0.3889

0.3048

0.2819

0.4423

0.3917

0.3675 0.5237

0.7636 0.7677 0.7637 0.7653

0.5597

0.8779

0.7116

0.6151

0.5591

0.3

0.4

0.5

0.6

0.7

0.8

(b) ω= 0.2.
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(f) ω= 1. CT =H/H∞ withH given by (2.7).

Figure 8: Total cost (2.8) using the relaxation cost (3.1) varying η and Cc in the model (A 1) with
other parameters fixed from Table 1 (excluding C0 which is appropriately updated). C∗c refers
to the base value in Table 1. In these simulations H∞ = 292.7 and C∞ = 614 days. Ascending the
vertical axis corresponds to increased concern (lower required active cases before social relaxation
stops) while moving left-to-right on the horizontal axis corresponds to increased spending (longer
tolerance before relaxing).

Figure 8 shows a different result compared to the case of Figure 3 when (2.5) was used for the
relaxation. In the latter case, there was a general trend upward in cost that had little difference
between the value of Mc, however in Figure 8 there is a strong dependence in η. This is because
the multi-secondary outbreaks caused by reducing relaxation with high active cases extends the
duration of the epidemic which only increases the cumulative cost. The high impact of this is
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noticed as well with C∞ = 230 days for Figure 3 while C∞ = 614 days for Figure 8. H∞ remains
the same in both cases since that is calculated with no social distancing at all (and therefore no
social relaxation).

The introduction of the modified relaxation cost (3.1) has an impact on the health cost as
seen most dramatically in Figure 8f where ω= 1. For small values of Cc when η= 1/4, there
is no cost at all as the critical threshold is never reached. Non-intuitively, increasing spending
(larger Cc) which provides incentive for people to stay home leads to worse health outcomes. The
rationale for this is similar to what was observed in [8] where keeping people isolated for a longer
duration increases their fatigue and resistance to staying isolated in future instances leading to
large outbreaks. The impact of increased spending on active cases with η fixed is demonstrated
in Figure 9.

Figure 9: Comparison of the active cases when η= 1/4 for two values of Cc. When Cc = 4C∗c
then there is a long period of time with no cases. However, a large outbreak forms since there is
too much fatigue to isolate again when cases get large. Conversely when Cc =C∗c /4, a mild wave
occurs early on because there is little incentive to isolate. However, since people were not isolating
for very long, it is easier to endure further isolation when a second wave comes which leads to
it also being mild. We note that when Cc =C∗c /4 the critical threshold Ncrit is never exceeded so
there is no overburden healthcare cost.

It is important to note that for a given spending Cc, the minimum total cost is not necessarily
with the smallest value of η (see for example Figure 8e when Cc =C∗c /4). This is because there is
a critical value of η below which no additional healthcare savings occur but increasing expenses
occur for relaxation. These results suggest a careful policy direction with more isolation periods
of shorter duration.

The plots of cases and total infections for each of the scenarios in Figure 8 can be found in
the supplementary material along with plots of each isolation class to demonstrate the social
distancing and relaxing behaviour. We plot the cumulative symptomatic-infected proportions for
each scenario in Figure 10.
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(a) η= 1/4. (b) η= 1/2.

(c) η= 1. (d) η= 2.

(e) η= 4.

Figure 10: Total cumulative symptomatic cases (plotted as a percentage of the total population)
with the modified cost function (3.1). The baseline case refers to no social distancing, i.e. µmax = 0.

Unlike the scenarios in Figure 6 associated with the relaxation cost (2.5), basing relaxation
on active cases as well can impact the terminal number of cumulative infections. Continually
reducing η decreases the total number of infected people which provides more evidence that
increasing the relaxation cost threshold Cc can cause more people to become infected. However
similar to Figure 6, increasing Cc leads to a longer delay before significant infection numbers
occur.

4. Conclusion
We have presented a model for COVID-19 that allows for dynamic social distancing and
relaxation based on the measured active cases and individual cost of isolating. The aim of
this approach is that it more accurately reflects human behaviour and psychology unlike
the modelling approach where behaviours are turned on and off at pre-determined times.
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Understanding how people will react to a change in policy surrounding lock-downs or bans on
social gatherings is essential in gauging the impact that COVID-19 and mitigation strategies will
have on infections and mortality. Improving this modelling aspect can make sure that policies are
put into place at the right time so people will react accordingly.

By modelling behaviour dynamically we were able to produce non-intuitive results regarding
the relative total cost of the disease, namely that increasing vigilance and relaxation cost does not
necessarily lead to a decrease in total cost. This is because of the desire for people to socialize
leading to isolation fatigue. We have demonstrated that in certain circumstances, however, the
overburden healthcare cost can be eliminated entirely.

An advantage of the dynamic framework used in this model is that it is not restricted to
Ontario nor is it even restricted to COVID-19. Changing the disease and behaviour parameters
will allow this model to adapt to other scenarios. For COVID-19, policy makers would be advised
to use data in the relatively early stages of a lock-down to fit behaviour parameters. Earlier time
point data helps reduce the likelihood that the relaxation cost threshold has been exceeded so that
the behaviour parameters are more accurate. Otherwise, k∗c andM∗c become stronger functions of
the choice for C∗c . As discussed in Appendix B, there are also issues of assuming static parameters
when the duration of time series is taken too long. The limited data and types of data available
should discourage too much parameter fitting. Having determined the parameters to a given
set of data, cost analysis using (2.8) can be done leading to results similar to Figures 3 and 8.
Understanding the influence of tangible actions such as forced closures, wage subsidies, etc. on
parameters such as Mc, Cc, and η likely requires surveys and other followup studies.

It is important to acknowledge that this model does not take into account vaccination or other
pharmaceutical interventions. These have an important role in not only limiting the healthcare
impact, but also in outbreak peak time and duration. The introduction of the modified cost in
(3.1) causes significant delays between peaks at increased spending. The duration of the pandemic
can then be several years longer than when fatigue is strong resulting in a single large outbreak
peak. This additional duration may be significantly longer than the time for an effective vaccine
to be developed and deployed and this needs to be considered in future work. Another important
consideration is that social distancing is not truly discrete in that people do not suddenly reduce
their contacts. In reality it is a spectrum with fluid contact rates and this needs to be further
explored. Finally, taking the testing rates constant should be relaxed and reflect that both the
testing capacity and willingness for individuals to test is a function of disease progression.
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A. Differential Equation Model
The differential equation model visualized in Figure 1 is given by
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(A 1)

where Fsi is the force of infection,

FS0
=
Ncrit

N

(
βS0P0

S0P0 + βS0IS0
S0IS0

+ βS0IA0
S0IA0

+ βS0P1
S0P1 + βS0IS1

S0IS1
+ βS0IA1

S0IA1

)
(A 2a)

FS1
=
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N

(
βS1P0

S1P0 + βS1IS0
S1IS0

+ βS1IA0
S1IA0

+ βS1P1
S1P1 + βS1IS1

S1IS1
+ βS1IA1

S1IA1

)
,

(A 2b)

In deriving the model we have normalized the population by Ncrit which represents the
population that causes the healthcare system to be at capacity.
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B. Parameter Fitting and Model Sensitivity
Many of the parameters associated with the natural progression of the disease are unknown as
are several of the intervention parameters such as social distancing and testing. We use data
from [15] for the 161 days between March 10 and August 18, 2020 on active and total cases to
elucidate some key parameters. To do this we solve our model (A 1) with the parameters in
Table 1 excluding kc, k0, Mc, M0, ρA and ρS which we fit to the data. We run our model for
161 days using an initial condition that 0.02% of the population was initially infected with the
remaining 99.98% being symptomatic. The actual number of people with COVID-19 is a matter
of speculation and the arbitrary choice of the initial value will affect the fitting parameters,
particularly the testing rates which are intimately linked. We do not partition any of the initial
infected population into symptomatic or asymptomatic also due to the lack of clarity on true
numbers. To help constrain the model we take k0 = 4kc so that the doubling rate has to double
twice to trigger the half-maximal social distancing. We also take M0 = 2Mc so that the number
of active cases need to double to trigger the half-maximal social distancing rate. Finally, since we
assume that symptomatic people are more likely to get tested than asymptomatic people we take
ρS = 4ρA. These constraints should not be too restricting, likely impacting the fitted values of the
remaining free variables kc, Mc, and ρA.

We use a non-linear least squares iterative procedure to identify the parameters. This leads
to the values kc=1/16.24 d−1, Mc = 2.57× 10−2, and ρA = 8.7× 10−3 d−1 as in Table 1 with a
residual norm of 9.5× 10−3. A graphical representation of the fit between data and model is in
Figure 2.

(i) Extended Fitting

The parameter fittings for Figure 2 lead to excellent agreement beyond the fitting time window
up to around September 30, 2020. From there the model begins to overestimate the case load.
Observing the data points, we notice a series of intermittent plateaus are reached with a general
overall increasing trend. One possible explanation for these plateaus that also accounts for the
discrepancy in comparison is that we have assumed a static parameter set. In reality, there will
be dynamic changes to behaviour if strategies fail or cases continue to climb. In particular, people
will likely have an increased sensitivity to the rate of change of cases more so than the actual
number.

To improve the fit, we consider two values of kc and k0, the one we have previously fitted in
Figure 2 and a second value associated to a panic in significant case increases. To fit the second
set of values we take the data from September 6 to October 16, 2020 and fit a new kc and k0 with
all other parameters fixed and taken from Table 1. Using the same non-linear least square method
as for the first fit, this leads to kc = 0 and k0 = 7.01× 10−2. We note that this is very reflective of a
panic type behaviour whereby no growth rate will prevent social distancing and the rate required
to reach the half maximal growth is significantly reduced.

Defining a base set and panic set for kc and k0 we simulate the model again. We assume that
the base values hold until September 6. From September 6 to October 16, the panic values drive
the model. Afterwards, we assume that behaviour alternates between base levels and panic levels,
likely with fatigue so that panic cannot be sustained for very long. We plot a particular example
of alternating behaviour in Figure 11 where we take base values for October 17 to November 10
and then panic values for 10 days at which point we return to normalcy until December 5, 2020.
We then take 10 more days of panic values before returning to normalcy for the remainder of the
simulation.

We note that there are many ways to fit this data such as adjusting the time intervals for each
behaviour or fitting a series of new parameters for each plateau region. Therefore, we emphasize
that the aim of Figure 11 is to demonstrate that a poor fit to data in the second wave as seen in
Figure 2 does not necessarily mean that the underlying model has failed, but that behavioural
assumptions have likely changed.
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Figure 11: Modified data fitting to projected data taking account behavioural change due to large
increases in active cases.

(a) Sensitivity Analysis
Having fit data to the model we then performed a sensitivity analysis on the parameters ρS , ρA,
qI , µI , q2, q0, q, γ, φ, σ, and α. We used Table 1 for the fixed parameters and as mean values
for the varying parameters, each distributed uniformly between maximum and minimum values.
We used the latin hypercube sampling technique with 10000 iterations and a Spearman partial
rank correlation coefficient to measure monotonicity. We tested the sensitivity to the cumulative
infected (symptomatic and asymptomatic), susceptibles, peak time for the outbreak, and the value
at the peak of the outbreak. We plot the results in Figure 12
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(a) (b)

(c) (d)

(e)

Figure 12: Sensitivity analysis of the model (A 1) using 10000 iterations of a latin hypercube
sampling method with a Spearman partial rank correlation coefficient. Grey bars indicate a
parameter with a p-value p > 0.05 dismissing their significance. If p < 0.05 the bar is blue unless
it is strongly correlated (absolute PRCC greater that 0.5) in which case it is red.

The most significant parameter is the recovery rate γ (assumed the same for both classes)
which seemingly has inverse behaviour to what is expected. That is an increase in the recovery
rate seems to cause more people to become sick. This is because the basic reproduction number
is fixed at 2.4 and therefore changing γ effectively changes the transmission β making a
higher recovery rate lead to a more transmissible disease. Aside from this, the most significant
parameters unsurprisingly are the testing rates ρS and ρA as well as the symptomatic proportion
q. This supports the importance of testing and social distancing. Interestingly, there is not much
sensitivity to the peak time and value of the outbreak confirming the need for long-term planning
regarding vaccination and hospital resource management.

We did not perform a sensitivity analysis on Cc or Mc as these are policy parameters. Their
sensitivity is effectively measured by comparing costs in Figures 3 and 8.

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 13, 2021. ; https://doi.org/10.1101/2020.10.21.20217158doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.21.20217158
http://creativecommons.org/licenses/by-nd/4.0/


24

rsos.royalsocietypublishing.org
R

.S
oc.

open
sci.

0000000
..............................................................

(b) Mobility Data
Google has provided a data set of community mobility created from users with the location
history active on their mobile devices [35]. The data set has 6 categories which are retail and
recreation, grocery and pharmacy, parks, transit stations, workplaces, and residential. Most
categories compare a percentage change in visitors to a baseline which is the median activity in
a 5 week period encompassing January 3 to February 6, 2020. The exception to this is residential
category which measures the change in duration.

It is hard to directly compare mobility data and social distancing/relaxation. For example,
there could be no change in activity at a store in terms of visitors, but changes in policy such as
enforced physical distancing or limited capacity shopping. This means that the number of visitors
to a location may not change even though their social distancing behaviour has. This is evidenced
in the Google mobility data for grocery and pharmacy where relatively little change is observed
despite significant policy changes including mandatory masks. The residential category offers
limited insight as there are only 24 hours in a day so duration variability cannot be that high.

We considered the retail and recreation category to be the most reflective of distancing activity
as it is generally a non-essential activity. For a baseline in our model we assumed that without
COVID-19, there would be no social distancing. If we define the social distancing population,

D= S1 + S2 + E1 + E2 + P1 + P2 + PM + IS1
+ IS2

+ ISM
+ IA1

+ IA2
+ IAM

, (A 1)

i.e. it covers anyone who is isolating then we consider the percentage change from baseline to
be the fraction of the total population D/N that is social distancing. We take this percentage to
be negative since social distancing is a reduction in their activity. A comparison between our
simulation and Google’s community mobility data for Ontario from March 10, 2020 to January 6,
2021 is in Figure 13.
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Figure 13: Comparison between simulation and mobility data from [35] for percentage change in
retail activity from March 10, 2020 to January 6, 2021.

We emphasize the importance of qualitative trends. We note that our model predicts a similar
uptake in isolation (about 55%). Our model reaches this level more gradually and then sustains it
until a relaxation occurs whereas the data shows a steady increase to the relaxation point. Regional
lock downs likely contributed to the very sudden drop in retail usage. Furthermore, as previously
stated, an increase in retail activity does not mean it was done while decreasing isolation. We
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note that our model sees a second decrease in activity which also qualitatively fits with the retail
mobility data.
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