
1 

Title: Machine learning and MRI-based diagnostic models for ADHD: are we there yet? 
 
Authors:  Yanli Zhang-James1, Ali Shervin Razavi2,3, Martine Hoogman4,5,6, Barbara Franke4,5,6, 
and Stephen V Faraone1,2*  
 
Affiliations: 

1. Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, 
Syracuse, New York 

2. Department of Neuroscience and Physiology, SUNY Upstate Medical University, 
Syracuse, New York  

3. MD-PhD Program, SUNY Upstate Medical University, Syracuse, New York 
4. Department of Human Genetics, Radboud University Medical Center, Nijmegen, The 

Netherlands 
5. Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands 
6. Department of Psychiatry, Radboud University Medical Center, Nijmegen, The 

Netherlands 
 

 
 
 
 
Corresponding author: 

Stephen V. Faraone, Ph. D.  
SUNY Upstate Medical University  
750 E Adam St,  
Syracuse, NY, 13210 
315-464-3113, 315-849-1839 (fax)  

 sfaraone@childpsychresearch.org 
 
  
 
 
Short running title: MRI classifiers for ADHD 
 
 
 
 
 
 
*Corresponding author 
 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 7, 2022. ; https://doi.org/10.1101/2020.10.20.20216390doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2020.10.20.20216390
http://creativecommons.org/licenses/by-nc/4.0/


2 

Abstract 

Machine learning (ML) has been applied to develop magnetic resonance imaging (MRI)-based 

diagnostic classifiers for attention-deficit/hyperactivity disorder (ADHD).  This systematic review 

examines this literature to clarify its clinical significance and to assess the implications of the 

various analytic methods applied. We found that, although most of studies reported the 

classification accuracies, they varied in choice of MRI modalities, ML models, cross-validation 

and testing methods, and sample sizes. We found that the accuracies of cross-validation 

methods inflated the performance estimation compared with those of a held-out test, 

compromising the model generalizability. Test accuracies have increased with publication year 

but were not associated with training sample sizes. Improved test accuracy over time was likely 

due to the use of better ML methods along with strategies to deal with data imbalances. 

Ultimately, large multi-modal imaging datasets, and potentially the combination with other types 

of data, like cognitive data and/or genetics, will be essential to achieve the goal of developing 

clinically useful imaging classification tools for ADHD in the future. 
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Introduction 

Clinicians diagnose ADHD by evaluating symptoms of hyperactivity, impulsivity, inattention, 

and impaired functioning across settings. The diagnosis of ADHD shows considerable levels of 

concurrent and predictive validity in its clinical features, course, neurobiology, and treatment 

response [1, 2]. Nevertheless, concerns about diagnostic accuracy persist. Some suggest that 

the current method of diagnosing ADHD is too subjective and leads to over-diagnosing ADHD in 

the community [3, 4]. Psychiatric diagnoses have been called "subjective" because they rely on 

clinician evaluation of responses from patients, parents, and/or informants. Other studies have 

raised concerns about the under-diagnosis of ADHD [5, 6], especially in girls and women, which 

suggests biases in applying the current diagnostic algorithm. Another issue is the misdiagnosis 

of ADHD as being another disorder.  When this occurs, patients may be exposed to 

unnecessary treatments and will continue to struggle with the many impairments associated 

with ADHD. Those who have ADHD and are not diagnosed with the disorder will continue to 

have impaired functioning leading to increased risks for other health and social problems [7-11].  

In response to these concerns, researchers have sought to develop objective measures to 

diagnose ADHD or to monitor the course of ADHD symptoms during treatment. Much research 

has examined peripheral biochemical markers in differentiating ADHD and control patients, 

such as (Norepinephrine (NE), 3-Methoxy-4-hydroxyphenylethylene glycol (MHPG), 

monoamine oxidase (MAO), zinc, and cortisol [12, 13]. NE, MHPG, MAO, b-phenylethylamine, 

and cortisol are also somewhat predictive of response to ADHD medications. Meta-analysis 

also shows that peripheral measures of oxidative stress differ between ADHD and control 

participants [14]. Electroencephalographic (EEG) [15], actigraphic [16], and eye vergence 

measurements [17], as well as interactive gaming behaviour [18] were also examined as ADHD 

biomarkers. Neuropsychological tests [19], particularly continuous performance tests (CPTs) 

[e.g. 20, 21, 22] have been evaluated in many studies. In recent years, genetic markers in the 
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form of polygenic risk scores also have shown some predictive ability of diagnosis and 

prognosis of ADHD [23-25].Many of these prior studies show group differences but do not 

present diagnostic accuracy statistics. A clinically useful biomarker should have at least 80% 

sensitivity and 80% specificity. They should also be reliable, reproducible, inexpensive, non-

invasive, easy to use, and confirmed by at least two independent studies. These criteria were 

defined by work of the task force on biological markers by the World Federation of ADHD [26]. 

None of the measures examined by them met these criteria for clinical utility [26].  

Prior structural MRI (sMRI) studies have consistently reported alterations in frontal, 

parietotemporal, cingulate, cerebellum, basal ganglia, and corpus callosum regions [27-33]. 

Studies of the largest ADHD sMRI dataset from the Enhancing Neuro Imaging Genetics 

Through Meta-Analysis (ENIGMA) consortium’s ADHD Working Group reported the significant 

volumetric reductions in intracranial volume, amygdala, caudate nucleus, nucleus accumbens, 

hippocampus, and cortical surface areas from many regions in children with ADHD [34, 35]. 

These regions have also been implicated in functional MRI (fMRI) studies showing altered brain 

connectivity and activation in the fronto-striatal, fronto-parietal and fronto-temporal-parietal 

circuits, as well dorsal anterior cingulate cortex in ADHD brains [36-38]. Studies have also 

examined the developmental trajectories of these anatomical and functional alterations across 

the lifespan finding initial delays that are followed by apparent normalization [27, 29, 31].   

 

These findings encouraged efforts to develop objective diagnostic tools for ADHD using 

MRI data. Early studies used standard statistical methods such as discriminant analysis with 

very small sample sizes [39-41]. For example, a discriminant analysis reported by Semrud-

Clikeman et al. [41] included 10 participants in each of three diagnostic groups: developmental 

dyslexia, ADHD or control. Zhu and colleagues’ discriminant analysis classifier assessed 9 

ADHD and 11 typically developing boys. Although high predictive accuracies were reported in 
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these studies (85~ 87%), it is difficult to evaluate how well those models would generalize given 

the small samples and lack of replication samples.  

 

The ADHD-200 Global Competition [42] challenged researchers to develop an MRI-

based diagnostic classifier for ADHD. It provided a dataset of 776 children, adolescents and 

young adults (7-21 years old, 63% healthy controls, 37% ADHD) from eight sites. Fifty teams 

from around the world joined the competition with 21 final submissions. Machine learning 

models predominated. Due to the large sample size, the consortium was able to set aside a test 

set that was not used for model selection and development. The competition results were 

judged by the performance on the test set only. This contrasts with previous studies with small 

sample sizes, where a held-out test set was not available. The ADHD-200 winning team used 

an ensemble model which achieved a 61% accuracy with 21% sensitivity and 94% specificity 

using both structural and resting state-fMRI data along with the demographic predictors [43]. 

The accuracy, although considerably lower than previously reported high accuracies, was one 

of the first in an independent, held-out test set. Despite the modest accuracy, the ADHD-200 

competition re-kindled enthusiasm for developing imaging-based diagnostic classifiers for 

ADHD. The publicly available dataset has become the main data source driving the machine 

learning model development for ADHD. Since the competition in 2012, we have seen a steady 

increase in the number of publications applying machine learning classifiers to ADHD. Thirty-

one additional published studies have used either the whole or part of the ADHD-200 dataset 

(Supplementary Figure 1 and Table 1).  

 

This systematic review examines the prior literature applying ML to MRI data in ADHD to 

clarify the clinical significance of findings and to assess the implications of the various analytic 

methods applied. We discuss the progress made over the years as well as lessons and 

methodological issues that we learned from this body of work. We hope to provide a roadmap 
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for future studies that aim to overcome these issues and achieve clinically useful models for 

diagnosing ADHD.  

 

Methods   

 

A literature search on MRI-based diagnostic classifiers for ADHD using key words 

(“ADHD” AND “MRI” AND (“Machine learning” OR “Classi*”)) and examining their references 

identified 55 studies in total (up to July 1st, 2022, Pubmed, Embase and Google). 

Supplementary Figure 2 shows the article selection procedure in a PRISMA diagram. The 

eligible studies applied statistical or machine learning classifiers using MRI data to differentiate 

participants with ADHD from controls. Table 1 lists the selected studies along with the 

performance of their best models. If a study dealt with multi-class classification, for example, 

having ADHD, ASD and control groups, only the two-class classification accuracies involving 

ADHD vs the control groups were examined in this review. We used percent correct (accuracy) 

to compare results across studies because it was available for most of the papers. Studies that 

met the classifier criteria but did not report an accuracy statistic or other metrics that can be 

used to compute accuracies were not included in our quantitative analysis. If a study reported 

multiple models, only the model which had the highest accuracies was included in Table 1.  

We extracted and examined study characteristics, including machine learning model 

types, MRI data modality, cross-validation and testing methods, training sample size, training 

set class ratio (the ratios of ADHD vs Control participants’ numbers), data source, dataset age 

and sex compositions and publication years, etc. We grouped machine learning models to three 

categories: support vector machine (SVM), convolutional neural networks (CNNs), and others. 

We assigned studies with a training set class ratio between 0.4 ~0.6 as “balanced” (i.e., nearly 

equal), and those with higher or lower ratios as “unbalanced”. Nine studies used various 
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methods to balance demographic differences between the ADHD and control groups. These 

were assigned as “balanced”, even if their original class ratio was outside of the balanced range 

[44-51] We reported the age and sex groups, as well as the minimum and maximum age range 

of the dataset. For the ADHD-200 samples, the overall age range was used if a specific subset 

was used but age information was not provided. Minimum and maximum values of age were 

derived for studies that reported mean and standard deviation of the ages.    

We also classified studies based on the methods they used to evaluate model 

performance and generalizability. Two methods were used. The held-out test set method 

evaluates model performance on data that were set aside, i.e., they were not used during model 

estimation and training. Because this method requires a large sample, many studies resort to 

cross-validation (CV) method to assess model performance. CV methods randomly re-sample 

examples to be set aside during model fitting. The most commonly used versions are the leave-

one-out CV (LOOCV) [46, 47, 52-54] and K-Fold-CV (where K is often = 10, 5, or 2) [44, 55-57]. 

For example, in 10-fold CV, the original dataset is partitioned into 10 equal sub-samples or 

"folds". For each iteration of model estimation nine of the subsamples are used to estimate 

model parameters and the left-out fold is used to estimate model accuracy. The left-out fold 

changes from iteration to iteration. For LOOCV, one sample is left out for testing while all the 

others are used for training or model fitting. In either situation, the process is repeated until all 

samples have been used in both the training and test sets. The CV accuracy is estimated by 

averaging over all iterations of CV accuracies. Although CV samples were not used during the 

model training/fitting at each iteration, they are, nevertheless, used as training examples in other 

iterations.  

 

Our main objective was to understand how study features influenced model accuracy. 

We used likelihood-ratio (LR) test assisted variable selection in combination with multivariate 

linear regression to quantitatively evaluate if these features predicted model accuracy. The 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 7, 2022. ; https://doi.org/10.1101/2020.10.20.20216390doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.20.20216390
http://creativecommons.org/licenses/by-nc/4.0/


8 

variable selection algorithm implemented in STATA16's gvselect command computes both the 

Akaike’s [58] information criterion (AIC) and Schwarz’s [59] Bayesian information criterion (BIC) 

[60]. We performed the variable selection and linear regression modeling for all the studies 

combined, as well as separately for the K-Fold-CV, LOOCV, and held-out test groups. Training 

sample size was primarily examined as a continuous variable. However, we also classified 

sample sizes as small (<300) or large (>300) to compare the variability of their accuracy 

estimates using Levene's robust test statistic [61]. In addition to the quantitative analysis, we 

also qualitatively reviewed the relevant study characteristics if a quantitative analysis was not 

possible. 

 
Results 

Among all the studies included, over half the studies (N=31, 56%) reported only CV 

results without a held-out test set. Forty-two percent (N=23) used a Hold-out test sample to 

evaluate classifier performance. All but one of the 23 studies used the ADHD-200 samples. 

Among the studies that reported held-out test results, six also reported CV results. Figure 1 

shows that the 16 studies using K-Fold-CV and the 17 studies using LOOCV reported, on 

average, higher accuracies than studies using held-out tests (F(2, 55) = 34.52, p <  0.001).  

 

Excluding a 2021 outlier study with the largest sample size and low accuracy[51], the 

accuracy estimates overall increased in later publication years (F(1, 54)=5.15, p =0.027 Figure 2).  

There was no significant change of reported accuracies over the years in studies using the K-

Fold-CV methods (Figure 2 Left). The increase was primarily driven by studies using LOOCV 

and Hold-out test sets that showed a statistically significant increase over time (F(1,    17)=12.63, 

p=0.0024, F(1,    22)=4.61, p=0.043, Figure 2 Middle and Right).  
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Training sample size, overall, was not significantly associated with accuracy (Figure 3 

Left and Right), either as a continuous or categorical variable. However, it negatively predicted 

accuracies in the LOOCV group (F(1,    17) = 10.15 , p = 0.005, Figure 3 Middle). Studies with 

large samples had lower mean accuracies than studies with small studies (72% vs 77% mean 

accuracies, t=1.79, p = 0.038). Furthermore, the accuracy results from small studies were more 

variable than those from large studies in the held-out test group (Levene's robust test statistic 

W0 (1, 30) = 6.58, p = 0.015). The variance differences between large and small samples were not 

statistically significant for either the K-Fold-CV or LOOCV. 

 

Twenty-four studies (49%) used a training dataset that had severely imbalanced classes. 

Nine of those studies applied data balancing methods to compensate for the class imbalance 

and are grouped as balanced studies. Class-balanced studies reported higher accuracies for 

both the K-Fold-CV (F(1, 19) =   6.55, p = 0.02)and LOOCV (F(1, 17) = 36.02 and p < 0.0001). 

However, the balanced studies in the K-Fold-CV group were mostly small studies with the 

exception of three studies (Supplementary Figure 3B); we could not differentiate whether the 

higher accuracy was due to the negative relationship with sample size or the benefit of data 

balance. The higher accuracies in the balanced LOOCV group were related to sample size as 

only the large group (>300 samples) showed a significant relationship between accuracy and 

the balanced criterion (F(1, 5) = 44.81, p = 0.0011).No statistical difference was found for either 

accuracies or training sample size between the balanced and unbalanced studies in the held-

out test group.    

 

Because the ADHD-200 dataset was the main data source, most studies (N=29) used 

resting-state fMRI data (rs-fMRI), or rs-fMRI in combination with sMRI data (multi-modal, N=16). 

Only eight studies used sMRI data, and only two used task-based fMRI data. There were no 

significant differences in sample size across the different feature types (Supplementary Figure 
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4A). However, except for the two task-based fMRI studies, which both used LOOCV and 

reported significantly lower accuracies than other MRI modalities (t=-23.3, p<.0001), there was 

no difference in reported classification accuracies observed among the sMRI, rs-fMRI, or multi-

modal studies (Supplementary Figure 4B).  

 

The ADHD-200 dataset has a mix of children, adolescents and young adults (age 7-21).  

Ten other studies focused only on children and/or adolescents (under age 18). Only five studies 

examined classification models for older adults [45, 51, 62-64]. Overall, the difference in 

accuracy across the three types of age compositions was not significant (F(2,55)=1.74, p=0.19). 

 

Most studies used a mixture of male and female participants. Four studies only included 

boys [40, 63, 65, 66]. These four reported significantly higher classification accuracies than all 

other studies that used a mixture of males and females (F(1,55) =32.14, p < 0.0001). However, all 

four were small studies (n=20~189). Three reported LOOCV and one reported 10-Fold-CV 

accuracies.  

 

Across all studies, the most frequently used model was the support vector machine 

(SVM). It was used in 20 (36%) studies. SVM, and most other ML models cannot directly 

analyze images. Instead, they analyze some transformation of images such as regional volumes 

or cortical thickness. In contrast, convolutional neural networks (CNNs) can analyze images 

directly and thus have access to all the information available. Only in recent years (2017-2022) 

have studies applied CNN methods to MRI images (N=11). We did not find any statistically 

significant differences between the accuracies reported with SVM, CNN, or other models for 

ADHD (F(2, 55) = 0.01, p = 0.91, Supplementary Figure 5).  
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Discussion and Qualitative Review 

 

Our quantitative analysis of prediction accuracy for ADHD revealed several significant findings. 

First, accuracies based on K-Fold-CV or LOOCV were significantly higher than those reported 

using held-out tests, which suggests that CV methods may over-estimate model performance. 

Second, we found greater variability of test accuracies reported in studies with small sample 

sizes than those of larger sample sizes and an inverse relationship of sample size and K-Fold-

CV accuracies. Third, estimates of accuracy increased with publication year. This was driven 

primarily by the Hold-out and the LOOCV test-groups. Since sample size has been roughly the 

same since 2012, with the exception of a 2021 study [51], the increasing accuracy over time 

could be due to several design features: 1) the use of more sophisticated models (such as deep 

neural networks and CNN models), 2) improved methods of data balancing and data 

augmentation, and 3) use of feature selection, feature space reduction methods or different MRI 

data modalities. However, our analysis cannot conclusively clarify if any or all of above 

attributed to the increase of accuracies. We discuss the implications of these findings and 

provide further review of some study characteristics that were not examined in our quantitative 

analysis. 

Cross-Validation vs Held-out Test Set  

In the CV approach, the validation samples used to estimate accuracy are not used 

during the model training/fitting at each iteration. They are, nevertheless, used as training 

examples in other iterations. Moreover, because there are many iterations, the validation set 

can influence parameter estimates. In contrast, the held-out test method uses a test set that 

was never used during model training. As a result, CV accuracies have been shown to 

overestimate test set accuracy when both are available [56, 57]. Our results confirm the inflation 

of accuracy by K-Fold-CV or LOOCV. Held-out test accuracy is a better indicator of model 

performance with unseen samples.   
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More than half the studies (N=31, 56%) reported only CV results without a held-out test 

set. An earlier review reported 13% of ADHD neuroimaging (including MRI and 

electroencephalographic) studies consisted of “circular analysis”, where independent test sets 

were not used [67]. Our results are more similar to what Kriegeskorte et al. [68] had estimated, 

42%~56% of studies consisted of “circular analysis”, based on all fMRI studies published in five 

prestigious journals (Nature, Science, Nature Neuroscience, Neuron, Journal of Neuroscience) 

in 2008. Nevertheless, our review highlights the importance of building a large dataset through 

collaborations and open data sharing as we pointed out that the majority of the studies that were 

able to afford a held-out test were those that used the ADHD-200 dataset. 

 
Sample Size 

Machine learning, particularly deep learning, often requires large sample sizes due to 

the large number of parameters and hyperparameters that a model needs to learn. However, 

many neuroimaging studies of ADHD used very small sample sizes. In our small sample group, 

the sample size ranged from 20 to 239 (average sample size 112). Small sample sizes can lead 

to model overfitting and overestimates of accuracy [69, 70] . In our review, this effect was 

reflected in the large variability of accuracies in the CV studies. Indeed, some of the highest and 

lowest test accuracies were reported in studies with extremely small sample sizes. None of the 

studies reviewed here used a learning curve analysis to assess overfitting. This method, which 

examines the relationship of model performance over various numbers of training sample sizes, 

can help us to determine if a model is overfit and if it can benefit from more training examples 

[71].   

 

We found a negative relationship between sample size and K-Fold-CV accuracies. 

Because increasing the number of training samples typically improves performance [72], this 
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suggests that the lower estimates of accuracy from the larger samples are more likely to be 

correct than the higher estimates from smaller samples. Those higher estimates were likely 

biased as described in the prior section. Pulini et al [67] also reported a negative relationship of 

sample size and accuracies in ADHD imaging studies and Vabalas observed the negative 

relationship of sample size on reported accuracies in machine learning classifiers of autism 

spectrum disorders [73]. Both reviews were based on studies with sample sizes up to only 

~1,000. Similar observations were also made by Wolfers and colleagues when reviewing 

neuroimaging-based diagnostics for a number of different psychiatric disorders [70]. 

 

Sample Heterogeneity and Data Imbalance.  

Although collaborative consortia, such as the ADHD-200, used relatively large samples 

sizes, such collaborations raise issues about sample heterogeneity and the use of imbalanced 

data. For example, like many other clinically referred samples, the ADHD-200 dataset had more 

boys than girls in the ADHD group compared with the control group. The ADHD group also had 

lower IQs than the control group. In addition, the demographic composition and sample 

acquisition methods differed across different study sites. The problem of dataset imbalance was 

addressed by several participating teams. Brown and colleagues from the University of Alberta 

found that models using only demographic information including age, sex, handedness, and IQ 

had sufficient statistical power to achieve a test accuracy 62.5%, higher than their models using 

fMRI features [57]. In the work of Colby et al. [74], a model using only demographic information 

had a higher accuracy (62.7%) than models using multimodal MRI features (55%). Both models 

using only the demographic features, although not meeting the requirements of the competition, 

outperformed the winning team that reported 61% accuracy using both structural and rs-fMRI 

data along with the demographic predictors in an ensemble model [43]. An additional study by 

Sidhu and colleagues also reported better accuracy using demographic information than the rs-

fMRI features using the ADHD-200 dataset [75]. These observations highlight the concerns of 
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data imbalance, and suggest that, if not dealt with carefully, the classifiers could be learning the 

neural correlates of the demographic features, rather than the diagnostic groups.  

 

Some studies used methods to address the problem of unbalanced data. One approach 

is random undersampling, i.e, removing some research participants and creating a smaller 

sample size that is balanced for confounding factors [44, 45]. This is in contrast to 

oversampling, where some random samples from the minority classes were duplicated to create 

a lager and balanced dataset. Others used regression to control confounding factors such as 

age, sex, and acquisition sites, and used adjusted MRI features (residuals) in the classification 

algorithms [46, 47]. Some studies mentioned data balancing, but did not provide details on how 

it was done [48]. Lim et al [66] used a gaussian process classifier to discriminate 29 boys with 

ADHD from 19 control boys. The limited samples sizes prohibited subsampling to balance the 

data. They noted, although the boys with ADHD had significantly lower IQ than the control boys, 

the model-generated probability of having ADHD was not correlated with IQ, age, and other 

clinical features [66]. In more recent studies, more sophisticated methods such as Synthetic 

Minority Over-sampling Technique (SMOTE, [76]) were used to generate synthetic minority 

samples to combat the sample imbalance problem [49]. 

 

Previous studies from other fields have shown that not all the class balancing methods 

work equally well in reducing classifiers’ bias towards the majority class and guarantee good 

performance [77, 78]. In the ADHD studies that we reviewed, we did not find found higher held-

out test accuracies in balanced studies than the unbalanced studies. Balanced studies in the K-

Fold-CV group reported higher accuracies than those with unbalanced samples. However, they 

were mostly smaller studies than the unbalanced studies. It is not clear, at least for the K-Fold-

CV group, if balanced designs led to higher accuracies, because sample size was a strong and 

negative predictor for the accuracies. Moreover, higher accuracies in the balanced LOOCV 
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group were dependent on sample size (only significant for large studies with over 300 

participants). This suggests that sample balancing may help performance in cases of large 

heterogenous studies. As expected, the results indicate that small sample sizes are not 

compensated by data balancing. More studies and larger sample sizes will be needed to find 

the appropriate class balancing methods and assess the potential benefit. 

 

Classification performance metrics 

When test sets (or cross-validation sets) are also imbalanced, the overall accuracy may 

not be an ideal indicator of the performance of the classifier. A high accuracy can simply result 

from a classifier that classifies all samples into the class that has more participants. Most 

studies (N= 36, 75%) addressed this concern by also reporting sensitivity (True Positive rate, 

TP, the percentage of correctly identified cases (ADHD)) and specificity (True Negative rate, 

TN, the percentage of correctly identified controls). Three studies reported balanced accuracy, 

which is the arithmetic mean of the sensitivity and specificity; and three studies reported 

Youden's J-statistic (sensitivity + specificity -1).  

Compared with percent correct, a better method to evaluate the overall performance of a 

classifier is the area under the Receiver Operating Characteristic curve (ROC [79]). The ROC 

curve plots sensitivity over the full range of false positive rates (equivalent to 1- specificity). The 

area under the ROC (AUC) measures the overall diagnostic accuracy of a classifier. Higher 

AUCs indicate better discriminating power (with 1 for the perfect classifier and 0.5 for the 

random non-discriminative classifier). The AUC is in general less sensitive to imbalance of a 

dataset compared with the percent correct measure, because AUC does not have bias toward 

models that perform well on the majority class at the expense of the minority class [78]. Davis et 

al [80] suggested that the area under the Precision-recall curve (AUPRC) is superior for 

assessing extremely imbalanced datasets and more informative than the ROC curve. The 

AUPRC plots precision (the percentage of examples classified as positive that are true positive, 
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also known as positive predictive value, PPV) over recall (sensitivity). Overall, in the body of 

literature that we examined, no studies reported the AUPRC, and only 13 reported the AUC.  

 

Other popular metrics for machine learning models are F1-score and Matthew's 

correlation coefficient (MCC). The F1-score is the harmonic mean of precision and recall. MCC 

is the correlation coefficient between the predicted and actual classes. Like the areas under the 

PRC or ROC, both the F1-score and MCC are better indicators of model performance than the 

percent correct statistic if test data classes are imbalanced. However, of the studies included in 

this review, only three reported F1-scores, and only two reported MCC.  

 

Because most studies used percent correct to measures accuracy, we could only 

analyze percent correct in the current review. This may not represent the true model 

performance due to the limitations of this metric. We recommend that future studies adopt ROC 

or PRC analysis methods. Furthermore, inspecting the curves visually can reveal more 

information about how well the model discriminate classes at different decision thresholds. We 

don’t recommend metrics such as the F1-score, MCC, and J-statistics, because these scores 

only capture the diagnostic matrix at a single threshold level. Furthermore, the performance 

metrics are important, not only for properly interpreting test results, but also for model training. If 

a model was trained by maximizing a biased metric, it will not be fully optimized to generalize to 

other samples. Finally, metrics that are insensitive to class imbalance (such as AUC or AUPRC) 

do not protect against biased due to feature imbalance as discussed in the prior section. 

 

 

Age and Sex 

Although ADHD onsets prior to age 12, two-thirds of children continue to have symptoms 

and functional impairments into adulthood [81].  Longitudinal data show that some ADHD-
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associated brain alterations diminish during adolescence and adulthood [27, 29, 31]. Consistent 

with this, the very large ENIGMA ADHD study reported significant ADHD vs. control differences 

for children but not for adolescents and adults [34, 35].  Neuroimaging classifiers studies have 

focused on younger populations; only three studies developed ML classifiers for adults. Our 

observation of a lack of difference in predictive accuracy between classifiers for 

children/adolescents vs. adults is, therefore, inconclusive due to the small numbers of the adult 

studies. Few longitudinal studies have been reported for imaging in ADHD [27, 29, 31]. No 

machine learning models have been applied to longitudinal data yet.  More efforts are needed to 

overcome the shortage of adult ADHD samples, as well as imaging data across the life span.  

ADHD is more prevalent in boys than in girls [82, 83]. As a result, although the majority 

of the studies included samples from the both males and females, a high percentage of ADHD 

samples were from males (i.e., ~80% male in ADHD-200 dataset). However, the control 

samples were often balanced (i.e., 52% male in ADHD-200 dataset). If sex is left unbalanced, it 

could result in erroneous prediction results, as we described in the above sections. 

Furthermore, brain alterations have been found to differ between the sexes at different ages [35, 

84, 85]. The low representation of females in available samples may prevent the classifiers from 

learning female-specific brain alternations.  Our quantitative analysis showed significantly higher 

accuracies in four male-only studies than other studies of sex-mixed samples. However, all four 

were studies with small sample sizes (<189), with three reporting LOOCV accuracies and the 

other reporting 10-Fold CV. Given the sample size effect and inflation by CV methods, it is 

inconclusive if ML models predict ADHD better in boys than girls.  

 

 
MRI Modality 

Although we found no significant difference in the accuracies reported for the sMRI and 

rs-fMRI studies, the small number of studies using sMRI data preclude any meaningful 
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inferences regarding which MRI modality is the most informative for discriminating ADHD 

patients from controls. Some studies attempted to identify the most informative MRI data 

modality. Qureshi et al [86] found that sMRI features yielded the highest prediction accuracy. 

Colby et al. [74] found that combined multi-modality features performed best compared with 

individual data modalities. However, all the MRI models performed worse than a classifier using 

only demographic features [74]. In a later study using a three-dimensional CNN model, Zou and 

colleagues extracted higher-level features from the sMRI and rs-fMRI modalities separately. 

This design leveraged the relationship between the two MRI modalities, yet still was able to 

extract independent features that collectively were useful for classification [87]. The authors also 

found that using multi-modal features outperformed either data modality alone [87]. Despite 

these individual observations, the overall lack of statistically significant differences in accuracies 

across different modalities in our review suggests that more studies are needed before we can 

determine which MRI modalities or combinations thereof are most informative for diagnostic 

classification.  

 

ML Classifiers.  

SVM was the ML model that was used most frequently, accounting for 38% of studies. 

SVM, however, is limited in handling images and relies on other preprocessing methods to 

extract a tabular representation of three-dimensional brain images. In more recent years, an 

increasing number of studies have used neurol networks [50, 51, 64, 88-90], particularly CNNs, 

which were developed for image analysis. We did not, however, observe statistically significant 

differences between the accuracies of the SVM and CNN models for ADHD. This finding is 

limited by the small number of studies using CNN classifiers. Nevertheless, because the use of 

CNNs will likely increase in the future, we here describe their current contributions to the field 

and their potential for the future.  
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Riaz et al. [91] used a CNN-based method (FCNet) to extract the functional connectivity 

(FC) of brain regions and then trained an SVM classifier using the extracted features to 

discriminate ADHD from control participants. The classifier achieved a highest held-out test 

accuracy of 68.6% for the ADHD-200 Peking subset. In the follow up study, the team built an 

end-to-end model system, DeepFMRI, which utilized multiple FCNets to extract features that 

were then fed into a deep neural network [92]. DeepFMRI streamlined the feature generation 

and selection as well as classification in one framework, and achieved a highest test accuracy 

of 73.1% for the NYU subset. Using preprocessed rs-fMRI and sMRI features as independent 

inputs, Zou et al. used a two-branched three-dimensional CNN to learn hierarchical features 

from each unique modality in a joint learning task. The multi-modal joint learning CNN 

architecture was superior to CNNs using either data modality alone [87]. Aradhya et al. [93] also 

used a CNN classifier and extracted features using the Deep Transformation Method (DTM).  

 

Most studies, including many CNN studies, used pre-processed MRI features, such as 

those anatomized to an AAL template. Mao and colleagues argued that rather than using hand-

crafted features, one should use a CNN to directly learn discriminatory features from images. 

Their four-dimensional CNN classifier, designed to learn and extract spatial and temporal 

features from rs-fMRI images, discriminated ADHD from control participants with an accuracy of 

71.3% [94]. To increase their sample size and reduce overfitting, the authors augmented data 

by transforming rs-fMRI data into many short and fixed-lengthed video clips. Despite their 

promising results, they acknowledged that much work is still needed to localize the most 

discriminative sequences. Interestingly, a CNN using activation correlations from individual brain 

regions of the Default Mode Network (DMN) of the brain outperformed those using whole brain 

features [95]. Using only one relevant brain region substantially reduced feature space and 

complexity. The significantly improved model performance also suggests that current sample 

sizes, in relation to the number of features available, maybe limiting the CNN models’ capacity. 
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With more samples becoming available in the future, and the increased datasets of publicly 

available raw MRI images, CNN methods will likely to be seen in more and more studies and be 

explored to their full capacity for feature extraction and classification as has been the case for 

computer vision [96-100]. 

 

Building Larger Datasets 

Sample size has been a major bottleneck impeding the development of more accurate 

and clinically useful imaging classifiers for ADHD. The largest MRI dataset, to date, has been 

built by the Enhancing Neuro Imaging Genetics Through Meta-Analysis (ENIGMA) consortium. 

Under the umbrella of the ENIGMA consortium, many independent working groups for specific 

diseases or phenotypes have been established, including ADHD. By implementing standardized 

data processing protocols and pipelines, the ENIGMA consortium made it possible to share data 

across many sites to perform within-disorder and cross-disorder studies [101-104] . The 

ENIGMA ADHD Working Group has obtained over 4,100 samples of ADHD participants and 

controls from 37 sites thus far. In the initial ENIGMA ADHD reports, Hoogman and colleagues 

reported that, for children, ADHD was associated with significant volumetric reductions in 

intracranial volume, amygdala, caudate nucleus, nucleus accumbens, hippocampus, and 

cortical surface areas from many regions [34, 35]. No significant differences were found for 

adolescents or adults. Furthermore, the estimated effect sizes for children were small, ranging 

from 0.11 to 0.19. Users of the ENIGMA ADHD dataset, however, face the same problems of 

data heterogeneity and imbalanced demographic groups as those using the ADHD-200 dataset. 

Significant challenges remain when using such data to build a machine learning classifier. 

Furthermore, the ENIGMA ADHD data is primarily preprocessed sMRI data in tabular form. Not 

all sites have data on other modalities, such as rs-fMRI or DTI, available for their samples. The 

ENIGMA ADHD sites have not yet pooled raw MRI images, which is needed for CNN models. 

Nevertheless, we encourage the research community to continue to contribute ADHD samples 
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to this cohort and provide more open access to various data modalities.  Future studies that 

attempt to advance ML-powered ADHD diagnostic classifiers should use the ENIGMA ADHD 

dataset available, as this resource has been under-utilized in AI and ML studies of ADHD.  

 

Conclusions 

 

Our review of ML studies of MRI-based ADHD diagnostic classifiers has important implications 

for methods development, but these studies have not yet led to clinically useful classifiers. Our 

review shows that the variability of results across studies is due, in part, to differences in 

methodology. Future work should use the largest samples possible and should rely on a held-

out test set, rather than cross-validation for estimating prediction accuracy. Future studies 

should not rely on percent correct as a measure of accuracy in unbalanced samples. Our 

analysis also highlighted the need of data from underrepresented groups, particularly females 

and adults. We hope that our review provides a better understanding of the efforts invested in 

developing ADHD imaging classifiers in the field and encourages more stringent model design 

and data processing for future studies. In the meanwhile, the initial results from the ENIGMA 

ADHD consortium should encourage more sites to participate. The lack of a very large multi-

modal dataset that include sufficient data from both sex and all ages may be the biggest 

impediment to developing a clinically useful classifier for diagnosing ADHD.  
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Figure 1. Best prediction accuracies reported in each study for each type of the available tests: 

K-Fold-CV, LOOCV or held-out tests.  

Figure 2. Accuracy in studies published over the years. Zhang et al. 2021 study is highlighted 

with red triangles to signify its outlier status due to reported the large sample size and low 

accuracy. 

Figure 3. Accuracy vs training sample size.   

Sample sizes <300 were labeled as triangle and >300 are labeled as circle. The fitted line 

between accuracy and sample size were plotted for each test type. 
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Figure 2.  
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Figure 3.  
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Table 1. Machine Learning Literature on ADHD Neuroimaging Data.     

Study 
Training 
Sample 
Size) 

ADHD% 
(Training 
Set) 

Test 
Sample 
Size 

ADHD% 
(Test Set) 

Data Source Ages Sex Model Features Performance 
Metrics 

Test Type Accuracy References PMID/Conferen
ce 

Aradhya, 
2019 371 n.a 94 n.a 

ADHD-200 
subset 
(right-
handed 
males) 

Children and 
young adults 

(7-21) 
M, F CNN rs-fMRI Accuracy K-Fold-

CV(K=10) 70% 
(Aradhya, 
Joglekar et 
al. 2019) 

n.a 

Ariyarathne, 
2020 26 n.a 16 n.a ADHD-200 

subset 

Children and 
young adults 

(8-21) 
M, F CNN rs-fMRI 

Accuracy, 
Sensitivity, 
Specificity 

Held-out Test 85% 
(Ariyarathne
, Silva et al. 
2020) 

n.a 

Bohland, 
2012 776 37% 171 45% ADHD-200 

Children and 
young adults 

(7-21) 
M, F SVM sMRI and 

rs-fMRI Accuracy, AUC K-Fold-
CV(K=2) 74% 

(Bohland, 
Saperstein 
et al. 2012) 

23267318 

                      Held-out Test 67%     

Brown MR 

2012 
668 36% 171 45% ADHD-200 

Children and 
young adults 

(7-21) 
M, F SVM rs-fMRI Accuracy Held-out Test 55% 

(Brown, 
Sidhu et al. 
2012) 

23060754 

                      K-Fold-
CV(K=10) 

71%     

Chaim-
Avancini, 
2017 

96 54% n.a n.a Clinic and 
commmunity Adults (18-50) M, F SVM sMRI and 

DTI 

Accuracy, ROC 
AUC, Sensitivity, 
Specificity, PPV, 

NPV 

K-Fold-
CV(K=10) 74% 

(Chaim-
Avancini, 
Doshi et al. 
2017) 

29080396 

Chen,  2020 633 43% n.a n.a ADHD-200 
Children and 
young adults 

(7-21) 
M, F BHT rs-fMRI 

Accuracy, 
Sensitivity, 
Specificity 

LOOCV 88% (Chen, Tang 
et al. 2020) 32143793 

Chen, 2022 872 37% n.a n.a ADHD-200 
and CINEPS 

Children and 
adolescents 

(6-14) 
M, F CNN rs-fMRI 

Accuracy, 
Sensitivity, 

Specificity,AUC 

K-Fold-
CV(K=5) 79% Chen, Ming 

et al. 2022) 35246986 

Cheng W, 
2012 239 41% n.a n.a ADHD-200 

Children and 
young adults 

(7-21) 
M, F SVM rs-fMRI 

Accuracy, 
Sensitivity, 
Specificity 

LOOCV 76% (Cheng, Ji et 
al. 2012) 22888314 

Colby JB, 
2012 776 37% 197 n.a ADHD-200 

Children and 
young adults 

(7-21) 
M, F SVM sMRI and 

rs-fMRI 

Accuracy, 
Sensitivity, 
Specificity 

Held-out Test 59% 
(Colby, 
Rudie et al. 
2012) 

22912605 

Dai D, 2012 624 36% n.a n.a ADHD-200 
Children and 
young adults 

(7-21) 
M, F MKL sMRI and 

rs-fMRI 

Accuracy, 
Sensitivity, 

Specificity, J-
statistic, F1-

score, ROC AUC 

K-Fold-
CV(K=10) 68% (Dai, Wang 

et al. 2012) 22969710 

                      Held-out Test 62%     

Deshpande 
G, 2015 

1177 37% n.a n.a ADHD-200 
Children and 
young adults 

(7-21) 
M, F FCCANN rs-fMRI Accuracy LOOCV 90% 

(Deshpande
, Wang et al. 
2015) 

25576588 

Dey, 2014 776 37% n.a n.a ADHD-200 
Children and 
young adults 

(7-21) 
M, F SVM rs-fMRI 

Accuracy, 
Sensitivity, 
Specificity 

Training 
samples 71% (Dey, Rao et 

al. 2014) 24982615 

                      Held-out Test 74%   

Du J, 2016 216 55% n.a n.a ADHD-200 
Children and 
young adults 

(7-21) 
M, F SVM rs-fMRI 

Accuracy, 
Sensitivity, 

Specificity, ROC 
AUC 

K-Fold-
CV(K=10) 95% (Du, Wang 

et al. 2016) 27166430 

Eloyan A, 2012 776 37% 194 n.a ADHD-200 
Children and 
young adults 

(7-21) 
M, F Ensembl

e 

sMRI and 
rs-fMRI 
and 
demograp
hics 

Accuracy, 
Sensitivity, 
Specificity 

Held-out Test 61% 
(Eloyan, 
Muschelli et 
al. 2012) 

22969709 

                      

K-Fold-CV 
(n=184 
randomly 
chosen 
internal test 
set) 

78%     

Fair DA 2013 104 50% n.a n.a ADHD-200 
Children and 
young adults 

(7-21) 
M, F SVM rs-fMRI 

Accuracy, 
Sensitivity, 
Specificity 

LOOCV 83% (Fair, Nigg 
et al. 2012) 23382713 

Ghiassian S, 
2016 769 36% 171 45% ADHD-200 Children and 

young adults M, F MHPC sMRI and 
rs-fMRI 

Accuracy, 
Sensitivity, Held-out Test 70% (Ghiassian, 

Greiner et 28030565 
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(7-21) and 
demograp
hics 

Specificity al. 2016) 

Hao A, 2015 216 55% 41 71% 
ADHD-200 
(NYU 
subset) 

Children and 
young adults 

(7-21) 
M, F DBN fMRI 

Accuracy, 
Sensitivity, 
Specificity 

Held-out Test 49% 
(Hao, He et 
al. 2015) n.a 

  85 28% 50 46% 
ADHD-200 
(Peking 
subset) 

Children and 
young adults 

(7-21) 
M, F DBN fMRI 

Accuracy, 
Sensitivity, 
Specificity 

Held-out Test 54%     

  83 27% 11 27% ADHD-200 
(KKI subset) 

Children and 
young adults 

(7-21) 
M, F DBN fMRI 

Accuracy, 
Sensitivity, 
Specificity 

Held-out Test 72%     

Hart H, 2014 60 50% n.a n.a 
clinic and 
local 
community 

Children and 
adolescents 

(10-17) 
M, F GPC task-fMRI 

Accuracy, ROC 
AUC, Sensitivity, 
Specificity, PPV, 

NPV 

LOOCV 77% 
(Hart, 
Chantiluke 
et al. 2014) 

24123508 

Iannaccone 
R, 2015 40 50% n.a n.a 

Outpatient 
clinic and 
local 
schools 

Adolescents 
(12-16) M, F SVM task-fMRI 

Accuracy, ROC 
AUC, sensitivity, 

Specificity 
LOOCV 78% 

(Iannaccone
, Hauser et 
al. 2015) 

25613588 

Igual L, 2012 78 50% n.a n.a 
URNC 
database 

Children and 
adolescents 

(6-18) 
M, F SVM 

sMRI of 
the 
caudate 
nucleus 

Accuracy, 
Sensitivity, 
Specificity 

K-Fold-
CV(K=5) 73% 

(Igual, 
Soliva et al. 
2012) 

22959658 

Jie, 2016 216 55% n.a n.a 
ADHD-200 
(NYU 
subset) 

Children and 
young adults 

(7-21) 
M, F SVM rs-fMRI 

Accuracy, ROC 
AUC, sensitivity, 

Specificity 
LOOCV 83% (Jie, Wee et 

al. 2016) 27060621 

Johnston BA, 
2014 68 50% n.a n.a 

clinic and 
local 
schools 

Children and 
adolescents 

(8-17) 
M SVM sMRI 

Accuracy, 
Sensitivity, 
Specificity 

LOOCV 93% 
(Johnston, 
Mwangi et 
al. 2014) 

24819333 

Kuang D, 
2014 

83 n.a 11 n.a ADHD-200 
(KKI subset) 

Children and 
young adults 

(7-21) 
M, F DBM rs-fMRI 

Accuracy, 
Sensitivity, 
Specificity 

Held-out Test 73% 
(Kuang, Guo 

et al. 2014) 
n.a 

  85 28% 50 46% 
ADHD-200 
(Peking 
subset) 

Children and 
young adults 

(7-21) 
M, F       Held-out Test 54%     

  222 n.a 41 n.a 
ADHD-200 
(NYU 
subset) 

Children and 
young adults 

(7-21) 
M, F       Held-out Test 37%     

Lanka, 2019 759 37% 171 45% ADHD-200 
Children and 
young adults 

(7-21) 
M, F 

ensembl
e and 
ELM 

rs-fMRI 
Balanced 
Accuracy Held-out Test 61% 

(Lanka, 
Rangapraka
sh et al. 
2019) 

31691160 

Lim L, 2013  48 60% n.a n.a Clinic 
Children and 
adolescents 

(10-18) 
M GPC  sMRI 

Accuracy, AUC, 
Sensitivity, 

Specificity, PPV, 
NPV 

LOOCV 79% 
(Lim, 
Marquand et 
al. 2013) 

23696841 

Mao, 2019  626 46% 162 45% ADHD-200 
Children and 
young adults 

(7-21) 
M, F 4D CNN rs-fMRI Accuracy, ROC 

AUC Held-out Test 71% (Mao, Su et 
al. 2019) n.a 

McNorgan, 
2020 80 69% n.a n.a MTA 168 Adults (18-15) M, F MFC fMRI 

Accuracy, 
Sensitivity, 
Specificity 

K-
Fold_CV(K=5) 91% 

(McNorgan, 
Chris et al. 
2020) 

33391011 

Olivetti E, 
2012 923 38% n.a n.a ADHD-200 

Children and 
young adults 

(7-21) 
M, F ERT rs-fMRI 

Accuracy, FP, 
FN, TP, TN, 

Log(B10) 

K-Fold-
CV(K=10) 66% 

(Olivetti, 
Greiner et 
al. 2012) 

23060755 

Olivetti E, 
2015 923 38% n.a n.a ADHD-200 

Children and 
young adults 

(7-21) 
M, F ERT rs-fMRI 

Accuracy, MCC, 
J-statistic, F1-

score, Log(B10) 

K-Fold-
CV(K=10) 62% 

(Olivetti, 
Greiner et 
al. 2012) 

27747500 

Peng X, 
2013 

110 50% n.a n.a 
ADHD-200 
(Peking 
subset) 

Children and 
young adults 

(7-21) 
M, F ELM sMRI Accuracy, ROC 

AUC 
LOOCV 90% (Peng, Lin et 

al. 2013) 
24260229 

Peng, 2021 876 39% n.a n.a ADHD-200 
Children and 
young adults 

(7-21) 
M, F 3D CNN sMRI and 

fMRI 

Accuracy, 
Pecision, Recall, 

ROC AUC 

K-
Fold_CV(K=5) 73% (Peng, Jian 

et al. 2021) n/a 

Qureshi MN, 

2016 
106 50% n.a n.a ADHD-200 

Children and 
young adults 

(7-21) 
M, F H-ELM sMRI Accuracy K-Fold-

CV(K=10) 
80% 

(Qureshi, 
Min et al. 
2016) 

27500640 

                      K-Fold-
CV(70/30 85%     
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split) 

Qureshi MN, 
2017 106 50% 28 50% ADHD-200 

Children and 
young adults 

(7-21) 
M, F ELM sMRI and 

rs-fMRI 

Accuracy, 
Sensitivity, 

Specificity, F1-
score, Precision, 

Recall 

Held-out Test 93% 
(Qureshi, 
Oh et al. 
2017) 

28420972 

Riaz, 2017 464 52% 65 44% 

ADHD-200 
(NeuroImagi
ng, NYU 
and Peking 
subset) 

Children and 
young adults 

(7-21) 
M, F CNN and 

SVM 

rs-fMRI 
and 
demorgrap
hic  

Accuracy Held-out Test 69% (Riaz, Asad 
et al. 2017) n.a 

Riaz, 2018a 442 43% n.a n.a 

ADHD-200 
(NeuroImagi
ng, KKI,  
NYU and 
Peking 
subset) 

Children and 
young adults 

(7-21) 
M, F SVM 

rs-fMRI 
and 
demorgrap
hic  

Accuracy, ROC 
AUC, sensitivity, 

Specificity 
LOOCV 87% 

(Riaz, Asad 
et al. 2018) 29137838 

Riaz, 2018b 226 54% n.a n.a 
ADHD-200 
(NYU 
subset) 

Children and 
young adults 

(7-21) 
M, F CNN rs-fMRI 

Accuracy, 
Sensitivity, 
Specificity 

Held-out Test 73% 
(Riaz, Asad 
et al. 2018) n.a 

Sato, 2012 759 36% 171 45% ADHD-200 
Children and 
young adults 

(7-21) 
M, F AdaBoos

t rs-fMRI 

Sensitivity, 
Specificity, 
Balanced 
Accuracy 

Held-out Test 55% 
(Sato, 
Hoexter et 
al. 2012) 

23015782 

Semrud-
Clikeman, 
1996 

20 50% n.a n.a Clinic and 
commmunity 

Children and 
adolescents 

(6-16) 
M, F PDA sMRI Accuracy training 

samples 87% 

(Semrud-
Clikeman, 
Hooper et 
al. 1996) 

14588457 

Sen, 2018 776 37% 171 45% ADHD-200 
Children and 
young adults 

(7-21) 
M, F SVM sMRI and 

rs-fMRI 

Accuracy, 
Sensitivity, 

Specificity, J-
statistic 

Held-out Test 67% (Sen, Borle 
et al. 2018) 29664902 

Shao, 2018 50 36% 16 36% ADHD-200 
(KKI subset) 

Children and 
young adults 

(7-21) 
M, F SVM rs-fMRI 

Accuracy, 
Sensitivity, 

Specificity, MCC 
Held-out Test   (Shao, Xu et 

al, 2018) 30009990 

Sidhu, 2012 668 36% 171 45% ADHD-200 
Children and 
young adults 

(7-21) 
M, F SVM rs-fMRI Accuracy training 

samples 76% 
(Sidhu, 
Asgarian et 
al. 2012) 

23162439 

Held-out Test 67%   

Stanley,2022 

254 
50% n.a. n.a. ABCD 

Adoslescent (9-

20) M,F CNN rs-fMRI 

Accuracy, AUC, 

sensitivity  

Hold-out-test 71% 
(Emma A. M. 

Stanley et al. 

2022) n.a 

Tan, 2017 215 54% n.a n.a 
ADHD-200 
(NYU 
subset) 

Children and 
young adults 

(7-21) 
M, F SVM sMRI and 

rs-fMRI 

Accuracy, AUC, 
sensitivity, 
Specificity, 
Balanced 
Accuracy 

K-Fold-
CV(K=10) 

68% (Tan, Guo et 
al. 2017) 

28943846 

Tang, 2019 633 43% n.a n.a ADHD-200 
Children and 
young adults 

(7-21) 
M, F BHT rs-fMRI 

Accuracy, 
Sensitivity, 
Specificity 

LOOCV 92% 
(Tang, 
Wang et al. 
2019) 

30938224 

Tang, 2020 633 43% n.a n.a ADHD-200 
Children and 
young adults 

(7-21) 
M, F BHT rs-fMRI 

Accuracy, 
Sensitivity, 
Specificity 

LOOCV 98% (Tang, Li et 
al. 2020) n.a 

Wang, 2013 46 50% n.a n.a FCON_1000 Adults (18-50) M, F SVM rs-fMRI 
Accuracy, 
Sensitivity, 
Specificity 

LOOCV 80% (Wang, Jiao 
et al. 2013) 

23684384 

Wang, 2018 71 51% n.a n.a ADHD-200 
subset 

Children and 
adolescents 

(6-18) 
M, F SVM sMRI 

Accuracy, 
Sensitivity, 
Specificity 

LOOCV 75% (Wang, Jiao 
et al. 2018) 30031733 

Wang, 2021 470 25% 117 25% 
ADHD-200 

Children and 
young adults 

(7-21) 
M, F 3D MVA-

CNN 
sMRI and 
fMRI 

Accuracy, 
Sensitivity, 
Specificity 

K-Fold-
CV(K=5) 

79% (Wang, Zijan 
et al. 2021) 

34517567 

Xiao, 2016 47 68% n.a n.a clinic n.a n.a Lasso sMRI 
Accuracy, 
Sensitivity, 
Specificity 

LOOCV 81% 
(Xiao, 
Bledsoe et 
al. 2016) 

27747592 

Yao, 2018 189 59% n.a n.a clinic Adults (18-34) M, F Ensembl
e rs-fMRI 

Accuracy, 
Sensitivity, 
Specificity 

K-Fold-
CV(K=10) 80% (Yao, Guo et 

al. 2018) 30441383 

Yoo, 2019 94 50% 34 50% Clinic Children and 
adolescents M, F RF sMRI and 

rs-fMRI 
Accuracy, AUC, 

Sensitivity, LOOCV 85% (Yoo, Kim et 
al. 2019) 31321662 
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(6-17) and DTI Specificity, PPV, 
NPV 

                      Held-out Test 69%     

Zhu CZ, 
2008 20 45% n.a n.a community 

Children and 
adolescents 

(11-17) 
M FDA rs-fMRI 

Accuracy, 
Sensitivity, 
Specificity 

LOOCV 85% (Zhu, Zang 
et al. 2008) 18191584 

Zhang, 2021 1194 50% 179 50% ENIGMA 
Children and 
adolescents 

(11-17) 
M,F MLP sMRI 

AUC ROC, PR 
curves Held-out Test  

(Zhang et al. 
2021) 33526765 

  2132 50% 320 50%   Adults(18-50)  M,F     Held-out Test      

Zou, 2017 559 35% 171 45% ADHD-200 
Children and 
young adults 

(7-21) 
M, F 3D CNN rs-fMRI 

and sMRI Accuracy Held-out Test 69% (Zou, Zheng 
et al. 2017) n.a 

Zu, 2019 216 55% n.a n.a 
ADHD-200 
(NYU 
subset) 

Children and 
young adults 

(7-21) 
M, F STM rs-fMRI Accuracy 

K-Fold-
CV(K=10) 65% 

(Zu, Gao et al. 

2019) 
29948906 

 

ABCD, adolescent Brain Cognitive Development Study   
AUC, the area under the ROC curve (AUC) 
BHT, Binary Hypothesis Testing  
CINEPS, Cincinnati Early Prediction Study  
CNN, Convolutionary Neural Net;  
CV, cross-validation; LOOCV, leave-one-out cross validation;  
DBN, Deep Bayesian Network; DBM, Deep Belief Network; 
ELM, extreme learning machine; H-ELM, hierarchical extreme learning machine. 
ENIGMA consortium   
ERT, extremely randomized tree  
FCON_1000, 1000 Functional Connectomes Project database (http://www.nitrc.org/projects/fcon_1000) 
FDA, Fisher discriminative analysis  
fMRI, functional MRI; rs-fMRI, resting state- functional MRI; sMRI, structure MRI; DTI, diffusion tensor imaging 
GBM, a gradient boosting method;   
GPC, Gaussian process classifiers;   
Log(B10), the log of the Bayes factor for the hypothesis of dependence vs. independence;  
MCC, Matthew's correlation coefficient  
MFC, multi-layer feedforward classifier   
MHPC, the histogram of oriented gradients (HOG)-feature-based patient classification;  
MLP, Multi-Level Perception  
MTA, Multimodal Treatment of Attention Deficit Hyperactivity Disorder (MTA) study 
MKL, multi-kernel learning; FCCANN, fully connected cascade artificial neural network;  
MVA, multi-view attentional   
PDA, predictive discriminant analysis  
PPV, Positive predictive value; NPV, Negative predictive value 
PR curve, Precision Recall curve  
RF, Random Forest   
SVM, support vector machine; STM, Support tensor machine. 
TP, the number of true positive diagnosis; TN, the number of true negative diagnosis; FP, the number of false positive diagnosis; FN, and the number of false negative diagnosis. 
   
*Balanced Accuracy = (sensitivity + specificity)/2
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Supplementary Figs. 
Supplementary Figure 1. Numbers of publication in each year. The top row includes studies that used non-ADHD-200 data; the 
bottom row includes studies that used ADHD-200 data. The numbers for each year are labeled beneath the bar.  
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Supplementary Figure 2. PRISMA flow diagram for review and meta-analysis 
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Review articles 

Non-English articles 

Full-text articles assessed 
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Full-text articles excluded:  

Unsupervised learning  

Did not report accuracy 
 

(n = 3) 

Studies included in Qualitative review  

(n = 55) 

Studies included in Quantitative Analysis  
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Supplementary Figure 3. A. Reported accuracies and training data balancing. B. Training 
sample sizes in balanced vs unbalanced studies.  
A. 

 
B. 
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Supplementary Figure 4. A. Mean and standard errors of the sample size for multi-modality, rs-fMRI, sMRI and task-based 
fMRI studies. B. Accuracies in studies using different MRI modalities. 
A. 
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B. 
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Supplementary Figure 5. Accuracies in studies using different ML models. 
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