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Abstract 6 

The COVID-19 pandemic has had severe impacts on global public health. In England, social 7 

distancing measures and a nationwide lockdown were introduced to reduce the spread of the virus. 8 

Green space accessibility may have been particularly important during this lockdown, as it could 9 

have provided benefits for physical and mental wellbeing. However, the effects of public green 10 

space use on the rate of COVID-19 transmission are yet to be quantified, and as the size and 11 

accessibility of green spaces vary within England’s local authorities, the risks and benefits to the 12 

public of using green space may be context-dependent. To evaluate how green space affected 13 

COVID-19 transmission across 299 local authorities (small regions) in England, we calculated a 14 

daily case rate metric, based upon a seven-day moving average, for each day within the period 1st 15 

June - 30th November 2020 and assessed how baseline health and mobility variables influenced 16 

these rates. Next, looking at the residual case rates, we investigated how landscape structure (e.g. 17 

area and patchiness of green space) and park use influenced transmission. We first show that 18 

reducing mobility is associated with a decline in case rates, especially in areas with high population 19 

clustering. After accounting for known mechanisms behind transmission rates, we found that park 20 

use (showing a preference for park mobility) was associated with decreased residual case rates, 21 

especially when green space was low and contiguous (not patchy). Our results suggest that a 22 

reduction in overall mobility may be a good strategy for reducing case rates, endorsing the success 23 

of lockdown measures. However, if mobility is necessary, outdoor park use may be safer than other 24 

forms of mobility and associated activities (e.g. shopping or office-based working). 25 
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1. Introduction 30 

The COVID-19 pandemic has had severe impacts on public health (Mahase, 2020) and remains an 31 

emergency of international concern. In response to the pandemic, the UK government has 32 

implemented social distancing measures and nationwide lockdowns to control the spread of the 33 

virus (UK Government, 2020a). During these periods, the general public were limited in the 34 

distances they could travel and, at certain points, the number of times they could leave their 35 

residence each day; with an allowance of one non-essential trip during the peak of transmission (UK 36 

Government, 2020a). Though social restrictions have fluctuated in response to case rates, social 37 

distancing has been constant and there has been a general message throughout England of 38 

reduced movement and staying local where possible for much of 2020. These restrictions have 39 

meant that members of the public became more reliant on amenity spaces close to their residences 40 

for daily exercise and/or recreation (Geng et al., 2021). Green spaces may provide a comparatively 41 

safe place for these activities, though the amount and structure of green space available for public 42 

use differs widely across the UK. Here we evaluate if differences in the availability and structure of 43 

public green space within local authorities (local government bodies responsible for public services 44 

within a specified area) in England, and their usage, influenced the local rate of incidence of 45 

COVID-19.  46 

Green spaces, which we define as vegetated non-arable areas - see Taylor & Hochuli (2017) for 47 

further details - provide important cultural and recreational ecosystem services, benefiting both 48 

mental and physical health (Beyer et al., 2014; Cohen-Cline et al., 2015). These benefits are usually 49 

considered in terms of reducing the prevalence or severity of conditions such as mental stress 50 

(Nutsford et al., 2013) or cardiovascular disease (Seo et al., 2019), and some of these benefits have 51 

continued throughout the pandemic (Slater et al., 2020; Soga et al., 2020). However, the influence 52 

of green space use on disease transmission rates has received less investigation, but is of great 53 
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importance as green space use has increased rapidly during the pandemic (Venter et al., 2020). 54 

Furthermore, it is unclear how ‘safe’ green spaces are during periods of higher incidence especially 55 

in densely populated areas (Shoari et al., 2020).  56 

We anticipate that green space could impact COVID-19 incidence in two ways: general health and 57 

wellbeing, and transmission. It is conceivable that general health and well-being is greater in areas 58 

with more green space, as higher levels of green space are associated with healthier populations 59 

(Maas et al., 2006; Mitchell and Popham, 2007; van den Berg et al., 2015). As COVID-19 has a 60 

greater impact on those with underlying health conditions and sedentary lifestyles (Hamer et al., 61 

2020; Jordan et al., 2020), green space may, therefore, indirectly provide some level of resilience to 62 

the disease and/or reduce incidence. However, our key focus here is on transmission, as it is likely 63 

that the major benefits of outdoor recreation in green space are related to a lower risk of infection. 64 

Current evidence suggests that COVID-19 is spread via droplet infections, contact with 65 

contaminated individuals or surfaces, and through aerosol transmission (Bahl et al., 2020). These 66 

risks are likely minimised in green space areas, as generally, they are less spatially confined, and 67 

with fewer surfaces prone to frequent touching or contact. Consequently, green space use may 68 

represent a safe form of recreation by minimising risk of infection.  69 

In England and Wales approximately 87% of the population are within a 10-minute walk of public 70 

parks and gardens (Shoari et al. 2020). However, both the structure and amount of green space 71 

vary between local authorities, and both could influence COVID-19 incidence. Generally, it has been 72 

found that greater health benefits are derived from larger areas of green space (Ekkel and de Vries, 73 

2017). In the context of disease transmission, larger areas may offer more space per individual, 74 

lowering transmission risk. However, smaller fragmented areas of green space are common in 75 

many residential areas and are, therefore, more accessible to much of the population and may be 76 

used more frequently. Further, if public use is distributed across fragmented green spaces, the 77 

wider effects of a transmission incident could be reduced, as contacts would be isolated to the 78 

members of a neighbourhood or community adjacent to a particular green space. This process can 79 

be seen in animal diseases where habitat fragmentation reduces transmission due to limiting 80 

interactions between groups in different patches (Mccallum and Dobson, 2002). However, 81 
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fragmentation also typically results from reductions in the total area of green space (Fahrig, 2013), 82 

leading to less overall space per individual, possibly increasing transmission rates.  83 

Whilst the effects of green space on COVID-19 transmission are currently unclear, other 84 

environmental and social factors are known to influence both the spread and severity of the 85 

disease. For example, human mobility drives the spread of infectious diseases (Kraemer et al., 86 

2019) and studies have shown that reducing social interactions by restricting mobility can lead to a 87 

decrease in transmission rates of COVID-19 (Chinazzi et al., 2020; Gatto et al., 2020). Furthermore, 88 

as diseases are often spread along transport links and in offices (Gatto et al., 2020; Zhang et al., 89 

2018), enforcing lockdown situations that curtail movement, such as requiring people to work from 90 

home, can have a great effect on reducing transmission rates. In addition to mobility, health and 91 

social factors have been associated with increased severity of the disease such as age, underlying 92 

health conditions, and deprivation (Richardson et al., 2020; Williamson et al., 2020). Consequently, 93 

any possible effects of green space must be considered after attempting to account for factors that 94 

could increase recorded incidence. 95 

Given the stated benefits of green space, it is important to attempt to evaluate using available 96 

evidence, the impact of green space use on transmission rates. In addition, understanding the 97 

influence of green space on COVID-19 incidence could provide an estimate of the value of green 98 

space for maintaining public health if subjected to a resurgence of the COVID-19 pandemic. And, in 99 

the longer term, indicate the potential benefits of local green space on future pandemics of 100 

comparative severity.  Here, using time series of COVID-19 cases within local authorities in 101 

England, we explore how both green space use and access (i.e. availability of green spaces) 102 

influence COVID-19 incidence. Our approach is to first construct a baseline transmission model to 103 

attempt to control for factors likely to influence recorded COVID-19 incidence and then to explore 104 

how green space influenced case rates above or below this baseline. We predict that green space 105 

and the way it is structured, in itself, will have no effect on case rates. However, we expect that an 106 

increase in park use (i.e. spending time in green space) will make the structure and availability of 107 

green space important (Figure 1). Specifically, when green space is low, park use will likely 108 

represent a safer form of movement (e.g. compared to shopping), unless the green space becomes 109 
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a congregation zone that inflates transmission risk. Furthermore, we predict that case rates will be 110 

lower when green space is fragmented, as the disease will be contained in more localised areas. 111 

For example, if the local authority has one large park the presence of an infected individual puts 112 

more people at risk than an infected individual attending one of many parks. Further, we predict, as 113 

others have found (Kraemer et al., 2020), that increased mobility will increase incidence, but that 114 

park use (measured as relative use of parks) is the safest form of mobility (e.g. preferable over 115 

shopping).   116 

 117 

Figure 1.  Mechanisms by which green space and patchiness could interact with park use to influence 118 

COVID-19 transmission.  The upper two rows describe the primary predictions, whilst the bottom row explains 119 

alternate predictions. All variables (e.g. population density) except green space and patchiness, respectively, 120 

are held at a constant in these predictions. Green circles with a tree icon indicate the presence of green 121 

space. Dotted lines indicate walking routes, which becomes park use when the line overlaps a green space. 122 

The green health symbol indicates that the landscape metric and park use is beneficial, whilst the red toxic 123 

symbol indicates a risk. 124 

2. Methods 125 

2.1 Data compilation 126 

2.1.1 COVID-19 case rates 127 
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We compiled daily lab-confirmed cases (incidence) of COVID-19 in England from February 15th 128 

2020 up to 30th November 2020 (available from https://coronavirus.data.gov.uk/). We only included 129 

cases until November, as in December England began an aggressive vaccination campaign and the 130 

more infections COVID B1.1.7 variant began to spread widely – factors that could confound our 131 

models (see below). Cases were recorded at the lower tier local authority (administrative areas for 132 

local government) level (N = 299). These local authorities vary in size (3 – 26,000km2), 133 

demographics, cultures, and in socio-economic circumstances. Incidence over this time was highly 134 

variable with periods of rapid increases, which were then relatively controlled by periods of national 135 

lockdown (Figure 2). To determine factors influencing COVID-19 transmission, we estimated case 136 

rates for each day in each local authority. Case rates were derived by fitting log-linear models, 137 

regressing the natural log of daily cases against date (days). To reduce the effect of noise, we fit 138 

these regressions over 7-day moving windows (Figure S1) e.g. to estimate the case rate on March 139 

4th, a regression was fit between cases from March 1st – 7th, for March 5th a regression was fit 140 

between March 2nd – 8th. The coefficients of these models provided a daily case rate. We converted 141 

these coefficients into a daily percentage change in cases. 142 

 143 

 144 
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 145 

Figure 2.  a) Daily lab-confirmed cases across England, with lockdown periods (with restricted mobility) 146 

indicated with red shading. b) Google mobility trends (Google, 2020), describing change in mobility over time 147 

for five different categories, relative to a baseline period  (3rd of January to the 6th of February 2020). We 148 

excluded the sixth category ‘residential mobility’ as it is measured differently to all other categories. Each line 149 

within the mobility trends represents a local authority. All plots extend from the 15th of February 15th to the 30th 150 

of November 30th 2020. For the ‘parks’ plot, we limited the y-axis at 300% to exclude a small number of 151 

extreme observations with high park use. 152 

  153 
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2.1.2 Baseline transmission variables 154 

We compiled variables which describe the mechanisms considered to influence case rates (Table 155 

1). Firstly, we derived two variables which describe the structure of the local authority population: 156 

population density – residential population density (controls for green space in the green 157 

transmission model below); and population clustering – Moran’s I spatial autocorrelation of 158 

residential population density (controls for patchiness in the green transmission model below). 159 

Secondly, we compiled three variables which characterise the human population in each local-160 

authority prior to COVID-19: health – risk of premature death or a reduction in quality of life due to 161 

poor mental or physical health (Ministry of Housing Communities & Local Government, 2019); 162 

demography - the percentage of the population over 70 (Office for National Statistics, 2021a); 163 

economy – the percentage of unemployed-individuals in the non-retired local authority population 164 

(UK Government, 2018). A high baseline health, whereby few individuals have pre-existing 165 

underlying health conditions, may decrease the chances of an individual presenting with severe 166 

symptoms of COVID-19 and further passing the virus to others (Clark et al., 2020). Accounting for 167 

this baseline health may also assist in controlling for the presence of asymptomatic undetected 168 

infections in case rates.  169 
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Table 1. Description of variables within the baseline and green transmission models, including the 171 

scale at which the variable is measured, where ‘Static’ indicates only one value is derived per local 172 

authority, whilst there are unique values for each case rate in ‘Timeseries’ variables. 173 

Variable Description Scale 

Baseline transmission model  

Population density 
Local authority population size in mid-year 2019 divided by local authority area [in 
sq.km]. Source: Office for National Statistics (2021c) 

Static 

Population clustering 
Moran’s I spatial autocorrelation of residential population density in 2011, extracted 
from the UK’s gridded 1km resolution population raster. Source: UK Government 
(2020b) 

Static 

Health 

The health aspect of the multiple deprivation index, describing the risk of 
premature death or a reduction in quality of life due to poor mental or physical 
health. Low values indicate greater health deprivation. Source: Ministry of Housing 
Communities & Local Government (2019) 

Static 

Demography 
Percent of local authority population aged over 70 in June 2019. Source: Office for 
National Statistics (2021b) 

Static 

Economy 
Percent of local authority population (adult non-retired) unemployed in December 
2019. Source: UK Government (2020c) 

Static 

Mobility change 

Daily mean overall mobility in each local authority across five of the Google 
mobility metrics: transport, workplaces, parks, grocery & pharmacy stores, and 
retail & recreation. Overall mobility averaged over the previous 2 to 12 days before 
each case rate. Source: Google (2020) 

Timeseries 

Community cases 
Seven-day rolling average in cases within each local authority. Variable also 
included within the green transmission model. Source: 
https://coronavirus.data.gov.uk/ 

Timeseries 

Green transmission model  

Green space 

Green space per person (m2). Derived by dividing total green space area in each 
local authority by the local authority’s population size. We consider green spaces 
as any area meeting the following land cover types: broadleaved woodland, 
coniferous woodland, improved grassland, neutral grassland, calcareous 
grassland, acid grassland, fen, marsh and swamp, heather, heather grassland, and 
bog. Source: Rowland et al. (2017) 

Static 

Patchiness 
Median frequency of parks within a 1km buffer around local authority houses. 
Source:  Office for National Statistics (2021a) 

Static 

Park use 

Contribution of park use to the overall mobility metric, derived by extracting the 
residuals of a linear model between park mobility (response) and overall mobility 
(predictor) within each local authority. A positive residual value indicates park use 
exceeds what we would expect given park and overall mobility trends within the 
local authority. As with the mobility change variable, park use is averaged over the 
2 to 12 days before each case rate. Source: Google (2020) 

Timeseries 

 174 

 175 
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National lockdowns, and the resulting reduction in people’s mobility, were an important tool for 176 

reducing transmission within England during the COVID-19 pandemic. We used Google Community 177 

Mobility Reports to track human mobility and its effect on case rates (Google, 2020). These reports 178 

chart movement trends over time across six categories: retail and recreation, groceries and 179 

pharmacies, transit stations, workplaces, residential, and parks. These trends describe how visitors 180 

to, or time spent in, each of the six categories changed compared to a pre-pandemic 5-week period 181 

(the median value from 3rd January to 6th February 2020). As the mobility data contained missing 182 

values (c.12%) for some local authorities and dates (Figure S2), we were conscious these missing 183 

values may lead to statistical inference errors within the models below. As a result, we filled missing 184 

mobility values using mice: multiple imputation chained equations R package and ‘2l.pan’ imputation 185 

approach, which is a hierarchical normal model within homogenous within group variances (Van 186 

Buuren and Groothuis-Oudshoorn, 2011). This hierarchical structure allowed us to model mobility 187 

trends accounting for differences in local authorities. We included the following terms within our 188 

imputation model: all six Google mobility timeseries, as well as a 1-day lag period for each 189 

timeseries, the number of days along the timeseries since February 15th with a cubic polynomial 190 

term, an indicator variable to describe whether each day was a weekend or not, and the timeseries 191 

of daily COVID-19 cases within the local authority. We also included terms that didn’t vary through 192 

time, including: the latitude and longitude of the local authority, and all local authority covairates 193 

within the baseline and green transmission models below (population density, population clustering, 194 

health, demography, economy, green space, and patchiness). Finally, we also included some 195 

national metrics that could infleunce local mobility, including: a timeseries of daily COVID-19 cases 196 

measured at the national scale, as well as the mean daily temperature and precipitation within 197 

Central England. We ran this model through 10 chains, each with 20 iterations, and 20 pan 198 

iterations. The imputation model converged. 199 

Conventionally, as part of a multiple imputation framework, these 10 chains should then be 200 

modelled seperately and coefficient standard errors should be inflated with Rubin’s rules (Little and 201 

Rubin, 2002). However, given the small percentage of missing values, and that there are currently 202 

no well defined steps for using Rubin’s rules in genralized additive models (see our models below), 203 
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we instead averaged mobility values across the 10 chains to produce mean estimates of mobility for 204 

each category, day, and local authroity i.e. conducting single impuation. We ensured the 205 

imputations produced plausible values (Figure S3). From this mobility dataset, we derived a variable 206 

which described overall mobility change for each date in each local authority, which is the average 207 

mobility change across five of the six categories (excluding residential) for each day in each local 208 

authority. We excluded the residential mobility category as it is inversely correlated with all other 209 

categories and is measured differently (Google, 2020). However, as there is a delay between a 210 

mobility reduction and a case rate reduction, we lagged the overall mobility change metric by linking 211 

each case rate with the mean mobility change from 2 – 12 days prior. 212 

2.1.3 Green variables 213 

We compiled two variables which describe the structure of green spaces in each local authority: 214 

patchiness – median frequency of parks within a 1km2 radius around households in the local 215 

authority (Office for National Statistics, 2021c); green space – available green space per person 216 

(m2) within the local authority, derived by dividing the green-cover area by the local authority 217 

population size. Green-cover area was calculated from the UKCEH 2015 25metre land cover raster 218 

(Rowland et al., 2017) and included the following landscape categories: broadleaved woodland, 219 

coniferous woodland, improved grassland, neutral grassland, calcareous grassland, acid grassland, 220 

fen, marsh and swamp, heather, heather grassland, and bog. For this green-cover area calculation, 221 

we set a 1km buffer around the local authority, to represent green space access of households on 222 

the local authority border. 223 

Using the mobility dataset, we also produced a park use variable, which represents how parks are 224 

used relative to overall mobility. This park use metric is derived by fitting a linear model between 225 

park use and overall mobility within each local authority, and extracting the residual park use, where 226 

positive values represent a preference for using parks over other forms of mobility for a given date 227 

(in the original percentage units). Parks include public gardens, castles, national forests, campsites, 228 

observation points, and national parks, but exclude surrounding countryside in rural areas. As a 229 

result, the Google (2020) definition of parks differs slightly to the landscape categories used in our 230 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 26, 2021. ; https://doi.org/10.1101/2020.10.20.20215731doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.20.20215731


 

 

green space metric but are our best available representation of how green space was used during 231 

the pandemic. As in the overall mobility change metric, park use represents the mean use of parks 232 

in the prior 2 to 12 days. 233 

2.2 Modelling 234 

We developed two core models (Figure 3): baseline transmission – aimed at controlling for the 235 

major mechanisms influencing case rates; and green transmission – impact of landscape structure 236 

and park use on case rates. The baseline and green transmission models are both focussed on 237 

case rates, but we anticipated that any effects of green space on COVID-19 case rates were likely 238 

to be much smaller than variables known to influence disease transmission (e.g. population 239 

density). As a result, we structured our analyses to first account for the presence of these more 240 

influential variables in a baseline transmission model, and then in the green transmission model, we 241 

explored how green areas (the focus of this study) can alter the residuals of these case rates. 242 

Conventionally, it is advised to include all variables within one regression instead of analysing the 243 

residuals separately (Freckleton, 2002). However, variables were highly correlated (e.g. population 244 

density and green space are derived in similar ways), and resulted in multicollinearity issues. 245 

Dealing with the major mechanisms first (e.g. population density) mitigated these multicollinearity 246 

issues. 247 

 248 

Figure 3. Model structure for baseline transmission and green transmission difference models, depicting the 249 

process for developing the response variables, as well as the predictors used in each model. 250 

e 
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To control for the baseline health and transmission mechanisms influencing COVID-19 case rates, 251 

we developed a generalized additive model within the mgcv R package (Wood, 2021), with case 252 

rate as the response – inverse hyperbolic sine transformed to address heavy tailed residuals. We 253 

included the following parameters as linear predictors: health, demography, economy, population 254 

density (log10 transformed), population clustering, and mobility change. We also included 255 

interactions between population density and clustering, population density and mobility change, and 256 

population clustering and mobility change. In model development, it was clear that the residuals 257 

were experiencing extreme positive temporal autocorrelation, where case rate values were very 258 

similar to values from the previous day. As a result, we also included the previous days case rate 259 

(one day lag) as a linear predictor in the model. We included random intercept smoothing over the 260 

local authorities to account for the non-independence of multiple case rates within the same local 261 

authorities. Due to working hour restrictions in the England, case counts on Saturdays and Sundays 262 

were largely underestimated, and then over-estimated on Mondays and Tuesdays. As a result, we 263 

also included a cyclic smoothing term (with up to 7 knots) over day of the week to capture reporting 264 

biases and control for daily variation (days within a week) in case reporting. We extracted the 265 

residuals from this model for the green transmission model. 266 

To assess how landscape structure and park use influenced residual case rates, we again 267 

developed a generalized additive model developed, with residual case rates form the baseline 268 

transmission models as the response, as well as the following linear predictor parameters: park use, 269 

green space (log10 transformed), patchiness, as well as interactions between park use and green 270 

space, and park use and patchiness. These models also included random intercept smoothing over 271 

local authorities, but we did not control for the smoothing over days of the week, which was 272 

addressed in the earlier baseline transmission model. 273 

2.2.1 Sensitivity analysis 274 

We opted to fill missing mobility values with imputation instead of using complete-case analyses, 275 

where any observations with missing mobility data are removed. However, given the small 276 

percentage of missing values, and that the mobility data is averaged across five categories, and 277 
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then again through time, we wanted to ensure model coefficients did not change drastically under 278 

imputation, which could be a sign of a statistical inference error (Johnson et al., 2021). As a result, 279 

we repeated the analyses using only complete-case observations and compared model coefficients 280 

between the missing value approaches. Given the similarity in the complete-case and imputation 281 

coefficients (Figure S4), we continued using the coefficients from the imputation model which 282 

covered a greater array of local authorites. 283 

In both the baseline and green transmission models, we were conscious that some parameter 284 

effects may have varied through time. For example, some covariates may have been particularly 285 

influential prior to mandatory mask wearing in shops on July 24th 2020. As a result, we extracted the 286 

first four weeks of data from our case rate dataset and ran the models on this subset. We then 287 

shifted the data forwards one week and re-ran the models, repeating this procedure (moving 288 

window), creating 40 replicates of the coefficients each representing a different-overlapping period 289 

of time between February and November 2020. From this, we established that the majority of 290 

coefficients were stable over time (Figure S5), but the mobility covariates (mobility change and park 291 

use) were highly variable, and mobility effects were greatest when cases were at their highest. As a 292 

result, we amended the baseline and green transmission models to include an interaction between 293 

the mobility variables and the number of cases (averaged over the nearest 7 days) in the local 294 

authority at a given moment in time (see Equation S1-2 for the final model structures). We also 295 

noted that effects were greatest in the first lockdown but also fluctuated substantially. We suspect 296 

the large effects are genuine, but given there were temporal and spatial issues with case-testing 297 

availability in the first lockdown, we opted to remove this section of data to limit biases. The final 298 

dataset covered June 1st to November 30th. 299 

2.2.2 Model checking  300 

We standardised (subtracting values from their mean and dividing by their standard deviation) all 301 

predictor variables in the models to determine effect sizes and reduce multicollinearity where 302 

interactions are present. All model assumptions passed e.g. multicollinearity (variance inflation 303 

factors less than 3 within both the baseline and green transmission model), concurvity (observed 304 
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and estimated concurvity less than 0.1), absence of spatial (Moran’s I = 0.1) and temporal 305 

autocorrelation (Figure S6), homogeneity of variance, and normality of residuals. When 306 

summarising results, we report the mean ± standard deviation, and when describing model outputs 307 

we report the standardised slope coefficient and 95% confidence intervals. We also report the R2 for 308 

each model. All analyses was conducted in R 4.0.3 (R Development Core Team, 2020). 309 

2.2.3 Projecting cases 310 

To understand how mobility patterns have influenced cases, we projected cases using the baseline 311 

and green transmission models under three scenarios: 1) cases under observed mobility patterns; 312 

2) cases after a 20% reduction in each day’s overall mobility; 3) cases after a 20% increase in each 313 

day’s park use. We ran the baseline and green transmission models through each of the scenarios 314 

for every local authority between March 1st and November 30th 2020. We standardised all authorities 315 

so they had the same starting number of cases (10), community cases (10), and lagged case rate 316 

(0.58%; the mean case rate across local authorities on March 1st). These cases, community cases, 317 

and lagged case rate were updated and iteratively informed by the new model predictions, instead 318 

of the observed data. As a result, the projected case rates are solely influenced by the landscape 319 

structure and mobility patterns in the local authority. We converted the projected case rates into 320 

projected cases, against the starting case value of 10. 321 

3. Results 322 

Across the 299 local authorities, case rates fluctuated substantially through time (Figure 4a). 323 

Mobility declined substantially during the first national lockdown in March to May, and in the run up 324 

to winter (Figure 4b). During the summer months, mobility and the variance in mobility increased, 325 

and in some local authorities these increases were close to 100% (doubling mobility). In contrast, 326 

park use increased during the first lockdown and remained high (approximately 25% above 327 

baseline) until winter approached in October (Figure 4c). There was less variation in park use trends 328 

between local authorities than in the mobility change metric. 329 
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 330 

Figure 4. a) Temporal patterns in case rates (a), mobility change (b) and park use (c) between March 1st and 331 

November 30th 2020, with each line representing a different local authority. The red line represents the Oxford 332 

local authority and acts purely as an example. Case rates are defined as the daily percentage change in 333 

cases calculated over a seven day moving average. Mobility change is the mean daily percentage change 334 

over five mobility types (Park, Grocery and Pharmacy stores, Retail and recreation, Transport, and 335 

Workplaces) extracted from Google community mobility reports (Google, 2020). Park use is the relative 336 

contribution of park mobility to overall mobility change, derived by extracting the residuals of a linear model 337 

with park mobility regressed against overall mobility within each local authority i.e. are people visiting parks 338 

more than we would expect on a given date. 339 

3.1 Baseline transmission models 340 

A reduction in mobility was associated with a decline in case rates, and changes in mobility had a 341 

larger impact when there was a higher number of average cases and when the population was 342 
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more clustered (Table 2; Figure 5c, d). Population density and population clustering had no 343 

significant impact on case rates. Increases in the health index and proportion of the population over 344 

the age of 70 were both associated with significant decreases in case rates (Table 2; Figure 5a, b). 345 

This baseline transmission model had an R2 of 0.45. 346 

Table 2. Estimated regression parameters from the baseline and green transmission models with 95 347 

confidence intervals. Values rounded to two significant figures, those with confidence intervals not overlapping 348 

zero (i.e. significant at the p = 0.05 threshold) are shown in bold. 349 

  Coefficient [95% confidence intervals] 

 

Baseline transmission model 
 

Intercept 0.40 [0.37, 0.42] 

Lag case rate 1.56 [1.55, 1.58] 

Population density 0.020 [-0.0084, 0.048] 

Population clustering 0.013 [-0.0041, 0.030] 

Mobility   0.16 [0.14, 0.18] 

Case average 0.080 [0.052, 0.11] 

Baseline health -0.025 [-0.049, -0.0015] 

Percentage over 70 -0.060 [-0.088, -0.033] 

Percentage unemployed 0.0059 [-0.020, 0.032] 

Mobility:Community cases 0.13 [0.095, 0.15] 

Population density:Population clustering 0.0068 [-0.010, 0.024] 

Population density:Mobility 0.0029 [-0.012, 0.018] 

Population clustering:Mobility 0.029 [0.012, 0.047] 

 

Green transmission model 
 

Intercept 0.0077 [-0.013, 0.028] 

Park use  -0.096 [-0.12, -0.071] 

Green space -0.0068 [-0.028, 0.015] 

Patchiness 0.013 [-0.0086, 0.034] 

Case average   -0.047 [-0.070, -0.024] 

Park use:Green space 0.023 [0.00086, 0.44] 

Park use:Patchiness 0.022 [0.00017, 0.043] 

Park use:Community cases 0.012 [-0.0087, 0.033] 

  350 

 351 

 352 
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 353 

Figure 5. Marginal effects of important interaction parameters in the baseline transmission and in the green 354 

transmission models. Marginal effects are held at zero for all other parameters as variables were z-355 

transformed. Panels depict the effect of: a) health, with low values indicating health deprivation; b) the 356 

percentage of the population over 70; c) an interaction between mobility and community cases (the 7-day 357 

average number of cases in the local authority); d) an interaction between mobility and human population 358 

clustering set at 0.2 (Low) and 0.7 (High), where 0 indicates a random distribution of clustering, and 1 359 

indicates a complete separation in clustering; e) an interaction between park use and patchiness (the median 360 

frequency of parks within 1km of each house in a local authority); and f) an interaction between park use and 361 

green space area per local authority capita. Error bars represent the 95 confidence intervals. 362 

 363 

3.2 Green transmission models 364 

Park use was associated with decreased residual case rates (Table 2; Figure 5e) but the size of the 365 

effect depended on the availability of green space and how patchy it was. When patchiness was 366 

high and when there was a large amount of greenspace, park use had less of an impact on case 367 

rates, though was still associated with a significant reduction in cases. The green transmission 368 

model had a small R2 of less than 0.01, despite the significant effects. 369 

 370 
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3.3 Projected cases 371 

Reducing mobility is a far more effective measure of limiting COVID-19 transmission than increasing 372 

park use (Figure 6). Across local authorities between March and November 2020, a 20% reduction 373 

in mobility is projected to have led to 33% fewer cases on average, and in some cases more than 374 

50% fewer cases (Figure 6b). In contrast, a 20% increase in park use rarely exceeds a 10% 375 

reduction in cases (Figure 6c). So whilst park use is associated with reducing COVID-19 376 

transmission, these benefits would only be relatively small. However, these is spatial variation in 377 

these findings, with some areas potentially benefitting more than others from a reduction in mobility 378 

or increase in park use (Figure 7).  379 

 380 

Figure 6. a) Projected daily cases between March 1st and November 30th 2020 within Oxford under three 381 

scenarios: 1) observed mobility patterns (black); 2) a further 20% reduction in observed mobility (red); and 3)  382 

20% increase in observed park use (blue). In these projections, we set the initial cases (on March 1st) at 10, 383 

and with lagged case rate of 0.58% - the mean value across local authorities on February 28th. All other 384 

covariates were held at their observed values. Error ribbons represent 95% confidence intervals. Panels b and 385 

c represent the distribution of projected change in cases across local authorities under the 20% mobility 386 

reduction (b) and 20% park use increase (c) scenarios i.e. how much could cases have been reduced under 387 

these scenarios. Case change was derived by dividing the total cases between the March and November 388 

periods under each scenario by the cases in the observed mobility scenario (black), multiplying this value by 389 

100, and then subtracting by 100. 390 

 391 
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 392 

 393 

Figure 7. Spatial variation in observed cases per capita (a), and projected case changes under a 20% 394 

mobility reduction (b) and 20% increase in park use (c). Case change was derived by dividing the total cases 395 

between March and November 2020 under each scenario by the cases in the observed mobility projection, 396 

multiplying this value by 100, and then subtracting by 100 (see Figure 5). 397 

 398 

4. Discussion 399 

In this study, we attempted to quantify the effects of local green space on COVID-19 case rates 400 

after accounting for mechanisms known to influence pandemics in our baseline transmission model. 401 

We found that high overall mobility was associated with increased case rates, especially when 402 

population clustering was high. After accounting for these variables, we found that higher park use, 403 

compared to other amenity areas, was associated with a reduction in case rates, especially in local 404 

authorities with low green space and with contiguous green space. These results suggest that 405 

utilising green spaces rather than carrying out other activities (e.g. visiting shops and workplaces) 406 

may reduce the transmission rate of COVID-19, but these benefits are limited compared to reducing 407 

mobility more generally. 408 

From our baseline transmission model results, case rates were lower in local authorities with 409 

healthier populations and older populations (Figure 5a-b). These results are logical, firstly as 410 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 26, 2021. ; https://doi.org/10.1101/2020.10.20.20215731doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.20.20215731


 

 

21 

 

previous evidence has shown COVID-19 has a greater impact on those with underlying health 411 

conditions  (Hamer et al., 2020; Jordan et al., 2020) and more severe cases may be more likely to 412 

be tested and reported. Secondly, whilst the eldery are more at risk of mortality from COVID-19 413 

(Williamson et al., 2020), this fact was widely reported in public health guidance and older people 414 

may have reduced contact with other individuals (Canning et al., 2020) Our baseline transmission 415 

model also shows that reducing mobility is most valuable when community cases are high and in 416 

areas with high population clustering (Figure 5c-d).  This is consistent with person-person contact as 417 

the major mechanism of transmission and appears to demonstrate the general effectiveness of 418 

lockdown measures in reducing case rates, as others have demonstrated previously (Davies et al., 419 

2020; Lau et al., 2020). Mobility had less impact in low clustered areas, which again may be 420 

expected, as people are more likely to be able to maintain distance and the potential number of 421 

interactions is reduced.  422 

Once we had accounted for known drivers of case-rates, we investigated how landscape structure 423 

and park use (i.e. mobility in green spaces) affected residual case rates using the green 424 

transmission model. Here we found that using parks, relative to other types of mobility, was 425 

associated with a reduction in case rates (Figure 5-6). However, reducing overall mobility (i.e. 426 

mobility to all amenity areas) led to a far more substantial decline in case rates. For example, a 20% 427 

reduction was projected to reduce cases by c.35%, whilst a 20% increase in park use was projected 428 

to reduce cases by 5% to 10% (Figure 6). This suggests that the use of parks may have modestly 429 

helped in reducing transmission rates in some areas during the pandemic, but reducing overall 430 

mobility is substantially more beneficial than maintaining mobility at pre-pandemic levels and 431 

spending that mobility in parks.  432 

Whilst park use, overall, had a relatively small effect, we did note stronger effects of park use when 433 

the context of the local area was considered as using parks was beneficial in authorities with low 434 

green space and authorities with contiguous green space (Figure 5e-f and Figure 6). That park use 435 

has a minor beneficial effect overall seems to support our hypothesis that recreation in green space 436 

and parks may be safer than in other amenity areas. This is probably because it is easier to 437 

maintain distance and green spaces have fewer surfaces which could result in transmission if 438 
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contaminated. However, the limiting impact of this when green space is high and accessible seems 439 

to suggest diminishing returns in how park use can impact COVID-19 transmission. This is perhaps 440 

not surprising if the main value of parks in this context is as an alternative to other relatively more 441 

hazardous amenity areas. Consequently, if there are other safe options outside of public parks then 442 

parks will likely have little impact. However, our findings do suggest that the use of public parks in a 443 

highly urbanised area may be advantageous, though as noted above the strongest effect was from 444 

the reduction of all forms of mobility. Therefore, cautiously, and given that it corresponds with 445 

common sense, we suggest that reducing mobility is a successful strategy for reducing case rates 446 

but given a need for some non-essential time outside of a home, using green spaces such as local 447 

parks may be the next best thing, particularly in highly urbanised areas.       448 

A major limitation of the work is the difficulty in comparing across local authorities that vary 449 

simultaneously in many different variables likely important to case rates. This makes inference 450 

about the importance of their individual effects very difficult and so effect sizes should be interpreted 451 

cautiously and with caveat. Another challenge is that pandemics are rare events, consequently, our 452 

analysis covers only a snapshot of time for each local authority. During this period, many different 453 

factors not included in the analysis (e.g. chance super spreading events) may have explained much 454 

of the variation between local authorities. Despite this, the model fits are reasonably high. An 455 

additional limitation in our analyses is the absence of complete Google mobility data in some local 456 

authorities. We handled these missing values with imputation and attempted to ensure models were 457 

robust by comparing imputed models with complete-case models. Encouragingly, our complete-458 

case and imputed results are very similar, which suggests the imputation has not introduced any 459 

missing data bias (Johnson et al., 2021) – although both the imputation and complete-case analysis 460 

could just be equally wrong. Given this uncertainty, and the further limitations we have identified 461 

above, our mobility findings should be interpreted cautiously.  462 

Understanding the risks of different amenity areas could be important for longer-term management 463 

of COVID-19 and the landscape-dependency of this advice could be important for developing ‘local-464 

lockdown’ guidance. In particular, access to green spaces has been shown to have benefits for 465 

mental and physical well-being (Slater et al., 2020; Soga et al., 2020), and consequently, 466 
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understanding the relative risks of using these areas is important. Our results show that COVID-19 467 

case rates may be reduced with individuals spending time in parks, relative to other amenity areas, 468 

especially in urbanised, high-density areas. Although further research is needed, these findings 469 

suggest that the use of parks for recreational activity in these contexts could be advisable, 470 

demonstrating a possible additional utility of these green spaces in addition to the known benefits to 471 

health and wellbeing (de Vries et al., 2003; Mitchell and Popham, 2007; Nutsford et al., 2013) in 472 

normal non-pandemic conditions.     473 
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