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Abstract

The Advanced Normalizations Tools ecosystem, known as ANTsX, consists of multiple open-

source software libraries which house top-performing algorithms used worldwide by scientific

and research communities for processing and analyzing biological and medical imaging data.

The base software library, ANTs, is built upon, and contributes to, the NIH-sponsored

Insight Toolkit. Founded in 2008 with the highly regarded Symmetric Normalization image

registration framework, the ANTs library has since grown to include additional functionality.

Recent enhancements include statistical, visualization, and deep learning capabilities through

interfacing with both the R statistical project (ANTsR) and Python (ANTsPy). Additionally,

the corresponding deep learning extensions ANTsRNet and ANTsPyNet (built on the popular

TensorFlow/Keras libraries) contain several popular network architectures and trained models

for specific applications. One such comprehensive application is a deep learning analog for

generating cortical thickness data from structural T1-weighted brain MRI. Not only does this

significantly improve computational efficiency and provide comparable-to-superior accuracy

over the existing ANTs pipeline but it also illustrates the importance of the comprehensive

ANTsX approach as a framework for medical image analysis.
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The Advanced Noramlization Tools (ANTs) is a state-of-the-art, open-source software toolkit

for image registration, segmentation, and other functionality for comprehensive biological

and medical image analysis. Historically, ANTs is rooted in advanced image registration

techniques which have been at the forefront of the field due to seminal contributions that

date back to the original elastic matching method of Bajcsy and co-investigators1–3 and

continues to set the standard in the field. Various independent platforms have been used

to evaluate ANTs tools since their early development. In a landmark paper4, the authors

reported an extensive evaluation using multiple neuroimaging datasets analyzed by fourteen

different registration tools, including the Symmetric Normalization (SyN) algorithm5 found

in ANTs6, and found that “ART, SyN, IRTK, and SPM’s DARTEL Toolbox gave the best

results according to overlap and distance measures, with ART and SyN delivering the most

consistently high accuracy across subjects and label sets.” This superior performance was

reinforced in a completely different pulmonary imaging evaluation, the Evaluation of Methods

for Pulmonary Image REgistration 2010 (EMPIRE10)7, where ANTs was the top performer

for the benchmarks used to assess lung registration accuracy and biological plausibility of the

inferred transform (i.e., boundary alignment, fissure alignment, landmark correspondence,

and displacement field topology). The competition has continued to the present where SyN

has remained the top-ranked algorithm. Even indirect assessments have demonstrated the

performance superiority of ANTs registration. In the MICCAI 2012 multi-atlas label fusion

segmentation challenge for brain data, the joint label fusion algorithm8 (coupled with SyN)

was the top performer. In fact, 6 of the top 10 performing entries in that competition used

ANTs for performing the spatial normalization. A separate competition9 for segmentation

of brain tumors from multi-modal MRI held under the auspices of MICCAI 2013 was won

by ANTs developers where the registration capabilities were crucial for performance10. The

following year an ANTs-based entry for the STACOM workshop concerning cardiac motion

estimation won the best paper award11.

The ANTs registration component not only encodes advanced developments in image regis-

tration research but also packages these normalization tools as a full-featured platform that

includes an extensive library of similarity measures, transformation types, and regularizers
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which are built upon the robust Insight Toolkit and vetted by users and developers from all

over the world. In fact, based on performance and innovations within the ANTs toolkit and

our track record of contributions to the ITK registration development efforts, our group was

selected for the most recent major refactoring of the ITK image registration component12.

Not only did this development involve porting previously reported research but also included

several novel contributions. For example, a newly formulated B-spline variant of the original

SyN algorithm was proposed and evaluated using multiple publicly available, annotated

datasets and demonstrated statistically significant improvement in label overlap measures13.

Moreover, the ANTs/ITK code is open-source and community-developed which allows the

full community, including commercial projects, use and build on this framework.

Since its inception, though, ANTs has expanded significantly beyond its image registration

origins. Other core contributions include template building14, segmentation15, image pre-

processing (e.g., bias correction16 and denoising17), joint label fusion8,18, and brain cortical

thickness estimation19,20 (cf Table 1). Additionally, ANTs has been integrated into multiple,

publicly available workflows such as fMRIprep21 and the Spinal Cord Toolbox22. Frequently

used ANTs pipelines, such as cortical thickness estimation20, have been integrated into Docker

containers and packaged as Brain Imaging Data Structure (BIDS)23 and FlyWheel applica-

tions (i.e., “gears”). It has also been independently ported for various platforms including

Neurodebian24 (Debian OS), Neuroconductor25 (the R statistical project), and Nipype26

(Python). Even competing softwares, such as FreeSurfer27, have incorporated well-performing

and complementary ANTs components16,17 into their own libraries.

Over the course of its development, ANTs has been extended to complementary frameworks

resulting in the the Python- and R-based ANTsPy and ANTsR toolkits, respectively. These

ANTs-based interfaces with extremely popular, high-level, open-source programming platforms

have significantly increased the user base of ANTs and facilitated research workflows which

were not previously possible. The rapidly rising popularity of deep learning motivated further

recent enhancement of ANTs and its extensions. Despite the existence of an abundance of

online innovation and code for deep learning algorithms, much of it is disorganized and lacks

a uniformity in structure and external data interfaces which would facilitate greater uptake.
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Functionality Citations

SyN registration5 2616
bias field correction16 2188
ANTs registration evaluation6 2013
joint label fusion18 669
template generation14 423
cortical thickness: implementation20 321
MAP-MRF segmentation15 319
ITK integration12 250
cortical thickness: theory19 180

Table 1: The significance of core ANTs tools in terms of their number of citations (from
October 17, 2020).

Figure 1: An illustration of the tools and applications available as part of the ANTsRNet
and ANTsPyNet deep learning toolkits. Both libraries take advantage of ANTs functionality
through their respective language interfaces—ANTsR (R) and ANTsPy (Python). Building
on the Keras/TensorFlow language, both libraries standardize popular network architectures
within the ANTs ecosystem and are cross-compatible. These networks are used to train
models and weights for such applications as brain extraction which are then disseminated to
the public.
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With this in mind, ANTsR spawned the deep learning ANTsRNet package which is a growing

Keras/TensorFlow-based library of popular deep learning architectures and applications

specifically geared towards medical imaging. Analogously, ANTsPyNet is an additional

ANTsX complement to ANTsPy. Both, which we collectively refer to as “ANTsXNet”, are

co-developed so as to ensure cross-compatibility such that training performed in one library is

readily accessible by the other library. In addition to a variety of popular network architectures

(which are implemented in both 2-D and 3-D), ANTsXNet contains a host of functionality

for medical image analysis that have been developed in-house and collected from other

open-source projects. For example, an extremely popular ANTsXNet application is a multi-

modal brain extraction tool that uses different variants of the popular U-net28 architecture

for segmenting the brain in multiple modalities. These modalities include conventional

T1-weighted structural MRI as well as T2-weighted MRI, FLAIR, fractional anisotropy and

BOLD. Demographic specialization also includes infant T1-weighted and/or T2-weighted MRI.

Additionally, we have included other models and weights into our libraries such as a recent

BrainAGE estimation model29, based on > 14, 000 individuals; HippMapp3r30, a hippocampal

segmentation tool; the winning entry of the MICCAI 2017 white matter hyperintensity

segmentation competition31; MRI super resolution using deep-projection networks32; and

NoBrainer, a T1-weighted brain extraction approach based on FreeSurfer. (see Figure 1).

The most recent ANTsX developmental work involves recreating our popular ANTs cortical

thickness pipeline20,33 within the ANTsXNet framework for, amongst other potential benefits,

increased computational efficiency. This structural processing pipeline is currently available

as open-source within the ANTsXNet libraries which underwent a thorough evaluation using

both cross-sectional and longitudinal data and discussed within the context of our previous

evaluation of our classical ANTs pipelines20,33. Note that related work has been recently

reported by external groups34,35. Fortunately, these overlapping contributions provide a

context for comparison to simultaneously motivate the utility of the ANTsX ecosystem and

to editorialize with respect to best practices in the field.
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Results

The original ANTs cortical thickness pipeline20 consists of the following steps:

• preprocessing: denoising17 and bias correction36;

• brain extraction37;

• brain segmentation15 comprising the

– cerebrospinal fluid (CSF),

– gray matter (GM),

– white matter (WM),

– deep gray matter,

– cerebellum, and

– brain stem; and

• cortical thickness estimation19.

Our recent longitudinal variant incorporates an additional step involving the construction of

a single subject template14 followed by normal processing.

Although the resulting thickness maps are conducive to voxel-based38 and related analyses39,

here we employ the well-known Desikan-Killiany-Tourville (DKT)40 labeling protocol (31

labels per hemisphere) to parcellate the cortex for averaging thickness values regionally. This

allows us to 1) be consistent in our evaluation strategy for comparison with our previous

work20,33 and 2) leverage an additional deep learning-based substitution within the proposed

pipeline.

Note that the entire analysis/evaluation framework, from preprocessing to statistical analysis,

is made possible through the ANTsX ecosystem and simplified through the open-source R and

Python platforms. Preprocessing, image registration, and cortical thickness estimation are

all available through the ANTsPy and ANTsR libraries whereas the deep learning steps are

made possible through networks constructed and trained via ANTsRNet/ANTsPyNet with

data augmentation strategies and other utilities built from ANTsR/ANTsPy functionality.

The brain extraction, brain segmentation, and DKT parcellation deep learning components
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were trained using data derived from our previous work20. Specifically, the IXI1 , MMRR41,

NKI2, and OASIS3 data sets, and the corresponding derived data, comprising over 1200

subjects from age 4 to 94, were used for all network training. Brain extraction employs

a traditional 3-D U-net network28 with whole brain, template-based data augmentation42

whereas brain segmentation and DKT parcellation are processed via 3-D U-net networks

with attention gating43 on image octant-based batches. We emphasize that a single model

was created for each of these steps and was used for all the experiments described below.

Cross-sectional cortical thickness
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Combined IXI MMRR NKI Oasis SRPB
Data set
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Figure 2: Distribution of mean RMSE values (500 permutations) for age prediction across the
different data sets between the traditional ANTs and deep learning-based ANTsXNet pipelines.
Total mean values are as follows: Combined—9.3 years (ANTs) and 8.2 years (ANTsXNet);
IXI—7.9 years (ANTs) and 8.6 years (ANTsXNet); MMRR—7.9 years (ANTs) and 7.6 years
(ANTsXNet); NKI—8.7 years (ANTs) and 7.9 years (ANTsXNet); OASIS—9.2 years (ANTs)
and 8.0 years (ANTsXNet); and SRPB—9.2 years (ANTs) and 8.1 years (ANTsXNet).

Due to the absence of ground-truth, we utilize the evaluation strategy from our previous

work20 where we used cross-validation to build and compare age prediction models from

data derived from both the proposed ANTsXNet pipeline and the established ANTs pipeline.

Specifically, we use “age” as a well-known and widely-available demographic correlate of
1https://brain-development.org/ixi-dataset/
2http://fcon_1000.projects.nitrc.org/indi/pro/nki.html
3https://www.oasis-brains.org
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cortical thickness44 and quantify the predictive capabilities of corresponding random forest

classifiers45 of the form:

AGE ∼ V OLUME +GENDER +
62∑

i=1
T (DKTi) (1)

with covariates GENDER and V OLUME (i.e., total intracranial volume).4 T (DKTi) is

the average thickness value in the ith DKT region. Root mean square error (RMSE) between

the actual and predicted ages are the quantity used for comparative evaluation. As we

have explained previously20, we find these evaluation measures to be much more useful than

some other commonly applied criteria as they are closer to assessing the actual utility of

these thickness measurements as actual biomarkers for disease46 or growth. For example, in

recent work34 the authors employ correlation with FreeSurfer thickness values as the primary

evaluation for assessing relative performance with ANTs cortical thickness20. Aside from the

fact that this is a prime example of flawed5 circularity analysis47, such an evaluation does

not indicate relative utility as a biomarker.

In addition to the training data listed above, to ensure generalizability, we also compared

performance using the SRPB data set6 comprising over 1600 participants from 12 sites. Note

that we recognize that we are processing data through the proposed deep learning-based

pipeline that were used to train certain components of this pipeline. Although this does

not provide evidence for generalizability (which is why we include the much larger SRPB

data set), it is still interesting to examine the results since, in this case, the deep learning

training can be considered a type of noise reduction on the final model. It should be noted

that training did not use age prediction (or any other evaluation or related measure) as a

criterion to be optimized during network model training (i.e., circular analysis47).
4We used the randomForest package in R with the default hyperparameter values.
5Here, data selection is driven by the same criteria used to evaluate performance. Specifically, Deep-

SCAN network training utilizes FreeSurfer brain segmentation results. Thickness is highly correlated with
segmentation which varies characteristically between relevant software packages. Relative performance with
ANTs thickness (which does not use FreeSurfer for training) is then assessed by determining correlations
with FreeSurfer thickness values. Almost as problematic is their use of repeatability (which they confusingly
label as “robustness”) as an additional ranking criterion. Repeatability evaluations should be contextualized
within considerations such as the bias-variance tradeoff and quantified using relevant metrics, such as the
intra-class correlation coefficient which takes into account both inter- and intra-observer variability.

6https://bicr-resource.atr.jp/srpbs1600/
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The results are shown in Figure 2 where we used cross-validation with 500 permutations

per model per data set (including a “combined” set) and an 80/20 training/testing split.

The ANTsXNet deep learning pipeline outperformed the classical pipeline20 in terms of age

prediction in all data sets except for IXI. This also includes the cross-validation iteration

where all data sets were combined. Importance plots ranking the cortical thickness regions

and the other covariates of Equation (1) are shown in Figure 3. Rankings employ “MeanDe-

creaseAccuracy” which quantifies the decrease in model accuracy based on the exclusion of

that variable. Additionally, repeatability assessment on the MMRR data set yielded ICC

values (“average random rater”) of 0.99 for both pipelines.
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Figure 3: Importance plots for the SRPB data set using “MeanDecreaseAccuracy” for the
random forest regressors (i.e., cortical thickness regions, gender, and brain volume specified
by Equation (1).
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Figure 4: Measures for the both the supervised and unsupervised evaluation strategies,
respectively given in (a) and (b). (a) Log p-values for diagnostic differentiation of LMCI-CN,
AD-LMCI, and AD-CN subjects for all pipelines over all DKT regions. (b) Residual variability,
between subject, and variance ratio values per pipeline over all DKT regions.

Given the excellent performance and superior computational efficiency of the proposed

ANTsXNet pipeline for cross-sectional data, we evaluated its performance on longitudinal

data using the longitudinally-specific evaluation strategy and data we employed with the

introduction of the longitudinal version of the ANTs cortical thickness pipeline33. It should

be emphasized that, in contrast to the longitudinal version, the ANTsXNet pipeline is not

specifically tailored for longitudinal data, so we regard any positive performance in this

domain as a plus that motivates the development of future longitudinal extensions. The
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ADNI-1 data used for our previous evaluation33 consisted of over 600 subjects (197 cognitive

normals, 324 LMCI subjects, and 142 AD subjects) with one or more follow-up image

acquisition sessions every 6 months (up to 36 months) for a total of over 2500 images. In

addition to the ANTsXNet pipeline for the current evaluation, our previous work included

the FreeSurfer27 cross-sectional (FSCross) and longitudinal (FSLong) streams, the ANTs

cross-sectional pipeline (ANTsCross) in addition to two longitudinal ANTs-based variants

(ANTsNative and ANTsSST). Two evaluation measurements, one unsupervised and one

supervised, were used to assess comparative performance between all five pipelines. We add

the results of the ANTsXNet pipeline evaluation in relation to these other pipelines to provide

a comprehensive overview of relative performance.

The first, supervised evaluation employed Tukey post-hoc analyses with false discovery rate

(FDR) adjustment to test the significance of the LMCI-CN, AD-LMCI, and AD-CN diagnostic

contrasts. This is provided by the following LME model

∆Y ∼Ybl + AGEbl + ICVbl + APOEbl +GENDER +DIAGNOSISbl (2)

+ V ISIT : DIAGNOSISbl + (1|ID) + (1|SITE).

Here, ∆Y is the change in thickness of the kth DKT region from baseline (bl) thickness Ybl

with random intercepts for both the individual subject (ID) and the acquisition site. The

subject-specific covariates AGE, APOE status, GENDER, DIAGNOSIS, and V ISIT

were taken directly from the ADNIMERGE package.

Second, linear mixed-effects (LME)48 modeling was used to quantify between-subject and

residual variabilities, the ratio of which provides an estimate of the effectiveness of a given

biomarker for distinguishing between subpopulations. In order to assess this criteria while

accounting for changes that may occur through the passage of time, we used the following
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Bayesian LME model:

Y k
ij ∼ N(αk

i + βk
i t, σ

2
k) (3)

αk
i ∼ N(αk

0, τ
2
k ) βk

i ∼ N(βk
0 , ρ

2
k)

αk
0, β

k
0 ∼ N(0, 10) σk, τk, ρk ∼ Cauchy+(0, 5)

where Y k
ij denotes the ith individual’s cortical thickness measurement corresponding to the

kth region of interest at the time point indexed by j and specification of variance priors

to half-Cauchy distributions reflects commonly accepted best practice in the context of

hierarchical models49. The ratio of interest, rk, per region of the residual variability, τk, and

between-subject variability, σk is

rk = τk

σk

, k = 1, . . . , 62 (4)

where the posterior distribution of rk was summarized via the posterior median.

Results for both longitudinal evaluation scenarios are shown in Figure 4. Log p-values are

provided in Figure 4(a) which demonstrate excellent LMCI-CN and AD-CN differentiation

and comparable AD-LMCI diffierentiation relative to the other pipelines. Despite these strong

results, Figure 4(b) shows that even better performance may be possible for a longitudinal

extension to ANTsXNet. In a longitudinal setting, we prefer to see lower values for residual

variability and higher values for between-subject variability, leading to a larger variance

ratio. ANTsXNet performs remarkably poorly for these measures, suggesting that even better

classification performance—e.g., superior differentiation between LMCI and AD cohorts—is

completely possible for an ANTsXNet extension that leverages the longitudinal information

the current implementation does not. One such piece of information is repeated measures, i.e.,

the fact that we observe some subjects multiple times. Failure to account for this information

explains lower between-subject variabilities for ANTsXNet. In turn, all variability expresses

itself through higher within-subject residuals. But there is an additional reason for ANTsXNet

exhibiting higher residual variability. Neural networks achieve their power by increasing their

effective degrees of freedom way beyond those of traditional linear models. In terms of the
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bias-variance tradeoff, such an increase in model complexity translates to significantly less

predictive bias while simultaneously leading to greater predictive variance. This fact explains

how ANTsXNet can perform so well while retaining such a large residual variability. An

interesting question is how longitudinal extensions to ANTsXNet will perform with respect

to the same measure.

Discussion

The ANTsX software ecosystem provides a comprehensive framework for quantitative biologi-

cal and medical imaging. Although ANTs, the original core of ANTsX, is still at the forefront

of image registration technology, it has moved signicantly beyond its image registration

origins. This expansion is not confined to technical contributions (of which there are many)

but also consists of facilitating access to a wide range of users who can use ANTsX tools

(whether through bash scripting, Python scripting or R scripting) to construct tailored

pipelines for their own studies or to take advantage of our pre-fabricated pipelines. And

given the open-source nature of the ANTsX software, usage is not limited, for example, to

academic institutions—a common constraint characteristic of other packages.

One of our most widely used pipelines is the estimation of cortical thickness from neuroimaging.

This is understandable given the widespread usage of regional cortical thickness as a biomarker

for developmental or pathological trajectories of the brain. In this work, we used this well-

vetted ANTs tool to provide training data for producing an alternative version which leverages

deep learning for improved computational efficiency and also provides superior performance

with respect to previously proposed evaluation measures for both cross-sectional20 and longi-

tudinal scenarios33. In addition to providing the tools which generated the original training

data for the proposed ANTsXNet pipeline, the ANTsX ecosystem provides a full-featured

platform for the additional steps such as preprocessing (ANTsR/ANTsPy); data augmenta-

tion (ANTsR/ANTsPy); network construction and training (ANTsRNet/ANTsPyNet); and

visualization and statistical analysis of the results (ANTsR/ANTsPy).

It is the comprehensiveness of ANTsX that provides significant advantages over much of the
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deep learning work that is currently taking place in medical imaging and related fields. For

example, related work34 also built a similar pipeline and assessed performance. However, due

to the lack of a complete processing and analysis framework, training data was generated

using the FreeSurfer stream, deep learning-based brain segmentation employed DeepSCAN50

(in-house software), and cortical thickness estimation19 used the ANTs toolkit. For the reader

interested in reproducing the authors’ results, they are primarily prevented from doing so due,

as far as we can tell, to the lack of the public availability of the only software they actually

produced themselves, i.e., DeepSCAN. However, even further inhibiting usage is the fact that

the external utilities derive from different sources and so issues such as interoperability are

relevant.

In terms of future work, the recent surge and utility of deep learning in medical image analysis

has significantly guided the areas of active ANTsX development. As demonstrated in this

work with our widely used cortical thickness pipeline, there are many potential benefits of

deep learning analogs to existing ANTs tools as well as the development of new ones. As

mentioned, the proposed cortical thickness pipeline is not specifically tailored for longitudinal

data. Nevertheless, performance is comparable-to-superior relative to existing pipelines

depending on the evaluation metric. We see possible longitudinal extensions incorporating

aspects of the single-subject template construction, as described in our previous work33, in

addition to the possibility of incorporating subject ID and months as additional network

inputs.

Methods

Software, average DKT regional thickness values for all data sets, and the scripts to perform

both the analysis and obtain thickness values for a single subject are provided as open-source.

Specifically, all the ANTsX libraries are hosted on GitHub (https://github.com/ANTsX). The

cross-sectional data and analysis code are available as .csv files and R scripts at the GitHub

repository dedicated to this paper (https://github.com/ntustison/PaperANTsX) whereas the

longitudinal data and evaluation scripts are organized with the repository associated with

our previous work33 (https://github.com/ntustison/CrossLong).
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ANTsXNet cortical thickness

import ants
import antspynet

# ANTsPy / ANTsPyNet processing for subject IXI002 -Guys -0828 - T1
t1_file = "IXI002 -Guys -0828 - T1.nii.gz"
t1 = ants. image_read ( t1_file )

# Atropos six - tissue segmentation
atropos = antspynet . deep_atropos (t1 , do_preprocessing =True , verbose =True)

# Kelly Kapowski cortical thickness ( combine Atropos WM and deep GM)
kk_segmentation = atropos ['segmentation_image ']
kk_segmentation [ kk_segmentation == 4] = 3
kk_gray_matter = atropos ['probability_images '][2]
kk_white_matter = atropos ['probability_images '][3] + atropos ['probability_images '][4]
kk = ants. kelly_kapowski (s= kk_segmentation , g= kk_gray_matter , w= kk_white_matter ,

its =45 , r=0.025 , m=1.5 , x=0, verbose =1)

# Desikan -Killiany - Tourville labeling
dkt = antspynet . desikan_killiany_tourville_labeling (t1 , do_preprocessing =True , verbose =True)

# DKT label propagation throughout the cortex
dkt_cortical_mask = ants. threshold_image (dkt , 1000 , 3000 , 1, 0)
dkt = dkt_cortical_mask * dkt
kk_mask = ants. threshold_image (kk , 0, 0, 0, 1)
dkt_propagated = ants. iMath (kk_mask , " PropagateLabelsThroughMask ", kk_mask * dkt)

# Get average regional thickness values
kk_regional_stats = ants. label_stats (kk , dkt_propagated )

Listing 1: ANTsPy/ANTsPyNet command calls for a single IXI subject in the evaluation study.

In Listing 1, we show the ANTsPy/ANTsPyNet code snippet for processing a single sub-

ject which starts with reading the T1-weighted MRI input image, through the genera-

tion of the Atropos-style six-tissue segmentation and probability images, application of

ants.kelly_kapowski (i.e., DiReCT), DKT cortical parcellation, subsequent label propaga-

tion through the cortex, and, finally, regional cortical thickness tabulation. Computation

time on a CPU-only platform is ~1 hour primarily due to the ants.kelly_kapowski function.

Note that there is a precise, line-by-line R-based analog available through ANTsR/ANTsRNet.

Both the ants.deep_atropos and antspynet.desikan_killiany_tourville_labeling

functions perform brain extraction using the antspynet.brain_extraction function. Inter-

nally, antspynet.brain_extraction contains the requisite code to build the network and

assign the appropriate hyperparameters. The model weights are automatically downloaded

from the online hosting site https://figshare.com (see the function get_pretrained_network

in ANTsPyNet or getPretrainedNetwork in ANTsRNet for links to all models and weights)
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and loaded to the constructed network. antspynet.brain_extraction performs a quick

translation transformation to a specific template (also downloaded automatically) using the

centers of intensity mass, a common alignment initialization strategy. This is to ensure

proper gross orientation. Following brain extraction, preprocessing for the other two deep

learning components includes ants.denoise_image and ants.n4_bias_correction and an

affine-based reorientation to a version of the MNI template51. We recognize the presence of

some redundancy due to the repeated application of certain preprocessing steps. Thus, each

function has a do_preprocessing option to eliminate this redundancy for knowledgeable

users but, for simplicity in presentation purposes, we do not provide this modified pipeline

here. Although it should be noted that the time difference is minimal considering the

longer time required by ants.kelly_kapowski. ants.deep_atropos returns the segmenta-

tion image as well as the posterior probability maps for each tissue type listed previously.

antspynet.desikan_killiany_tourville_labeling returns only the segmentation label

image which includes not only the 62 cortical labels but the remaining labels as well. The

label numbers and corresponding structure names are given in the program help. Because

the DKT parcellation will, in general, not exactly coincide with the non-zero voxels of the

resulting cortical thickness maps, we perform a label propagation step to ensure the entire

cortex, and only the non-zero thickness values in the cortex, are included in the tabulated

regional values.

Training

Training differed slightly between models and so we provide details for each of these com-

ponents below. For all training, we used ANTsRNet scripts and custom batch generators.

Although the network construction and other functionality is available in both ANTsPyNet

and ANTsRNet (as is model weights compatibility), we have not written such custom batch

generators for the former (although this is on our to-do list). In terms of hardware, all

training was done on a DGX (GPUs: 4X Tesla V100, system memory: 256 GB LRDIMM

DDR4).

T1-weighted brain extraction. A whole-image 3-D U-net model28 was used in conjunction

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 21, 2020. ; https://doi.org/10.1101/2020.10.19.20215392doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.19.20215392
http://creativecommons.org/licenses/by/4.0/


with multiple training sessions employing a Dice loss function followed by categorical cross

entropy. As mentioned previously, a center-of-mass-based transformation to a standard

template was used to standardize such parameters as orientation and voxel size. However,

to account for possible different header orientations of input data, a template-based data

augmentation scheme was used42 whereby forward and inverse transforms are used to randomly

warp batch images between members of the training population (followed by reorientation to

the standard template). A digital random coin flipping for possible histogram matching52

between source and target images further increased possible data augmentation. Although

not detailed here, training for brain extraction in other modalities was performed similarly.

Deep Atropos. Dealing with 3-D data presents unique barriers for training that are often

unique to medical imaging. Various strategies are employed such as minimizing the number

of layers and/or the number of filters at the base layer of the U-net architecture (as we

do for brian extraction). However, we found this to be too limiting for capturing certain

brain structures such as the cortex. 2-D and 2.5-D approaches are often used with varying

levels of success but we also found better performance using full 3-D information. This

led us to try randomly selected 3-D patches of various sizes. However, for both the six-

tissue segmentations and DKT parcellations, we found that an octant-based patch strategy

yielded the desired results. Specifically, after a brain extracted affine normalization to the

MNI template, the normalized image is cropped to a size of [160, 190, 160]. Overlapping

octant patches of size [112, 112, 112] were extracted from each image and trained using

a batch size of 12 such octant patches with weighted categorical cross entropy as the loss

function. As we point out in our earlier work20, obtaining proper brain segmentation is

perhaps the most critical step to estimating thickness values that have the greatest utility as

a potential biomarker. In fact, the first and last authors (NT and BA, respectively) spent

much time during the original ANTs pipeline development20 trying to get the segmentation

correct which required manually looking at many images and manually adjusting where

necessary. This fine-tuning is often omitted or not considered when other groups34,53,54

use components of our cortical thickness pipeline which can be potentially problematic55.

Fine-tuning for this particular workflow was also performed between the first and last authors

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 21, 2020. ; https://doi.org/10.1101/2020.10.19.20215392doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.19.20215392
http://creativecommons.org/licenses/by/4.0/


using manual variation of the weights in the weighted categorical cross entropy. Ultimately,

we settled on a weight vector of (0.05, 1.5, 1, 3, 4, 3, 3) for the CSF, GM, WM, Deep GM,

brain stem, and cerebellum, respectively. Other hyperparameters can be directly inferred

from explicit specification in the actual code. As mentioned previously, training data was

derived from application of the ANTs Atropos segmentation15 during the course of our

previous work20. Data augmentation included small affine and deformable perturbations

using antspynet.randomly_transform_image_data and random contralateral flips.

Desikan-Killiany-Tourville parcellation. Preprocessing for the DKT parcellation train-

ing was similar to the Deep Atropos training. However, the number of labels and the

complexity of the parcellation required deviation from other training steps. First, labeling

was split into an inner set and an outer set. Subsequent training was performed separately

for both of these sets. For the cortical labels, a set of corresponding input prior probability

maps were constructed from the training data (and are also available and automatically

downloaded, when needed, from https://figshare.com). Training occurred over multiple

sessions where, initially, categorical cross entropy was used and then subsquently refined

using a Dice loss function. Whole-brain training was performed on a brain-cropped template

size of [96, 112, 96]. Inner label training was performed similarly to our brain extraction

training where the number of layers at the base layer was reduced to eight. Training also

occurred over multiple sessions where, initially, categorical cross entropy was used and then

subsquently refined using a Dice loss function. Other hyperparameters can be directly

inferred from explicit specification in the actual code. Training data was derived from

application of joint label fusion18 during the course of our previous work20. When call-

ing antspynet.desikan_killiany_tourville_labeling, inner labels are estimated first

followed by the outer, cortical labels.
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