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ABSTRACT 

Substantial sex differences have been reported in the physiological 
response to stress at multiple levels, including the release of the stress hormone, 
cortisol. Here, we explore the  genomic variants in 93 females and 196 males 
regulating the initial transcriptional response to  cortisol via glucocorticoid 
receptor (GR) activation. Gene expression levels in peripheral   

blood were obtained before and after GR-stimulation with the selective GR 
agonist  dexamethasone to identify differential expression following GR-
activation. Sex stratified analyses revealed that while the transcripts responsive to 
GR-stimulation were mostly overlapping between males and females, the 
quantitative trait loci (eQTLs) regulation differential transcription to GR-
stimulation were distinct. Sex-stratified eQTL SNPs (eSNPs)  were located in 
different functional genomic elements and sex-stratified transcripts were  enriched 

within postmortem brain transcriptional profiles associated with Major Depressive 
Disorder (MDD) specifically  in males and females in the cingulate cortex. Female 
eSNPs were enriched among  SNPs linked to MDD in genome wide association 
studies. Finally, transcriptional sensitive genetic profile scores derived from sex-
stratified eSNPS regulating differential transcription to GR-stimulation were 
predictive of depression status and depressive symptoms in a sex-concordant 

manner in a child and adolescent cohort (n = 584). These results suggest potential 
of eQTLs regulating differential transcription to GR-stimulation as biomarkers of 
sex-specific biological risk for stress-related psychiatric disorders. 
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INTRODUCTION 

Robust sex differences have been reported for stress-related psychiatric disorders, 

including mood and anxiety disorders, schizophrenia, and post-traumatic stress disorder 

(PTSD) (Abel et al., 2010; Diflorio & Jones, 2010; Ramikie & Ressler, 2018; Salk et al., 

2017). Beyond prevalence rates, consistent sex differences are observed in the age of onset, 

symptomology, comorbidities and responses to medication (Abel et al., 2010; Boyd et al., 

2015; Ramikie & Ressler, 2018; Salk et al., 2017). For instance, major depressive disorder 

(MDD) demonstrates higher prevalence rates in women than in men (Salk et al., 2017) and 

women exhibit heightened vulnerability to mood symptoms in association with stress-induced 

inflammatory processes (Bekhbat & Neigh, 2018). Despite the accumulating evidence for sex 

differences in stress-related pathogenesis of psychiatric conditions, the etiological 

mechanisms responsible for these differences are not well understood. Elucidating sex-related 

factors that moderate stress susceptibility is critical for targeted prevention and treatment 

strategies.  

Evidence suggests that a dysregulation of the hypothalamic-pituitary-adrenal (HPA) 

axis contributes to vulnerability to stress (Bale & Epperson, 2015; Bekhbat & Neigh, 2018; 

Gold, 2015; Stephens et al., 2016). Exposure to stressful environments or threat leads to the 

activation of the HPA axis, with release of hypothalamic corticotropin-releasing hormone 

(CRH) that in turn stimulates release of adrenocorticotropin from the pituitary into the 

peripheral circulation. This leads to the release of glucocorticoids (GC) from the adrenal 

cortex. GCs bind to mineralo- and glucocorticoid receptors (GR), with the GR regulating 

biological adaptations to chronic stressors (Matthews, 1998; Owen & Matthews, 2003; Reul 

& De Kloet, 1985). The GR is highly expressed in most tissues both peripherally and 

centrally. Activation of GR by GCs causes the translocation of GR from the cytoplasm to the 

nucleus (de Kloet et al., 2005). There it binds to glucocorticoid response elements (GREs) 

and regulates gene expression. The resulting biological cascade has broad biological effects, 

initiating physiological changes in the body for adaptation to threat, and also providing 

negative feedback regulation to the brain for recovery (Sapolsky et al., 2000). 

Sex differences in the stress response have been amply demonstrated at the 

physiological, hormonal, and neuroinflammatory levels (Bale & Epperson, 2015; Bekhbat & 

Neigh, 2018). In human studies, sex differences have been reported in both physiological and 

emotional responses to standardized stress tests, such as the Trier Social Stress Test (Childs 

et al., 2010; Kelly et al., 2008; Liu et al., 2017). Importantly, these stress response indices 
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demonstrate abnormalities following exposure to childhood trauma (Tiwari & Gonzalez, 

2018) and in stress-related psychiatric disorders (Zorn et al., 2017). Thus, a better 

understanding of sex differences in the stress response may inform the sex-biased pathways 

to stress- and trauma-related psychiatric disorders.  

Sex differences in the stress response have largely been attributed to gonadal hormone 

changes. Sex chromosomes determine gonad development and gonadal hormones then alter 

regulatory pathways affecting the transcriptome and epigenome in sex-specific ways 

(Morrison et al., 2014). Indeed, the transcriptome (Aguet et al., 2020a, 2020b; Ellegren & 

Parsch, 2007; Jansen et al., 2014) and epigenome (Jessen & Auger, 2011; Sugathan & 

Waxman, 2013) are highly sex-specific. Animal models have shown that transcriptional 

changes due to stress exposure are sex-specific in the hippocampus (Rowson et al., 2019) and 

hypothalamus (Karisetty et al., 2017). Sex-specificity of the transcriptome extends to 

transcriptional signatures of MDD in humans (Brivio et al., 2020). For instance, MDD-

associated transcriptional networks across brain regions are highly disparate between males 

and females, with sex-stratified results converging with sex differences in a mouse model of 

chronic social stress (Labonté et al., 2017). Taken together, these findings suggest a role for 

sex differences in genome function and regulation in sex-specific etiologies of stress-related 

disorders  (Khramtsova et al., 2019).  

Although allele frequencies do not differ between males and females across the 

autosomes (Boraska et al., 2012), GWAS sufficiently powered to allow stratification by sex 

have demonstrated the heterogeneity of genetic effects between males and females in 

association with complex traits (Khramtsova et al., 2019). Genetic variants may indeed show 

sex bias in their regulation of gene expression, supported by identified autosomal sex-biased 

cis-expression quantitative trait loci (eQTLs) in whole blood (Aguet et al., 2020a; Yao et al., 

2014). Thus, in addition to regulation across the genome by gonadal hormones, there may 

also be sex-specific influences of genetic variants on downstream epigenetic and regulatory 

elements. Targeting these sex differences in genetic regulation of stress pathways, in 

particular, may elucidate sex-specific pathways of risk for psychiatric disorders.  

Previously, we explored genetic variants that regulate the GR-response, defined as 

the immediate transcriptional response to glucocorticoids in humans, in our design via 

administration of dexamethasone, a selective agonist for GR (Arloth, Bogdan, et al., 2015). 

By quantifying gene expression in peripheral blood at baseline and three hours post 

dexamethasone administration, we reported eQTLs which modulate the transcriptome 

response to GR-activation in men. The eQTL SNPs (eSNPs) were shown to be enriched 
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among genetic variants associated with schizophrenia as well as MDD and to predict 

amygdala reactivity to threat (Arloth et al., 2015) as well as neurovascular-coupling related 

features of the brain stress response (Elbau et al., 2018). The transcripts regulated by these 

variants form tight co-expression networks. Using an animal model of exposure to adversity 

across development (Santarelli et al., 2017), we observed that different combinations of early 

and adult environments (supportive vs. stressful) substantially affect co-expression structure 

of these networks in a highly brain region-specific manner (Zimmermann et al., 2019). 

However, this set of eQTLs and regulated transcripts was identified in a male only cohort.  

Given the above described sex differences in the stress-response as well as in the 

prevalence and manifestation of psychiatric disorders, we conducted a sex-stratified analysis 

of genetic regulation of the transcriptional response to GR-activation in peripheral blood 

cells. We found that while transcripts regulated by GR-activation were largely overlapping in 

males and females, genetic variants moderating these GR-induced transcriptional changes 

(GR-eQTLs) were mainly identified in only females or males, suggesting that distinct 

genetic features moderate the transcriptional response to GR-activation in the two sexes. The 

transcripts regulated by GR-eQTLs (etranscripts) were enriched among sex-stratified 

transcriptional signatures of MDD in post-mortem brain tissue (Labonté et al., 2017). Sex-

stratified GR-eQTLs were enriched in GWAS signals for MDD. Transcriptional sensitive 

genetic profile scores derived from sex-stratified GR-eQTLs also predicted depression and 

depressive symptoms in an adolescent cohort in a sex-specific manner. Our results underline 

the importance of sex-stratified analyses in stress-induced gene-regulation for a better 

understanding of stress-related psychiatric disorders.  
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RESULTS 

Whole blood samples from 289 individuals (93 females [48 patients with depression and 45  

healthy controls] and 196 males [81 patients with depression and 115 controls]) recruited at 

the Max Planck Institute of Psychiatry (MPIP) were analyzed for gene expression levels at 

baseline and three hours post stimulation by the selective GR-agonist dexamethasone (see 

Arloth et al. 2015), see Table 1 for description. 11,994 transcripts entered the analysis. 

Additionally, all samples were genotyped, with a total of 3.9 Million SNPs available for 

analysis. All analyses were conducted only on autosomes to allow comparison between males 

and females and controlled for age, case-control status, BMI and cellular heterogeneity using 

surrogate variables (n=3, see Supplementary Figure 1). Figure 1 displays an overview of 

the data analysis and results outlined below.  

GR-stimulated gene expression: comparison of males and females 

First, we  assessed the main effects of dexamethasone on gene transcription in a 
combined differential GR-response gene expression analysis (combined GR-
DEA) in all participants controlling for sex (Figure 1). These results were then 

compared to differential gene expression analyses stratified by sex (sex-stratified 
GR-DEA), as well as a differential gene expression analysis testing the effect of 
sex on GR-stimulated changed in gene expression (see Supplementary Results and 
Supplementary Table 1). The combined GR-DEA identified 7,462 out of 11,994 
autosomal transcripts to be significantly differentially expressed at an FDR of 

0.05, and 2,352 transcripts (31.5%) to  surpass an absolute log2 fold change (FC) 

threshold of 0.2 (see Supplementary Table 2). The majority of transcripts found 
to be regulated by dexamethasone in the combined GR-DEA were also identified 
in the sex-stratified GR-DEA, with few additional transcripts emerging (n = 253 in 
females and n = 15 in males;  Figure 2A). Next, we assessed the consistency of 
the magnitude and direction of GR-DE changes across males and females (Figure 
2B-C, Supplementary Table 2). Overall, larger log FCs were  found in females 

(Figure 2D and Supplementary Figure 2). Further analyses supported that  
effects sizes, rather than direction, were moderated by sex, with consistent effect 
directions found in males and females (Figure 2C-D, see Supplemental Results). 
Sex-stratified GR-DEA effects were likely not driven by differences in 
dexamethasone serum levels. At the timepoint of the second blood draw, no 
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differences in dexamethasone levels were observed between sexes in a subset of 
162 males and 68 females (mean ln dexamethasone level = 2±0.25 in males and 
1.92±0.93 in females, p value = 0.46). Thus, we conclude that sex differences in 

GR-response are largely due to  magnitude of the transcriptome change rather than 
direction.  

Sex differences in genetic regulation of GR-response 

We next investigated sex differences in the genetic regulation of the transcriptional 
GR response. We focused on cis-eQTLs, which were defined as associations 
between SNPs and transcripts within a 1Mb window. Cis-eQTL analyses were 
performed to identify baseline eQTLs (eSNPs significantly related to gene 
expression in unstimulated mRNA) and GR-eQTLs (eSNPs significantly related to 
the change in gene expression after GR stimulation). These analyses were carried out 

again in the combined sample (combined baseline-eQTL analysis and combined 
GR-eQTL analysis) and stratified by sex (sex-stratified baseline-eQTL analysis 
and sex-stratified GR-eQTL analysis). Although a cohort was not available to 
validate sex-stratified GR-eQTLs, we used publicly available data to validate sex-
stratified baseline-eQTLs.  We again focused on overlap of cis GR-eQTL effects in 

the sex-stratified analysis (i.e., common combinations of eSNPs and etranscripts), 
and the consistency of effect  sizes and directions between males and females.  

The combined GR-eQTL analysis identified 10,398 significant GR-eQTLs after 
multiple test  correction, involving 717 etranscripts and 10,078 eSNPs. The 10,078 
unique GR-eSNPs can  be summarized into 747 uncorrelated GR-eSNP bins, i.e. sets 
of SNPs in linkage  disequilibrium (LD) represented by a tag eSNP (see Methods and 
Arloth et al., 2015). These  747 tag GR-eSNP bins correspond to 804 GR-eQTL bins, 
i.e., eSNP bin-probe combinations,  with some tag eSNPs associated with the 

expression of more than one transcript and are listed  in Supplementary Table 3.  

Next, the sex-stratified GR-eQTL analysis (Figure 3A) again indicated that effect  
directions were consistent between males and females (Figure 3B). In females, GR 
eQTLs were found for 648 eQTL bins comprising 613 etranscripts and 601 tag eSNP  
(Supplementary Table 4). Slightly more eQTLs were identified in males with 705 
eQTL  bins involving 662 etranscripts and 668 tag eSNPs (Supplementary Table 5). 
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By  overlapping the female and male stratified results with the combined GR-eQTL 
analysis, we show that 34% of the male GR-response etranscripts (n = 233) and 16% 
of the female GR-response etranscripts (n = 95) were  identified as etranscripts by the 

combined model (Figure 3C). Thus, in contrast to the GR-DEA results, the  sets of 
etranscripts are largely non-overlapping (Figure 3D and Supplementary Figure 3).  

An example of a female GR-eQTL compared to males and to the combined 
sample is displayed in Figures 3E-F. Approximately 50% of etranscripts identified 
in the sex-stratified GR-eQTL analysis were also identified as sex-stratified GR-DEA 

transcripts (Figure 3D), with female etranscripts  exhibiting larger log2FCs relative 

to males (see Supplemental Results). We next compared  enrichment of biological 
functions for GR etranscripts between males and females. Female  etranscripts were 
enriched for regulation of natural killer cell mediated immunity and male  
etranscripts were enriched for regulation of cyclin-dependent protein kinase activity, 
positive regulation of extrinsic apoptotic signaling pathway, peptide metabolic 
processes, and other  functions (see Supplementary Table 7). Additionally, we were 
able to validate the majority  (86% male baseline eQTLs and 84% female baseline 
eQTLs) of baseline eQTLs in publicly available data (see Supplementary Results).  

Functional and regulatory context of sex-stratified GR-eSNPs 

We next characterized the identified GR-eSNPs (unpruned) in terms of genomic location, 

regulatory features, and enrichment for sex hormone response elements. GR-eSNPs for 

females were significantly more likely to be located in distal intergenic regions (40.9%) 

compared to male GR-eSNPs (34.4%), see Figure 4A (fisher exact p-value = 1.4x10-14). GR-

male eSNPs were significantly more likely to cluster in intronic regions (50% vs. 42.9% in 

first or other introns for GR male and GR-female eSNPs, respectively (fisher exact p-value = 

3.4x10-16). 

 As eQTLs have previously been associated with regulatory regions (Fadason et al., 

2018), we quantified enrichments of male and female GR-eSNP sets for regulatory features. 

For all tests, enrichment for sex-stratified GR-eSNPs were tested for significant enrichment 

compared to sex-stratified baseline eSNPs set as background to ensure sex-stratified effects 

were specific to eSNP regulation of the GR-response, specifically. Thus, male and female 

GR-eSNPs had to show significant enrichment relative to male and female baseline eSNPs. 

First, we used DeepSEA, a deep neural network pretrained with DNase-seq and ChIP-seq 

data from the ENCODE project, to predict the likelihood that GR-sex eSNPs exert regulatory 
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effects on chromatin features. We found 8.4% of the GR female eSNPs (n = 500) with 

significantly overlapping DeepSEA features (e-value < 0.01) and 10.7% of the male GR 

eSNPs (n = 851), contained DeepSEA features (Figure 4B). Additionally, using GRE ChIP-

Seq peaks from ENCODE lymphoblastoid cell lines treated with dexamethasone, we 

observed significant overlap within GR-binding sites (GREs) for female eSNPs (n = 58 out of 

5586 eSNPs, enrichment p-value = 0.022, OR = 1.46, Figure 4B), but not male eSNPs.  

To determine if the sex-stratified GR eSNPs are more likely to be located within sex 

hormone responsive regulatory elements, we calculated the number of eSNPs that are located 

within androgen response elements (AREs) and estrogen response elements (EREs), using 

data from Remap (see Methods). Of all 5,586 GR-female eSNPs, 4.89% (n = 273, Figure 

4B) were located within EREs and 11.94 % (n = 667, Figure 4B) in AREs. For the 7,771 

GR-male eSNPs, 4.95% (n = 382, Figure 4B) and 10.38% (n = 807, Figure 4B) were located 

within EREs and AREs, respectively. Enrichments for AREs and EREs were not statistically 

significant above sex-stratified baseline eQTLs. These results suggest that sex-stratified 

eSNPs may potentially be independent of the direct influence of sex hormones, in accordance 

with previous results (Khramtsova et al., 2019; Mayne et al., 2016). 

Sex-stratified GR eSNPS were additionally tested for enrichment for hormone-related 

transcription factors (TFs) including ESR1, AR, and NR3C1 using Remap. Although both 

male and female sex-stratified GR-eSNPs and sex-stratified baseline eSNPs demonstrated 

significant enrichments across these TFs, the sex-stratified GR-eSNPs were not significantly 

enriched relative to sex-stratified baseline eSNPs. Testing the full remap database, we found 

significant enrichment of EZH2 and NR5A2 for female GR-eSNPs above baseline eSNPs, 

and significant enrichment of SND1 and EZH2 for male GR-eSNPs above baseline eSNPs.  

Using the 15-state ChromHMM annotation of the Roadmap Epigenomics project 

(Chadwick, 2012), we observed that both female and male GR-eSNPs were enriched within 

repressed polycomb and bivalent enhancers across the tissue group of blood and T-cells (n = 

14 cell lines), see Figure 4C. Female GR-eSNPs were enriched in ZNF genes and repeats, 

bivalent and poised transcription start sites (Tss), and active Tss (TssA and TssAFlnk), while 

male GR-eSNPs were depleted in Tss (Figure 4C). For the individual blood cell lines and 

enrichment p-values, see Supplementary Figure 4. All results were consistent whether using 

all eSNPs, or limiting the analysis to tag eSNPs, suggesting that results were not dependent 

on the structure of eSNPs in LD.  
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Epigenetic modifications of sex-stratified GR eSNPs 

As regulatory effects of sex-stratified GR-eSNPs may also act at the level of the epigenome, 

we explored links between sex-stratified GR-eSNPs and DNA methylation levels at baseline 

in an independent sample (recMDD cohort, see Methods) of 312 females and 255 males. We 

first performed sex-stratified methylation QTL (meQTL) analyses and identified 10,832,433 

meQTLs in males comprising 163,238 CpGs and 2,94 million SNPs. Additionally, we found 

12,691,324 meQTLs in females comprising 162,773 CpGs and 3,16 Mio SNPs at an FDR of 

5% with 51.1% CpGs (n = 83,228) and 74.2% meQTL SNPs (meSNPs; n = 2.343.464) in 

common with the CpG identified in males only. Next, we quantified the number of sex-

stratified GR-eSNP that are also significant meSNPs. Approximately half of both the female 

and male tag GR-eSNPs were meSNPs, i.e., 317 out of 601 female tag GR-eSNPs and 319 

out of 668 male GR tag eSNPs (Supplementary Figures 5A-C). Thus, half of the sex-

stratified eSNPs had additional associations with DNAm patterns. 

Disease Implications: sex-stratified GR-eQTLs predict depression and 

depressive symptoms 

The potential disease relevance of the sex-stratified GR eQTLs was explored at three levels: 

enrichment in depression-related DE in human postmortem brain tissue, enrichment in 

GWAS associations for psychiatric disorders and traits and association of genetic profile 

scores weighted by sex-specific etranscript regulation. 

Postmortem gene expression in major depression 

We next explored whether sex-stratified GR-etranscripts and eSNPs were represented within 

previous findings on genetic risks and underpinnings of psychiatric disorders. First, sex-

stratified GR-etranscripts (relative to sex-stratified baseline etranscripts) from blood were 

mapped to sex-stratified transcriptional differences in the brain in association with MDD 

(Labonté et al., 2017). GR-male etranscripts were significantly enriched (FDR < 5%) in 

Brodmann area (BA) 25 in female MDD genes, and GR-female etranscripts were enriched in 

BA25 in both male and female MDD genes, a critical area for mood disorders, targeted by 

deep brain stimulation in the treatment of depression (Bezchlibnyk et al., 2018), see Figure 

5A. Neither male or female etranscripts were significantly enriched in other brain regions.  

Sex-stratified etranscripts overlapping with female MDD-related BA25 transcripts 

included 37 female etranscripts and 27 male etranscripts (with 4 common etranscripts 
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between males and females, Figure 5B). We tested whether these sex-stratified etranscripts 

exhibited functional pathway differences between males and females. Female overlapping 

etranscripts were significantly enriched for deoxyribonucleotide biosynthetic process and 

deoxyribonucleotide triphosphate metabolic process. Male overlapping etranscripts were 

enriched for nucleotide biosynthetic process (OR = 9.39, p-value = 0.0004) and nucleoside 

phosphate biosynthetic process (OR = 9.29, nominal p-value = 0.0004) (Figure 5C-D). 

Interestingly, Dual Specificity Protein Phosphatase 6 (DUSP6) was represented among 

female etranscripts, and DUSP5 within male etranscripts, both members of an enzyme 

subfamily of dual-specificity MAP kinase phosphatases which are conserved in domain 

structure. DUSP6, in particular, was identified as a driving hub in MDD-related 

transcriptional networks (Labonté et al., 2017) and is involved in brain-related functions via 

inactivation of ERK pathways. Labonté and colleagues found that DUSP6 was 

downregulated in female MDD subjects in BA25, and this pattern of downregulation was 

further supported by a mouse model of MDD in chronically stressed female mice. Although 

we found transcriptional effects in DUSP6 to be common in males and females in response to 

GR activation, the eSNP effects were specific to females (Figure 5E), highlighting a sex 

specific mechanism regulating a common, downstream physiological pattern. DUSP5, 

similarly involved in ERK signaling in the brain, was also downregulated by GR activation in 

males and females in our GR-DE analysis, but with a specific eSNP effect for males (Figure 

5F).  

GWAS for psychiatric disorders and traits 

To extend these results, we tested whether sex-stratified GR eSNPs were 

overrepresented among GWAS SNPs associated with psychiatric disorders using large-scale 

GWAS results of the Psychiatric Genomics Consortium (PGC), relative to sex-stratified 

baseline eSNPs. All enrichments were independent of LD as we used the top-associated SNP 

of the clumping procedure (i.e., the tag SNP). We detected a significant enrichment of female 

GR eSNPs (n = 598 tag eSNPs) compared to female baseline eSNPs (n = 1,074 tag eSNP) 

with SNPs at a nominal GWAS p-value cutoff associated with MDD (fold enrichments = 

1.15-1.88, permutation-based FDRs < 0.05, educational attainment (fold enrichment = 1.18, 

permutation-based FDR = 0.003), autism spectrum disorder (fold enrichment = 1.38, 

permutation-based FDR <0.001), attention-deficit/hyperactivity disorder  (fold enrichment = 

1.28, permutation-based FDR = 0.013), cannabis intake (fold enrichment = 1.26, 

permutation-based FDR = 0.012) and the cross-disorder analysis 2013 (fold enrichment = 1.5, 

permutation-based FDR = 0.007), see Figure 6A. For male GR eSNPs we did not identify an 
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enrichment over male baseline eSNPs. In summary, female eSNPs regulating the GR 

response, but not male eSNPS, were significantly enriched in SNPs identified in relation to 

psychiatric disorders in large-scale GWAS studies. 

Sex-specific genetic profile scores 

Given the highly distinct sets of genetic variants regulating the GR-response in males 

and females, we assessed whether the genetic variants of GR-sex eQTLs would be 

cumulatively associated with sex-stratified sensitivity for psychiatric disorders. 

Transcriptional sensitive profile scores (TSPS) were calculated by summation of the GR-

eQTL effects. The ‘sensitive’ allele is defined as the allele with the highest absolute eQTL 

effect, regardless of effect direction, such that a higher TSPS represents elevated sensitivity 

for a GR-moderated transcriptional response. We tested whether TSPS based on sex-stratified 

eSNPs (sex-stratified TSPS) were associated with depression and depressive symptoms. We 

applied sex-stratified TSPSs to a clinical cohort comprising 350 Caucasian children and 

adolescents 7–18 years old with a current diagnosis or history of MDD (67% girls) and 234 

healthy control subjects (ages 7–18 years old) with no history of a psychiatric disorders (63% 

girls, see Methods). Female TSPS significantly predicted case control status for depression in 

girls (p-value = 0.0256, see Figure 6B), explaining 2.3% of the variance in depression. Both 

the male and female TSPS significantly predicted specific depressive symptoms in the 

respective sex (p-values< 0.05, see Supplementary Figure 6). The specific depressive 

symptoms related to TSPS were different for males and females. For instance, female TSPS 

significantly related to irritability, loss of satisfaction, agitation, crying, suicidal ideation, 

feelings of failure, and self−dislike, whereas male TSPS significantly related to changes in 

appetite, self-deprecation, anhedonia, and loss of interest.  Both TSPSs significantly relate to 

worthlessness. Overall, female depressive symptoms were more self-directed or brooding 

than male symptoms. 

Taken together, we found connections between sex-stratified eSNPs regulating the 

GR response and 1) transcriptional patterns in the brain in relation to MDD in women, 2) 

SNPs associated with psychiatric disorders, and 3) depression status and symptoms in a 

developmental cohort. Female eSNPs, in particular, were enriched in SNPs identified in 

psychiatric disorders, and as a cumulative score, were predictive of case-control status. Thus, 

sex-stratified eSNPs regulating the GR response may have relevance for the etiology of 

psychiatric disorders and implicate biological risk for their development in response to stress 

exposure.  
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DISCUSSION 

Sexual dimorphism in the stress response is well established, but how these sex differences 

are genetically regulated and linked to sex-specific risk for psychiatric conditions are 

unknown. Here, we explored potential sex differences in regulation of the stress response by 

comparing GC induced changes in gene transcription and cis genetic regulation of these 

changes in males and females. We find that sex differences in the transcriptomic GR- 

response are largely due to females demonstrating stronger effects of GR activation in terms 

of up and down regulation of transcripts, rather than differences in the direction of effects. 

However, the genetic regulation of the transcriptomic GR-response was highly disparate 

between sexes, with males and females demonstrating distinct sets of genetic variants 

corresponding to distinct patterns of regulatory features. Genes differentially expressed to GR 

activation in blood in males and females also demonstrated sex-specific patterns in 

postmortem brain of female patients with depression, and female GR-eQTLs were enriched 

among SNPs identified in large scale GWAS studies in relation to psychiatric disorders. 

Moreover, sex-stratified TSPSs created from GR sex-biased eSNPs predicted depression 

status and depressive symptoms in a clinical cohort of children and adolescents. Taken 

together, these findings have implications for identifying genetic sensitivity factors for males 

and females, corresponding to sex-specific biological susceptibility to stress exposure and 

stress-related psychiatric disorders.  

Male and female GR-eQTLs could emerge due to direct genetic effects within the 

binding sites of GR, as well as due to epigenetic mechanisms at the level of chromatin 

(Lindén et al., 2017). To explore epigenetic mechanisms in relation to sex-stratified GR-

eQTLs, we performed an integrative analysis of epigenetic states, including overlap of eSNPs 

with GR and sex hormone binding sites and linkage to sex-stratified SNP effects on DNAm 

(meQTLs). For both female and male GR-eQTLs, we found enrichment for regulatory 

chromatin features, but with sex-specific enrichments. Male and female GR-eQTLs which 

overlapped with sex hormone response elements were not enriched above male and female 

baseline eQTLs, suggesting that male and female GR genetic regulation may be independent 

of direct influences of sex hormones. We found that a substantial proportion (about half) of 

etranscripts regulated by sex-stratified GR-eQTLs were linked to sex-stratified meQTLs. 

Together, these results suggest that male and female GR-eQTLs have distinct downstream 

regulatory effects upon GR pathways and are also associated with sex differences in DNA 

methylation status, which may be important for sex differences in gene expression. Further, 
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these regulatory effects appear to be, at least in part, independent of circulating sex 

hormones.  

Previously, the study of biological differences between males and females largely 

targeted brain organization and regulation by sex hormones. More recently, attention is being 

paid to growing evidence in favor of genetic and epigenetic regulation of sexual dimorphism 

in behavior (Ratnu et al., 2017). By activating GR to directly assess genetic regulation of the 

stress response in males and females separately, our results add to a growing body of 

literature highlighting sex differences in gene expression and genetic regulation (Dimas et al., 

2012; Gershoni & Pietrokovski, 2017; Jansen et al., 2014; Labonté et al., 2017; Mayne et al., 

2016). In contrast to much of the work on the genomics of sex differences, we find that males 

and females differ in genetic regulation outside of the X and Y chromosomes. Thus, this 

work suggests that the genetic regulation of sex differences in stress responding extends tp 

the autosomes, and highlights the need for further work to understand the sex-specific genetic 

and epigenetic architecture underlying susceptibility to stress-related disorders.  

Male and female GR-DE transcripts and etranscripts that were regulated by GR-

eQTLs were found to be enriched for genes previously reported as sex-specific MDD 

transcriptional signatures in the brain. For these sets of significantly enriched genes identified 

in blood, their representation in the brain was not specific to males or females, despite the 

fact that these neural transcriptional signatures showed strong sex specificity in postmortem 

brain (Labonté et al., 2017). These results echo additional results presented in Labonte et al., 

namely, that although the transcriptional correlates of MDD in the brain were highly 

disparate between males and females, the downstream pathways of stress susceptibility 

converged. Interestingly, the enrichments were restricted to DE transcripts in BA25, the 

subgenual cingulate region, a brain area implicated in the pathophysiology of major 

depression and a target for deep brain stimulation as treatment for therapy resistant forms of 

this disease (Mayberg et al., 2005).  

We have previously shown that GR-eQTLs in males are enriched among genetic 

variants associated with risk for psychiatric disorders, including MDD and SCZ (Arloth et al., 

2015). The female GR-eQTLs we identified here were enriched for SNPs associated with 

MDD, EA, cannabis use, AUT, ADHD in large scale GWAS as well as cross disorder 

psychiatric risk (Cross-Disorder Group of the PGC et al., 2019; Ripke et al., 2013; Wray et 

al., 2018a). The selective enrichment of female GR-eQTLs in GWAS is interesting, as not all 

of the above disorders have a higher prevalence in girls or women. This would suggest, as 

also highlighted above, that sex-stratified GR-eQTLs target common pathways of risk, and 
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emergence of disease is driven by a number of additional factors. A limitation of our 

enrichment analyses is that current GWAS mainly combine data from both sexes, even 

though a previous post hoc analysis of existing GWAS studies identified numerous 

significant loci that were driven by one sex or the other (Gilks et al., 2014) and another study 

identified genetic variants associated with MDD status in females only (Kang et al., 2020). 

Our results and these studies highlight that large-scale studies aimed at genetic discovery may 

benefit from modeling males and females separately.   

Large scale GWAS have been used to derive polygenic risk scores, weighted by 

association strength to predict disease risk or better understand correlated biological features. 

However, these scores are limited by the fact that the underlying GWAS rely on 

heterogenous samples and imprecise measurement of complex phenotypes (Moore, 2017). 

Here, by manipulating the biological system of interest, we were able to preselect SNPs based 

on functional regulation. We weighted these SNPs by expression changes to dexamethasone, 

a direct gauge of the biological stress response shaped by an individual’s history of stress 

exposure, thus capturing genetic variability relevant to biological stress responding shaped 

across time, and regardless of environmental histories and idiosyncratic experiences.  

These genetic sensitivity scores indeed demonstrated relevance to stress-related 

disorders. TSPS scores predicted depression status as well as symptoms in a sex-specific 

manner. Thus, both the genetic etiology, and the relations of these genetic sensitivity scores 

to MDD symptoms are specific to sex. Across sex-biased symptomology, higher scores of 

GR-eQTL dosage associated with larger biological responses to GR activation were 

associated with lower levels of depressive symptoms and status. This is in line with data from 

stress- and trauma research, showing that a blunted cortisol response in associated with 

higher risk for subsequent psychiatric disorders. 

It is important to acknowledge a number of limitations to this study. First, our sample 

size, although considerably expanded relative to our previous report (Arloth et al., 2015), is 

still small for detecting small differences between males and females in the genetic regulation 

of GR-response gene expression and was imbalanced between males and females. Although 

GR activation by dexamethasone offers a substantial biological effect at the level of the 

transcriptome, replication of our results in an independent cohort is necessary. However, 

bootstrapping analysis indicated overall robustness of our finding (see Results). In addition, 

the majority of the sex-stratified baseline-eQTLs were also significant in public data, and thus 

we were well powered enough to replicate previous eQTL findings. Second, we were unable 

to control for timing of the menstrual cycle, and the use of birth control in women. Although 
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this should be addressed in a replication, accounting for surrogate variables reflecting cell 

type proportions in our data should ameliorate any effects of this unwanted biological 

variation.  

To the best of our knowledge, we are the first to report sex-stratified effects of GR 

activation in terms of differential gene expression in human blood. Moreover, this is the first 

study to identify male and female specific GR-eQTLs. In contrast to previous studies of 

biological sex differences in humans that often focus on sex chromosomes, we find 

significant and robust sex differences in terms of autosomal genetic variants in their 

regulation of the stress response with relevance to stress-related diseases. We report that these 

sex differences, both at the level of differential expression and genetic regulation of the GR-

response, are large and robust enough that they emerge even in combined-sex models that 

control for sex. These findings highlight the need for careful examination of sex differences 

in the study of genetic risks and biological substrates of stress-related disorders.  
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Figures 
 

 
Figure 1. Flow of data collection and statistical analyses: Genome-wide genotyping and 
gene expression profiling was used to examine differential GR-response gene expression and 
expression quantitative trait loci in 1) combined and 2) sex-stratified analyses. Results were 
carried forward for functional interrogation and linkage to disease.  
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Figure 2. Differential GR-response gene expression analysis (GR-DEA): A) Upset plot 
displaying the overlapping significant transcripts identified in combined and sex-stratified 
GR-DEA. The majority of transcripts were found in both the combined and stratified analyses 
independently. B) Miami plot of results across 11,994 autosomal transcripts. Dashed lines 
indicate significance cut-off at an FDR of 5%. 6,568 GR-DE transcripts were significantly 
differentially regulated in females (n = 93 individuals; bottom panel) and 5,483 GR-DE 
transcripts in males (n = 196 individuals; top panel). C) Volcano plot of log2 fold change (x 
axis) by -log10FDR. Upper panel showing male GR-DE transcripts at an FDR of 0.05 with 
FCs ranging from 0.68 to 3.06. Lower panel showing female GR-DE transcripts with FCs 
ranging from 0.62 to 3.82. D) Scatterplot showing the difference in gene expression between 
post dexamethasone and baseline for males (y axis) and females (x axis) colored by 
identification in combined analysis (n = 5,000 transcripts), females (n=1568), males (n = 
483), and neither females or males (n = 4,943). Significant results, whether supported in the 
combined analysis or limited to sex stratified analyses, are mainly limited to the upper right 
and lower left quadrants, supporting consistent effect directions between males and females. 
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Figure 3: GR-response cis-eQTL analyses: A) Miami plot of eQTL results. Only the best 
eQTL per etranscript is plotted. Dashed lines indicate significance cut-off at an FDR of 5%. 
B) Mean log2 fold changes between post dexamethasone and baseline colored by 
identification of etranscripts in combined analysis (n = 46 transcripts), females (n = 567) or 
males (n = 616). The effects of the etranscripts for male and females were similar (Wilcoxon 
p-value =0.7). C) Upset plot displaying the overlapping significant GR-response etranscripts 
identified in combined analysis, males, and females. The majority of these transcripts were 
specific to females (91%, n = 193), whereas 68 (59%) transcripts were specific to males and 
74 (57%) transcripts were found in the combined eQTL analysis. D) Balloon plot showing 
the frequency of transcripts found in 1) females but not the combined analysis, 2) the 
combined analysis, and 3) males but not the combined analysis, across GR-DE transcripts, 
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etranscripts, and etranscript-eSNP pairs. In the GR-DE analysis, the majority of transcripts 
are identified in the combined analysis, whereas etranscripts and eSNP pairs (eQTLs) show 
more of an even distribution across females, combined, and males. Maximum fold changes 
were higher in female etranscripts relative to males. E-F) Boxplots of overlapping significant 
GR-DE transcripts and etranscripts. Gene expression is stratified by eSNP and shown for 
females and males. E) Tag eSNP rs7294478 is located in an intron of C1RL-AS1 on 
chromosome 12. However, the eQTL effect was observed only in females on TAPBPL 
expression, which is located over 700 kb downstream. TAPBPL itself is one of the significant 
DR-DE genes identified in females (FDR = 0.00068 vs. FDR = 1 in males). F) The intronic 
tag eSNP rs2937127 demonstrates no effect in females, while in males the minor allele was 
associated with a down regulation of TERF2 gene expression (FDR = 0.04). TERF2 is 
located approximately 470 kb upstream of the tag eSNP, which is positioned in the gene 
WWP2.  
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Figure 4: Sex stratified GR-response cis-eQTLs and chromatin annotation: A) 
Annotation of the genomic regions in which eSNPs are located. B) Bar plots showing the 
overlap of GR-eSNPs and DeepSea annotations, Remap transcript factors (AR and ER) and 
Encode GR-Chip peaks. C) Enrichment results for GR-response tag eSNPs and predicted 
ChromHMM states for sex-stratified tag eSNPs.  
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Figure 5: Sex-stratified GR-response etranscripts represented in MDD transcriptional 
patterns: A) Bar plot showing the significance of GR-etranscripts for enrichment in MDD 
transcriptional profiles in six brain regions. Both male and female GR-etranscripts were 
tested against male and female MDD transcriptional profiles. The black line indicates 
significance cut-off at a p-value of 0.05. B) Upset plot displaying the overlapping significant 
sex-stratified GR-response etranscripts with BA25 MDD-related transcripts. C) GO 
enrichment results for female etranscripts overlapping with BA25 MDD-related transcripts. 
D) GO enrichment results for male etranscripts overlapping with BA25 MDD-related 
transcripts. E) DUSP6 example showing gene expression at baseline and post dexamethasone 
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across genotypes of tag eSNP rs934891 for males and females (female FDR = 0.049). F) 
DUSP5 example showing gene expression at baseline and post dexamethasone across 
genotypes of tag eSNP rs11195272 for males (male FDR = 0.046) and females. 
 

 
Figure 6. Sex-stratified GR-response eSNP associations with psychiatric disorders A) 
Bar plot of enrichment results for GR-response tag eSNPs and GWAS SNPs. The black 
indicates a fold enrichment at 1 and a star indicates a permutation-based FDR < 0.05.  AD = 
Alzheimer’s disease, ADHD=attention-deficit/hyperactivity disorder, AUT=autism spectrum 
disorders, BP = bipolar disorder, Cross = cross disorder analysis, EA=educational attainment, 
MDD= major depressive disorder, PTSD= post-traumatic stress disorder, SCZ = 
schizophrenia, T2D= diabetes type 2, TS= Tourette syndrome. B) Association between 
residualized female TSPSs and standardized scores of severity of depressive symptoms 
computed in LMU cohort  (girls: β = -7.98x10-4, SE = 4.04x10-4, p-value = 0.0496; boys: β = 
1.1210-3, SE = 8.3x10-4, p-value = 0.18)  
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Supplementary Figures 

 
Figure S1: Correlation matrix of co-variants, surrogate variables (SVs) and estimated cell 
proportions based on CellCode. 
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Figure S2: A) Upset plot of significant transcripts identified in combined sample, male 
sample, and female sample that meet absolute log2 FC threshold of > 0.2. B) Counts of 
significant negative and positive fold changes and significant changes surpassing an absolute 
log2 FC of 0.2 identified in the combined sample (significant gray, threshold overlaid in 
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black), the female sample (significant pink, threshold overlaid in maroon) and the male 
sample (significant light blue, threshold overlaid in dark blue).  

 
Figure S3: Upset plot of significant etranscripts identified in combined sample, male sample, 
and female sample that meet absolute log2 FC threshold of  > 0.2. 
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Figure S4: Heatmap of enrichment results for GR-response tag eSNPs and predicted 
ChromHMM states for sex-stratified tag eSNPs. Colors displayed indicate fold enrichment 
and significant permutation p-value are written and were derived on the basis of 1,000 
random sets of baseline eSNPs matched for allele frequency and size. We observed that male 
and female sex-stratified GR eSNPs were significantly enriched within repressed polycomb, 
bivalent enhancer and quiescent states (enrichment p-values < 0.05) among the tissue group 
of blood and T-cells (n = 14 cell lines). For 70% of the blood tissue group cell lines, the state 
for ZNF genes and repeats (n =  2 cell lines), genic enhancers (n = 1 cell line) and active 
transcription start site (TssA and TssAFlnk, n = 3 cell lines) were significantly enriched only 
for female GR eSNPs, see Figure 3C. Male GR eSNPs were enriched for heterochromatin (n 
= 3 cell lines) and bivalent/poised TSS (n = 2 cell lines).  

 
Figure S5: Relationships between eQTL effects and meQTL effects for A) females and B) 
males. 
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Figure S6: TSPS scores in correlation with individual depressive symptoms, as measured by 
the BDI and DIKJ.  
 
 

Supplementary Tables 
Table S1: Analysis of sex-dependent GR-DE effects. Note. Probe_Id = Illumina probe 
identifier; Estimate = regression beta value; Std. Error = standard error; Pr(>|t|) = nominal p-
value; padj = FDR-adjusted p-value; Chr = chromosome; opp = whether or not the effect 
direction is opposite for males and females. 
Table S2: Differentially regulated transcripts across model (GR-DE transcripts, full sample, 
males, and females). Note. Probe_Id = Illumina probe identifier; Estimate = regression beta 
value; Pval = nominal p-value full model; Padj = FDR-adjusted p-values which represent the 
significance of a regression model; Chr = chromosome; log2FC = log2 fold change; FC = fold 
change.  
Table S3: List of combined analysis GR-response cis-eQTL results. Note. Probe_Id = 
Illumina Identifier; SNP = rsID; CHR = chromosome; BP = base pair; A1= allele 1; A2 = 
allele 2; Location =genomic context location; nearByGene = gene in closest proximity; 
P_start = starting position of the probe; P_end = ending position of the probe. 
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Table S4: List of GR-response cis-eQTL results of females. Same column labels as S3. 
Table S5: List of GR-response cis-eQTL results of males. Same column labels as S3. 
Table S6: Results for interaction effect of SNP and sex on etranscript gene expression. Note. 
Probe_Id = Illumina Identifier; Estimate = regression beta value; Std. Error = standard error; 
Pr(>|t|) = nominal p-value; AdjP = FDR-adjusted p-values which represent the significance of 
a regression model; SNP = rsIDl; Sex = male or female eSNP set. 
Table S7: Results of pathway analysis of the significant etranscript sets of GR-response cis-
eQTL identified in males and females. Note. GOBPID = the ID of biological process in 
GO database; Pvalue = nominal p value; ExpCount = expected number of genes in the 
enriched partition which map to this GO term; Count = number of genes in the enriched 
partition which map to this GO term; Size = number of genes within this GO Term; Term = 
Gene Ontology term description. 
Table S8: List of  baseline cis-eQTL results. Same column labels as S3. 
Table S9: List of baseline cis-eQTL results of females. Same column labels as S3. 
Table S10: List of baselines cis-eQTL results of males. Same column labels as S3. 
modules. 
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METHODS 

Study samples 

MPIP cohort: 

Participants consisted of 289 Caucasian individuals of the Max Planck Institute of Psychiatry 

(MPIP), 93 women and 196 men. Sex was defined by the sex chromosomes (X and Y), which 

is distinct from the biopsychosocial concept of gender (Davis & Stranger, 2019). Of the 

participants, 129 (81 men, 48 women) were being treated for MDD treated at the MPIP's 

hospital in Munich and the remaining were 160 (115 men, 45 women) were healthy controls 

with no history of a depressive disorder, see Table 1. Recruitment strategies and further 

characterization of the MPIP cohort have been described previously (Arloth, Bogdan, et al., 

2015). Baseline whole blood samples were obtained at 6pm after 2 hours of fasting and 

abstention from coffee and physical activity. Subjects then received 1.5 mg oral 

dexamethasone and a second blood draw was performed at 9pm three hours after 

dexamethasone ingestion. Plasma dexamethasone concentrations were assessed in serum 

samples drawn at 9pm using Liquid chromatography-tandem mass spectrometry on API4000 

(AB Sciex).  

 

LMU cohort: 

The clinical LMU cohort consists if 584 Caucasian children and adolescents (ages 7–18 years 

old) recruited from two child and adolescent clinics in Munich: 350  cases with a current 

diagnosis or history of major depression and 234 healthy control subjects with no history of a 

psychiatric disorder. The presence or absence of depression was determined by a well-

established diagnostic interview (Adornetto et al., 2008). Further characterization of the 

cohort and psychometric measures are described in (Halldorsdottir et al., 2019) and Table 1. 

To assess the severity of depressive symptoms, the Children’s Depression Inventory (CDI) 

was administered to youths ≤12 years old, and the Beck Depression Inventory–II (BDI-II) 

was administered to participants >12 years old. Scores from the CDI and the BDI-II were 

standardized using z scores to perform the analyses on the whole sample. We explored 

potential sex differences in trauma exposure and did not find evidence of significant sex 

differences in history of sexual abuse or overall stress exposure levels.  
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recMDD cohort: 

The recMDD cohort consisted of 1,774 Caucasian individuals recruited at the MPIP in 

Munich, Germany and two satellite hospitals in the Munich metropolitan area (BKH 

Augsburg and Klinikum Ingolstadt): 756 controls  and 879 cases diagnosed with recurrent 

major depression. Please see (Muglia et al., 2010) for more details on sample recruitment and 

characterization and Table 1. A subset of n = 567 individuals was used in this manuscript. 

 

 

Table1: Clinical characteristics.  For continuous data the mean ± standard error and for 
categorical data the categories separated by dashes are given for females and males. 

All studies were approved by the local ethics committees and were conducted in accordance 

with the current version of the Declaration of Helsinki.  

Gene expression data 

Whole blood RNA (Baseline and GR-response) from the MPIP cohort samples was collected 

using PAXgene Blood RNA Tubes (PreAnalytiX) and processed as described previously 

(Arloth, Bader, et al., 2015). The RNA was then hybridized to Illumina HT-12 v3 and v4 

expression Bead Chips (Illumina, San Diego, CA). Raw probe intensities were exported using 

Illumina's GenomeStudio and further statistical processing was carried out using R version 

3.2.1. All 29,075 probes present on both BeadChips (v3 vs. v4), excluding X and Y 

chromosomes as well as cross-hybridizing probes identified by using the Re-Annotator 

pipeline (Arloth, Bader, et al., 2015) were first filtered with a detection p-value of 0.05 in at 

least 50% of the samples, leaving 11,994 autosomal expression array probes. Subsequently, 

each probe was transformed and normalized through variance stabilization and normalization 

(VSN) (Johnson et al., 2007). Technical batch effects were identified by inspecting the 

association of the first principal components of the expression levels for all known batch 

effects and then adjusted using ComBat (Johnson et al., 2007) with slide, amplification 

round, array version, and amplification plate column as fixed effects. The position of the gene 

MPIP cohort LMU cohort recMDD cohort
Sex males females males females males females

N 196 93 201 383 255 312
Age 42.65±13.7 42.95±14.6 14.5±2.3 15.5±1.8 46.53±13.9 47.0±13.8
BMI 25.4±3.3 23.9±5.1 NA NA 24.7±3.1 24±4.5

N controls/cases 115/81 45/48 115/86 235/148 78/177 114/198
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expression probe and gene symbols were annotated using the Re-Annotator pipeline (Arloth, 

Bader, et al., 2015) based on GRCh37 (hg19) RefSeq (Pruitt et al., 2012). Surrogate Variable 

Analysis (SVA)  (Leek et al., 2012) was used to account for confounding as a result of batch 

effects, cell proportion or unknown factors using the SVA package in Bioconductor version 

3.3. We compared the significant SVs to the estimated fractions of different blood cell types 

derived from the residuals of the transcriptome-wide gene expression values using CellCODE 

(Chikina et al., 2015), see Supplementary Figure 1 for the SV correlations with blood cell 

count and known confounding factors. The log FC of gene expression was calculated as the 

difference in gene expression between post dexamethasone and baseline standardized to 

baseline.   

Genotype data and Imputation 

Genotype data was generated for each cohort individually. Human DNA of the MPIP cohort 

samples was isolated from EDTA blood samples using the Gentra Puregene Blood Kit 

(Qiagen) with standardized protocols. Genome-wide SNP genotyping was performed using 

Illumina Human610-Quad (n = 173) and OmniExpress (n = 120) genotyping BeadChips 

according to the manufacturer's standard protocols.  recMDD cohort samples have been 

genotype on the Illumina-550 BeadChip and details on the genotyping methods have been 

previously published (Muglia et al., 2010). Quality control was conducted in PLINK 1.90b3s 

(Chang et al., 2015) or higher for each cohort and genotyping BeadChip separately. QC steps 

on samples included removal of individuals with a missing rate >2%, cryptic relatives (PI-

HAT >0.0125), an autosomal heterozygosity deviation (|Fhet| >4 SD), and genetic outliers 

(distance in the ancestry components from the mean >4 SD). QC steps on variants included 

removal of variants with a call rate <98%, a MAF <1%, and HWE test p-values ≤10-6. 

Furthermore, variants on non-autosomal chromosomes were excluded. Imputation was 

performed separately for each cohort and genotyping BeadChip with IMPUTE2, following 

phasing in SHAPEIT, using the 1,000 genomes phase I reference panel (released in June 

2014, all samples). QC of imputed probabilities was conducted in QCTOOL 1.4. Imputed 

SNPs were excluded if MAF <1%, HWE test p-values ≤10-6, or an INFO metric <0.8. SNP 

coordinates are given according to hg19. SNPs were further processed in PLINK and variants 

were excluded if their MAF < 5%.  
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Genotyping of the LMU cohort was performed with the Infinium Global Screening Array 

BeadChip. Genotyping of the recMDD was performed with Illumina Human610-Quad 

BeadChips. Further detail on the genotyping and imputation methods used can be found in 

the individual papers LMU: (Halldorsdottir et al., 2019) and recMDD: (Muglia et al., 2010). 

  

Differential gene expression analysis (DEA) 

To observe both dexamethasone-dependent changes in gene expression, and sex-stratified 

effects of dexamethasone, we ran the following models. First, we calculated the effect of sex 

on the difference in gene expression between baseline and post dexamethasone controlling 

for age, BMI, depression status, and cell type.  

ΔGex ~ ß0+ß1Sex+ß2age+ß3BMI+ß4depression+ß5cell type +ε 

Second, a main effects linear model isolates the probes that are regulated by dexamethasone 

administration, controlling for sex, age, BMI, depression status, and cell type. Finally, the 

same main effect linear model was ran separately in males and females (not controlling for 

sex).  

Gex ~ ß0+ß1Dex+ß2Sex+ ß3age+ß4BMI+ß5depression+ß6cell type +ε 

Expression quantitative trait loci analysis 

The eQTL analysis was restricted to those SNPs within 1Mb upstream or downstream  

For each gene expression array probe a linear model of the log fold change on gene 

expression was constructed between baseline and GR-response standardized to baseline  and 

gender (only for the combined analysis). The residuals from the linear regression were used 

as phenotype values in the following analyses. PLINK v2 (Chang et al., 2015) was used to 

test for cis-association between all imputed SNPs and transcriptional response as previously 

described (Arloth et al., 2015).  

ΔGex ~ ß0++ß1SNP+ß2Sex+ß3Age+ß4BMI+ß5depresson+ß6cell type +ε 

We ran the same model, but separated for males and females for the sex-biased eQTL 

analysis.  

ΔGex ~ ß0+ß1SNP+ß2Age+ß3BMI+ß3depresson+ß4cell type +ε 

 

Finally, for each set of sex-stratified etranscript gene expression array probe (identified by the 

models ran separately for males and females), the delta value between dexamethasone and 
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baseline was predicted by the interaction of sex and eSNP, controlling for age, BMI, disease-

state and SVAs. 

ΔGex ~ ß0+ß1Sex*SNP+ß2Age+ß3BMI+ß3depresson+ß4cell type +ε 

 As eQTL data were composed of two kinds of data: genotyping and expression data, 

we used two stages of multiple testing correction: (i) SNP level correction: for each cis-

region (array probe) we performed a permutation test. The sample identifiers in the gene 

expression data were shuffled in order to preserve the structure in the genotype data (LD). A 

total of 500,000 permutations were carried out per probe and the empirical P values were 

adjusted using the Westfall-Young correction for the number of SNPs per probe, i.e., maxT 

procedure of Westfall-Young (Terada et al., 2013). (ii) Probe level correction: cis-regions 

with an extensive LD structure will increase the number of false positive eQTLs (Westra et 

al., 2013). Therefore, we applied the Benjamini-Hochberg method to correct the maxT 

adjusted P value significance by using only the most significant and independent SNPs per 

probe (tag SNPs). The number of tag eSNPs per cis-region was identified by LD pruning and 

“clumping“ the SNPs using the “clump” command in PLINK (using distance < 1Mb and r2 ≤ 

0.2 as setting). Each tag SNP forms a SNP bin, by aggregating all other SNPs into bins by tag 

SNP at r2 ≤ 0.2 and distance < 1Mb, such that all SNPs within a given bin were correlated to 

their corresponding tag SNP, but not to any other tag SNP. We limited the false-positive 

SNP-probe pairs to less than 5% and therefore we considered the FDR analogue of the P 

value (Q value) < 5% as statistically significant. 

Power analysis 

Given our different sample sizes of males and females, we determined our power for sex-

stratified eQTL analyses. Given an effect size of the top eQTL for each analysis, we had 98% 

power in males, 57% power for females, and 79% for the combined sample with 0.07, 0.04, 

0.02 as regression coefficients. For adequate power in the female only sample, we estimated 

that a sample of 382 would be required for equal power to the male analysis (98%) to detect 

cis-eQTLs. Power estimates were calculated using the G*power 3.19.4 application (Faul et 

al., 2007). 

Pathway analysis 

The Bioconductor package TheGOstats was used to explore the gene ontologies of groups of 

transcripts over represented relative to all transcripts explored (n = 11,272 probes after 
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quality control, or the gene ‘universe’). In terms of ontologies, we tested for biological 

processes and used the human genome wide annotation (org.Hs.eg.db). Due to high 

dependencies among GO terms, nominal p-values are reported. For descriptive purposes, the 

top gene ontologies were selected in the analysis of etranscripts overlapping with transcripts 

identified in BA25 in association with MDD.  

Genomic region annotation 

eSNPs were overlapped with genomic annotation from UCSC for the hg19 genome build 

using TxDb.Hsapiens.UCSC.hg19.knownGene and ChIPseeker Bioconductor R packages. 

Epigenetic enrichment analysis                                                                   

To identify whether GR-response eSNPs were enriched for GR binding sites or co-localize 

with specific chromatin states, we used the  Encode NR3C1 ChIP-seq data from GM12878 

LCLs treated with dexamethasone (accession: GSE45638) and the 15-state ChromHMM 

(Ernst & Kellis, 2017) annotation of the Roadmap Epigenomics project among all cell lines 

of the blood and T-cell tissue group (n = 14 cell lines). We calculated the position-based 

overlap of the GR-response tag eSNPs and chromatin states for gender separately and 

compared the overlap observed with 1,000 equal sized sets of baseline tag eSNPs adjusting 

for MAF. We used DeepSEA, a deep neural network pretrained with DNase-seq and ChIP-

seq data from the ENCODE project, to predict the likelihood that GR-sex eSNPs exert 

regulatory effects on chromatin features comparing the reference to alternative SNP.  

 The coordinates of AR and ER binding sites were downloaded from Remap. There 

was no enrichment of sex-biased eSNPs for sex hormone receptors beyond baseline sex-

biased eSNPs. To test for enrichment of TFs, we used the R package ReMapEnrich () using 

the 2018 Remap catalog on hg19. 

 We annotated the eSNPs using DeepSEA (Zhou & Troyanskaya, 2015). DeepSEA, a 

deep neural net- work pretrained with DNase-seq and ChIP-seq data from the ENCODE 

project, predicts the presence of histone marks, DNase hypersensitive regions (DHS) or TF 

binding for a given 1 kb sequence. The likelihood that a specific genetic variant influences 

regulatory chromatin features is estimated by comparing predicted probabilities of two 

sequences where the bases at the central position are the reference and alternative alleles of a 

given variant.  
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DNA methylation data and meQTL analysis 

For a subset of the reCMDD cohort (n = 567 individuals), genomic DNA was extracted from 

whole blood using the Gentra Puregene Blood Kit (QIAGEN). DNA quality and quantity of 

both was assessed with the NanoDrop 2000 Spectrophotometer (Thermo Scientific) and 

Quant-iT Picogreen (Invitrogen). Genomic DNA was bisulfite converted using the Zymo EZ-

96 DNA Methylation Kit (Zymo Research) and DNA methylation levels were assessed for 

>480,000 CpG sites using the Illumina HumanMethylation450K BeadChips. Hybridization 

and processing were performed according to the manufacturer’s instructions. QC of 

methylation data, including intensity readouts, filtering (detection p-value >0.01 in at least 

75% of the samples), cellular composition estimated using FlowSorted.Blood.450k data and 

“estimateCellCounts” function, as well as beta calculation (“getBeta” function) were done 

using the minfi Bioconductor R package. CpG sites on sex chromosomes, CpG site probes 

found to have SNPs at the CpG site itself or in the single-base extension site with a MAF 

≥1% in the 1,000 genomes project EUR population and non-specific binding CpG site probes 

according to (Chen et al., 2013) were removed. We performed a re-alignment of the CpG site 

probe sequences using Bismark. This yielded 425,883 CpG sites for further analysis. The data 

were then normalized using functional normalization (“preprocessFunnorm” function in 

minfi) (Aryee et al., 2014). Technical batch effects were identified by inspecting the 

association of the first principal components of the methylation levels with plate and plate 

position. The data were then adjusted using “ComBat” function of the Bioconductor R 

package sva. CpG coordinates are given according to hg19. 

 For the meQTL analysis, linear regression models were fit for males and females 

separately and for each CpG site to test the relationship between the whole blood DNA 

methylation (beta values) and proximal SNP genotype (in dosage format) within 1Mb up- or 

downstream of the SNP using the R package MatrixEQTL (Shabalin, 2012), in order to detect 

cis-meQTLs. Blood cell counts and age were included as covariates. Significance after 

multiple testing was adjusted using a false discovery rate (FDR) of 5%.  

Enrichment in Labonté et al., 2017 

To test for enrichment of male and female GR-DE transcripts within male and female MDD 

transcriptional patterns in six brain regions, we used the ‘GeneOverlap’ R package to 

determine the significance of overlap from two lists based on the Jaccard index, given the 
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size of common genes tested in the two data sets (n = 8,683 genes). Enrichment for male and 

female GR eQTL associated etranscripts was tested in comparison to the overlap observed for 

baseline GR eQTL associated etranscripts based on odds ratios and p values from the Fisher’s 

exact test. 

GWAS enrichment analysis 

The nominal GWAS results p-value < 0.05 of the Psychiatric Genomics Consortium (PGC) 

for different psychiatric disorders: schizophrenia (SCZ2) (Ripke et al., 2014), bipolar disorder 

(BIP) (Stahl et al., 2019), MDD (MDD1-3) (Howard et al., 2019; Ripke et al., 2013; Wray et 

al., 2018b), autism spectrum disorder (AUT) (Consortium, 2017), attention-

deficit/hyperactivity disorder (ADHD) (Demontis et al., 2019), PTSD (Nievergelt et al., 

2019), Tourette syndrome (TS) (Yu et al., 2019) and cross disorder (CDG1&2) (P. H. Lee et 

al., 2019; Smoller et al., 2013) and non-psychiatric phenotypes: the Social Science Genetic 

Association Consortium (SSGAC) for educational attainment (EA) (Lee et al., 2018), 

cannabis use (Pasman et al., 2018), Type 2 diabetes (T2D) (Xue et al., 2018) and the 

Complex Trait Genetics Lab of the VU University of Amsterdam for intelligence (Savage et 

al., 2018) were used for comparison with our GR-response results. Thereby the overlap 

between the tag SNPs comprised in our eQTL bins and the SNPs identified by these studies 

were calculated. The enrichment eQTL-SNPs and GWAS risk-SNPs was tested in 

comparison with 1,000 MAF-matched baseline tag eSNP sets. 

Transcriptional sensitivity profile score (TSPS) 
TSPSs were based on the sets of significant GR-response tag eSNPs for males and females in 

the independent clinical LMU cohort. Of the 601 female GR-response eSNPs, 562 were 

available in the test cohort (with 57 proxy SNPs, r2>0.6), and of the 668 male, 650 (with 47 

proxy SNPs, r2>0.6) used for calculation of the TSPS. Risk alleles were determined by the 

coefficient from the GR-response eQTL analysis, in such that the alleles associated with 

higher absolute coefficients were coded as a risk allele. Absolute coefficient from the eQTL 

calculation were further included as weights. The scores were corrected for the number of 

SNPs. For eSNPs regulating multiple transcripts, we included each eQTL association and 

their beta coefficient. A higher TSPS thus denotes a larger number of alleles associated with 

larger GR-induced transcriptional response.  
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Supplementary Material: Sex differences in the genetic regulation of the blood 
transcriptome response to glucocorticoid receptor activation 
 
Analysis of sex-biased GR-DE effects  
There may be transcripts which demonstrate a sex-biased effect of dexamethasone, which we 
tested by modeling sex as a predictor of the difference in gene expression between baseline 
and post dexamethasone administration standardized by baseline expression (see Methods), 
previously defined as GR-response values (Arloth et al., 2015). In this model, 26 transcripts 
demonstrated a significant effect of sex on dexamethasone change after multiple test 
correction (FDR< 0.05 Supplementary Table 1, and the majority (n = 15 transcripts; 
57.69%) were already identified by the main effect model above or by the models stratified 
by sex. Across the 26 significant hits, the fold changes surpassed an absolute threshold of 0.2 
for 7 transcripts, in which males and females demonstrated consistent directions of effects 
(i.e., one sex demonstrate a stronger effect than the other). The direction of the effect between 
baseline and dexamethasone was opposite for females compared to males for only two 
transcripts, but these fold changes did not surpass the fold change cut off for males or for 
females (see Supplementary Table 1). 
 
Given our different sample sizes of males (n = 196) and females (n = 93), we tested the 
robustness of our results by using down-sampled sets of males matching female same size. 
We randomly drew 93 males from the full male sample to assess the number of significant 
transcripts found across 100 permutations. We found that the range of significant GR-DE 
transcripts found in males was between 3,125 and 3,251, with a mean of 3,178.2 ± 25, 
relative to 5,438 DE-GR transcripts identified with the full male sample and 6,568 DE-GR 
transcripts identified in females. All permutations yielded less transcripts than identified in 
the female sample of equal sample size. 
 
Effect size filtered transcripts and etranscripts 
Supplementary Figure 2A shows how these overlapping results across the general sample, 
males, and females with results are filtered by absolute log2 fold changes (> 0.2). A large 
proportion of the transcripts that were found by the main model to be significantly regulated 
by dexamethasone only surpassed the log2 fold change cut off in females (42.2%, n = 1705; 
shown in the shift to a larger number of transcripts unique to females in Supplementary 
Figure 2A relative to Figure 1C). In contrast, only 2 (0.12%) significant transcripts found in 
the main model surpassed the cut off uniquely in males. A minority of significant transcripts, 
1,674 met the cut off across models. Taken together, these comparisons show that many of 
the transcriptional changes induced by dexamethasone identified in the main model were 
driven by larger effects in females. Supplementary Figure 2B similarly shows this trend, 
with a larger proportion of significant transcripts reaching the log2 fold change cut off from 
the female model relative to the general or male models.  

We next assessed the size of the effects of those etranscripts that overlap with the 
transcripts from the differential expression analysis. Out of the 324 overlapping male 
etranscripts, 114 (35%) surpassed the absolute fold change threshold of 0.2 (range: -0.35 to 
0.75), and 210 out of 333 (63%) of the overlapping female etranscripts surpassed the log2 
fold change cutoff (range: -0.52 to 1.5). Thus, consistent with the GR-DE analysis, 
overlapping etranscripts in females exhibited larger fold changes relative to males (Wilcoxon 
p-value = 0.05).  

Relative to the differential expression analysis, etranscripts meeting the fold change 
cut off were again largely found in males or females independently rather than the general, 
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across sex analysis. Specifically, only six effect size filtered etranscripts were found in the 
general model and in males and females independently (Supplementary Figure 3). 
  
Baseline eQTLs 
When analyzing only baseline expression we found 4,202 general baseline eQTL bins (5,722 
tag eSNPs of 167,885 correlated eSNPs and 2,909 gene expression probes and 2,550 genes, 
Supplementary Table 8). These results were compared to a larger publicly available 
database- the Biobank-Based Integrative Omics Study (BIOS) (>2,000 whole blood samples) 
and whole blood eQTLs from the Genotype-Tissue Expression project v8 (GTEx; 670 
donors) (Consortium, 2020; Zhernakova et al., 2017). We found that 87% of our baseline 
eQTL genes overlapped with significant BIOS and 92% with significant GTEx eQTL genes. 
 We assessed male and female eQTLs separately at baseline and aimed to validate 
these baseline sex-biased eQTLs in existing data sets. We identified two times the number of 
eQTLs for males then for females, e.g. 1,960 eQTL bins (1,561 gene expression probes and 
1,638 tag eSNPs; Supplementary Table 9) in females and 4,433 eQTL bins (2,561 gene 
expression probes and 3,209 tag eSNPs; Supplementary Table 10) in males only. Of note, 
for baseline eQTLs, the effects were significantly smaller for males relative to females 
(Wilcoxon p-value = 0.02). We found that 86% of our baseline male eQTL genes overlapped 
with nominal significant GTEx male eQTL genes (p-value < 0.05) and 84% of our baseline 
female eQTLs with nominal significant GTEx female eQTL genes. Thus, the sex differences 
we observed in eQTLs in the blood transcriptome at baseline are consistent with the extant 
literature, supporting the accuracy of identified sex differences. 
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