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ABSTRACT 1 

Background: Genetic, lifestyle, and environmental factors can lead to perturbations in 2 

circulating lipid levels and increase risk of cardiovascular and metabolic diseases. However, 3 

how changes in individual lipid species contribute to disease risk is often unclear. 4 

Moreover, little is known about the role of lipids on cardiovascular disease in Pakistan, a 5 

population historically underrepresented in cardiovascular studies. 6 

 7 

Methods: We characterised the genetic architecture of the human blood lipidome in 5,662 8 

hospital controls from the Pakistan Risk of Myocardial Infarction Study (PROMIS) and 9 

13,814 healthy British blood donors from the INTERVAL study. We applied a candidate 10 

causal gene prioritisation tool to link the genetic variants associated with each lipid to the 11 

most likely causal genes, and Gaussian Graphical Modelling network analysis to identify 12 

and illustrate relationships between lipids and genetic loci. 13 

 14 

Results: We identified 359 genetic associations with 255 lipids measured using direct 15 

infusion high-resolution mass spectrometry in PROMIS, and 616 genetic associations with 16 

326 lipids in INTERVAL. Our analyses revealed new biological insights at genetic loci 17 

associated with cardiometabolic diseases, including novel lipid associations at the LPL, 18 

MBOAT7, LIPC, APOE-C1-C2-C4, SGPP1, and SPTLC3 loci. 19 

 20 

Conclusions: Our findings, generated using a distinctive lipidomics platform in an 21 

understudied South Asian population, strengthen and expand the knowledge base of the 22 

genetic determinants of lipids and their association with cardiometabolic disease-related 23 

loci. 24 

 25 

Keywords: lipidomics, genetics, Gaussian Graphical Modelling, network analysis, South 26 

Asian 27 

  28 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 20, 2020. ; https://doi.org/10.1101/2020.10.16.20213520doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.16.20213520
http://creativecommons.org/licenses/by/4.0/


4 

 

BACKGROUND 1 

Mass spectrometry-based lipidomics, which aims to capture information on the full 2 

complement of lipid metabolites in a given biological sample [1], holds the potential to 3 

identify novel insights leading to lipid regulation and dyslipidaemia, potentially providing 4 

new mechanisms that link lipid perturbances with cardiometabolic disorders. While 5 

pathways underlying dyslipidaemia have been widely studied, we still do not understand 6 

how individual lipid species are regulated or contribute to disease. With increasing rates 7 

of cardiometabolic diseases in low- and middle-income countries, there is a need for well-8 

powered studies to understand the mechanisms that lead to such disorders in these 9 

settings. This need is especially acute for genetic studies where the overrepresentation of 10 

individuals of European ancestry amongst genotyped cohorts has led to ancestral bias in 11 

effect size estimates at both the genotype and polygenic score levels [2]. 12 

 13 

In this study, we aimed to identify novel genetic associations with lipid metabolites in an 14 

understudied South Asian population and determine plausible metabolic pathways for the 15 

significantly associated lipid metabolites. We performed a comprehensive interrogation of 16 

genetic influences on the human blood serum lipidome using direct infusion high resolution 17 

mass spectrometry (DIHRMS). We quantified 360 lipid metabolites in 5,662 individuals 18 

from Pakistan, from which we identified 359 genotype–lipid associations (lipid quantitative 19 

trait loci, or lipid QTLs [3, 4]) at 24 independent loci, providing new insights into lipid 20 

metabolism and its impact on cardiovascular and metabolic diseases. 21 

 22 

To help disentangle which of these findings are specific to the Pakistani population and 23 

which are unique to the lipid platform itself, we also carried out a parallel set of analyses 24 

using the same lipidomics platform in a much larger cohort of individuals from the UK. We 25 

measured 432 lipid metabolites in 13,814 healthy British blood donors, from which we 26 

identified 616 lipid QTLs at 38 independent loci. 27 

  28 
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METHODS 1 

Study description 2 

Our primary analyses involved a subset of participants from the Pakistan Risk of Myocardial 3 

Infarction Study (PROMIS), a case-control study of first-ever acute myocardial infraction 4 

(MI) in nine urban centres in Pakistan consisting of approximately 16,700 cases and 5 

18,600 controls. Details of PROMIS have been described previously [5]. In this analysis 6 

we analysed controls (individuals free from MI at baseline), who were identified and 7 

recruited at the same hospitals as cases according to the following order of priority: (1) 8 

visitors of patients attending the outpatient department, (2) patients attending outpatient 9 

clinics for non-cardiac-related symptoms, and (3) non-first-degree relative visitors of MI 10 

cases. The present analysis involved serum samples from 5,662 PROMIS controls for which 11 

genetic and lipid-profiling data were available. Ethical approval was obtained from the 12 

relevant ethics committee of each of the institutions involved in participant recruitment 13 

and the Center for Non-Communicable Diseases in Karachi, Pakistan, and informed 14 

consent was obtained from each participant recruited into the study, including for use of 15 

samples in genetic, biochemical, and other analyses. 16 

 17 

Comparative, parallel analyses were performed in INTERVAL, a prospective cohort study 18 

of approximately 50,000 healthy blood donors from the UK. The present analyses involved 19 

13,814 participants from INTERVAL with both genetic and lipid-profiling data. Details 20 

concerning the INTERVAL study, including DNA extraction and genotyping, lipid profiling, 21 

and genome-wide association analyses are provided in the Supplementary Methods 22 

(Additional file 1). 23 

 24 

Lipid profiling 25 

Lipid levels in human serum were quantified using direct infusion high-resolution mass 26 

spectrometry (DIHRMS) using an Exactive Orbitrap (Thermo, Hemel Hampstead, UK). 27 

Data processing, peak-picking, normalisation, cleaning, and quality control were 28 

performed to identify and record signals for 360 known lipids in 5,662 PROMIS 29 
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participants. The 360 lipids corresponded to five broad lipid categories (fatty acyls and 1 

derivatives, glycerolipids, glycerophospholipids, sphingolipids, and sterol lipids), which are 2 

further subdivided into fourteen lipid subclasses (Supplementary Table 1 in Additional file 3 

2). We have previously described all the details of our lipid profiling, data processing, 4 

quality control, and peak-picking process [6]. In brief, lipid profiles were obtained using 5 

an open-profiling technique that measured all lipid species across a spectrum. We 6 

developed a novel peak-picking algorithm [6] to select all lipids within an m/z window of 7 

185-1000, with a time window of 20-70 seconds for lipids in positive ionisation mode and 8 

95-145 seconds for lipids in negative ionisation mode. A lipid list containing all known 9 

lipids within this m/z range was used to extract information on the lipid concentrations at 10 

specific peaks of interest, consisting of 1,305 lipids in positive ionisation mode and 3,772 11 

lipids in negative ionisation mode. Quality control samples and blanks were used to remove 12 

lipids that were not able to be detected or had poor quality of assessment, resulting in a 13 

final list of 360 distinct lipid annotations across both ionisation modes. 14 

 15 

Genotyping and imputation 16 

DNA from PROMIS participants was extracted from leukocytes in Pakistan and genotyped 17 

at the Wellcome Sanger Institute in Cambridge, UK on either (1) the Illumina 660-Quad 18 

GWAS platform, which consisted of 527,925 genotyped autosomal variants after quality 19 

control (QC) steps were performed, or (2) the Illumina HumanOmniExpress GWAS 20 

platform, which consisted of 643,333 genotyped autosomal variants after QC. Genetic 21 

samples were removed if (1) they were heterozygosity outliers (heterozygosity > mean ± 22 

3 SD), (2) the sample call rate was less than 97%, (3) there was discordant sex between 23 

genetically-inferred and self-reported sex, or (4) they were duplicate or related pairs 24 

(kinship coefficient > 0.375). Single nucleotide polymorphisms (SNPs) were excluded if 25 

(1) the SNP call rate was less than 97%, (2) there was evidence of departure from Hardy-26 

Weinberg Equilibrium (HWE) at a P-value of less than 1 x 10-7, or (3) the minor allele 27 

frequency (MAF) was less than 1%. Imputation was applied to the cleaned PROMIS 28 

datasets using the 1000 Genomes Project March 2012 (v3) release [7] as the reference 29 
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panel. Imputation was conducted using IMPUTE v2.1.0 [8] using 5-Mb non-overlapping 1 

intervals for the whole genome. Once imputation had been performed for the samples on 2 

both genotyping platforms separately, there were over 7.2 million imputed SNPs available 3 

for analyses in either dataset before further QC. SNPs were removed if they were poorly 4 

imputed, i.e. if they had an information score (an assessment of the level of accuracy of 5 

imputation) < 80%. The results were then extracted from the output files, and once the 6 

final QC filters were reapplied, 6,720,657 SNPs were available for analyses of the 7 

lipidomics data. In total, 5,662 individuals from PROMIS had concomitant information on 8 

lipidomics data and imputed SNPs. 9 

 10 

Primary genome-wide association analyses 11 

In PROMIS, linear regression was used to determine the association of each lipid with each 12 

SNP using SNPTEST v2.4.1 [9], which was performed separately for the samples 13 

genotyped on each of the two genetic platforms. Residuals were calculated from the null 14 

model for each lipid, which included adjustment for age group, sex, date of survey, plate 15 

(batch), and fasting status. To account for population stratification and genetic 16 

substructure in the data, principal component analysis was conducted on the multi-17 

dimensional scaling matrix created from autosomal SNPs as implemented in PLINK; the 18 

first six principal components were subsequently added to each model. A missing data 19 

likelihood score test was used when testing for association at imputed SNPs to account for 20 

genotype uncertainty. Beta estimates and standard errors from the association results for 21 

the two genetic platforms were combined in a fixed-effect inverse-variance-weighted 22 

meta-analysis using METAL version 2011-03-25 [10]. The threshold for genome-wide 23 

significance level was set to P < 8.929 x 10-10, which corrected for multiple testing by 24 

dividing the standard genome-wide significance level (5 x 10-8) by the number of principal 25 

components (56) that explained over 95% of the variance in the levels of the lipids. All 26 

traits gave genomic inflation factors (λ) in the meta-analysis less than 1.05 [mean (SD) 27 

1.0139 (0.0129); range 0.9741-1.0455], indicating that there was little evidence of 28 

systematic bias in the test statistics. 29 
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 1 

To verify the robustness and validity of the results, post-analysis quality control (QC) was 2 

performed by comparing the meta-analysis results with the results on each GWAS 3 

platform. The lead SNPs from the meta-analysis were only kept if they (1) passed QC in 4 

the raw SNPTEST results from both GWAS platforms (i.e. HWE P < 1 x 10-7, call rate < 5 

0.97, MAF < 0.01, and info score < 0.80); (2) had beta (β) estimates in the same direction 6 

on both platforms (i.e. betas were both negative or both positive); and (3) had P < 0.01 7 

on both platforms (with P < 8.9 x 10-10 in the meta-analysis). 8 

 9 

Genome-wide analysis of ratios of lipids 10 

A second discovery step was carried out in PROMIS by testing genome-wide associations 11 

on 26 pairwise ratios of lipid concentrations. Ratios were identified based on those that 12 

had strong biological rationales and that acted through thoroughly understood metabolic 13 

pathways (Supplementary Table 5). Meta-analysis was performed to combine results from 14 

the two genotyping platforms using a fixed-effect inverse-variance weighted meta-15 

analysis. Since there were fewer statistical tests for the ratios than for the individual lipids, 16 

the combined results file for each ratio was filtered using the standard threshold for 17 

genome-wide significance of P < 5 x 10-8. 18 

 19 

Conditional analyses 20 

We conducted conditional analyses on the significant loci from the meta-analysis results 21 

of the univariate GWAS for each lipid in PROMIS. All SNPs were selected where P < 8.9 x 22 

10-10, the 5-Mb chunks were identified where each of these SNPs were located, and the 23 

lead SNPs were selected within each chunk that had the strongest P-value. On an individual 24 

lipid basis, for each 5-Mb chunk that was identified, SNPTEST was run on the imputed data 25 

for each genotyping platform using the same null model as before, except also conditioning 26 

on the lead SNP in the identified chunk. The results from the samples analysed on each 27 

genotyping platform were combined in a meta-analysis using METAL as described above, 28 

and any SNPs where P < 8.9 x 10-10 were identified. The lead SNP from the meta-analysed 29 
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results of the first conditional analysis (i.e. the SNP with the strongest P-value) was 1 

identified, and this process was repeated for each chunk. Additional SNPs to be conditioned 2 

on were repeatedly added to the model on each chunk for each lipid until there were no 3 

more significant SNPs left within that chunk. The final set of SNPs that were “conditionally 4 

independent” for each lipid were combined into a single list across all lipids, resulting in 5 

359 SNP-lipid associations (lipid QTLs) for 255 lipids, or 90 unique lead SNPs. These 6 

variants were grouped into 24 loci using a distance measure of ±500-Kb. 7 

 8 

We identified the proportion of variation in the lipidome explained by inherited genetic 9 

variants by regressing each lipid on the number of copies of each allele held by each 10 

participant for each of the conditional analysis sentinel SNPs. 11 

 12 

Candidate gene annotation 13 

In order to prioritise candidate genes that might underpin the genotype—lipid associations, 14 

we applied the ProGeM framework (Supplementary Figure 5 in Additional file 1) to both 15 

PROMIS and INTERVAL [11]. In addition to reporting the nearest gene to the sentinel 16 

variant, ProGeM combines information from complementary “bottom-up” and “top-down” 17 

approaches to assess the credibility of potential candidate genes [11] (Supplementary 18 

Table 7). In the bottom-up approach, we annotated SNPs according to their putative 19 

effects on proximal gene function by examining whether these SNPs influence protein 20 

sequencing, gene splicing, and/or mRNA levels of a local gene (Supplementary Table 8). 21 

Conversely, in the top-down approach, we annotated SNPs according to previous 22 

knowledge concerning local gene function by examining whether proximal genes have 23 

been previously implicated in lipid metabolism (Supplementary Table 9). In cases where 24 

(1) SNPs were purported to exert effects on more than one local gene and/or (2) more 25 

than one local gene was previously implicated in lipid metabolism, we assigned SNPs to 26 

multiple genes rather than force-assigning each to a single gene. In cases where it was 27 

not possible to annotate SNPs using either the bottom-up or top-down approach, we 28 
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assigned the SNPs to their nearest gene. Further details of the candidate gene annotation 1 

approach that we followed are described in the Supplementary Methods (Additional file 1). 2 

 3 

After performing comprehensive annotation of SNPs as per the bottom-up and top-down 4 

procedures, we then integrated this information to try to predict the most likely causal 5 

gene(s) using a hierarchical approach as follows: (1) For those lead SNPs where the same 6 

gene was highlighted by both the bottom-up and the top-down approach, we selected this 7 

gene as the putative causal gene; (2) If both the SNP (from this study) and the proximal 8 

gene (from IPA) were associated with the same lipid subclass, we made further SNP-gene 9 

assignments accordingly; (3) Finally, for each of the remaining lead SNPs, we assigned 10 

the highest scoring top-down gene and any bottom-up genes as the likely causal gene(s). 11 

 12 

Separately, we assigned an expertly-curated causal gene to each variant and compared 13 

the predicted causal genes identified by the functional annotation pipeline to assess 14 

concordance and validate the pipeline. 15 

 16 

Gaussian Graphical Modelling 17 

As described previously [6], we estimated a Gaussian Graphical Model (GGM) on the 18 

normalised relative intensities of the lipids in PROMIS to better resolve lipid cross-19 

correlations. The GGM resulted in a set of edges in which each edge connected two 20 

detected lipids if their cross-correlation conditioned on all other lipids was significantly 21 

different from zero. Subjects with more than 10% missing lipids as well as lipids with more 22 

than 20% missing subjects were removed from the analysis. The “genenet” R package 23 

was used to infer the GGM [12]. A similar approach for metabolomics data has been 24 

suggested previously [13]. To focus on strong effects we retained only edges in the model 25 

that met an FDR cutoff of 0.05 and had a partial correlation coefficient greater than 0.2. 26 

 27 
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Fatty acid chain enrichment analysis 1 

We manually annotated detected lipids in PROMIS with their constituent fatty acid chains. 2 

For each combination of fatty acid chains, we counted the number of GGM edges 3 

connecting lipids with that specific combination, which we used to directly estimate P-4 

values of enrichment and depletion. To test whether edges from the GGM were enriched 5 

for any combination of fatty acid chains, we permuted the annotation 1000 times using 6 

the R package “BiRewire” [14], keeping the number of annotations per lipid and fatty acid 7 

chain constant. 8 

 9 

Network of genetic and metabolic associations 10 

We used Cytoscape v3.2.1 [15] to generate a network of associations between genes and 11 

lipid subclasses in PROMIS (Figure 3). Using a previously described approach [16], we 12 

constructed a GGM to connect lipids to each other based on partial correlation coefficients, 13 

and we also connected lipids with genetic loci using the conditional analysis results, with 14 

one link for each genome-wide significant association. The full network facilitates 15 

visualisation of the genetic determinants of human metabolism and the relationships 16 

between genetic loci and lipid subclasses. 17 

 18 

The network diagrams were created by combining two parts to integrate different sources 19 

of information. The first part was created by loading the reported associations between 20 

lipids and genes into Cytoscape. Lipid species were clustered according to the lipid subclass 21 

they belong to, resulting in fourteen distinct lipid subclass nodes in the network. The 90 22 

identified lead SNPs from the conditional analyses were clustered according to their 23 

corresponding predicted causal gene(s), which was determined using the ProGeM 24 

framework [11]. In cases where it was not possible to confidently identify a single 25 

predicted causal gene, loci were entered into the network instead. For the second part, a 26 

functional interaction network consisting solely of our list of predicted causal genes/loci 27 

was created in Cytoscape using interaction network data downloaded from Ingenuity 28 

Pathway Analysis (IPA) that had been merged using in-house R scripts to create a .sif file. 29 
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For loci with multiple potential causal genes, interaction networks for all genes were 1 

extracted from IPA and an edge was drawn if at least one gene at that locus functionally 2 

interacts with another of our lipid-associated genes according to IPA. Finally, these two 3 

parts were merged together by node names (i.e. gene symbols). No enrichment statistics 4 

(e.g. KEGG pathways or GO terms) or other statistical information was used to produce 5 

the network, since this information was already incorporated to inform the predictions of 6 

the most likely “causal” genes, and would therefore invalidate the conclusions if it was also 7 

used to inform the network. 8 

 9 

A second network diagram was created containing a subset of the first network containing 10 

only the triglyceride species (Figure 4). It also provides more detail as it shows the 11 

individual triglycerides rather than the lipid subclass as a whole. Thus, it portrays the 12 

partial correlations of the triglycerides with each other and the association of each 13 

triglyceride with genetic loci. 14 
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RESULTS 1 

Genetic architecture of the lipidome in South Asians and in the UK 2 

We performed a genome-wide association study (GWAS) on the levels of 360 lipid 3 

metabolites using 6.7 million imputed autosomal variants in 5,662 hospital-based controls 4 

from PROMIS. We applied DIHRMS to quantify serum lipid metabolites across five broad 5 

lipid categories, i.e. fatty acyls and derivatives, glycerolipids, glycerophospholipids, 6 

sphingolipids, and sterol lipids [6]. We demonstrated the robustness of these lipid 7 

measurements in several ways, including validation of lipid signals against blanks, pooled 8 

samples, and internal standards, as we described previously [6]. Additionally, we 9 

replicated known associations of lipid metabolites with previously reported major lipid loci 10 

(Supplementary Table 15). After Bonferroni correction for multiple testing of variants and 11 

lipid metabolites (P < 8.929 × 10-10), we found 359 significant associations between 255 12 

lipid metabolites and 24 genomic regions (Figure 1, Figure 2, Supplementary Figure 1, 13 

Supplementary Table 2). The majority of these lipid metabolites (67%; n = 171) were 14 

associated with variation at a single locus, while 26% of lipid metabolites were associated 15 

with two loci and 7% were associated with three or more loci (Supplementary Figures 2a 16 

and 3). To detect multiple independent associations at the same locus, we used stepwise 17 

conditional analysis, identifying 90 conditionally independent variants associated with lipid 18 

metabolites (Supplementary Table 3). 335 (93%) of the lipid QTLs had multiple 19 

conditionally significant associations (Supplementary Figure 2b). 20 

 21 

Using the same DIHRMS platform, we also performed a GWAS on levels of 432 lipid 22 

metabolites using 87.7 million imputed autosomal variants in 13,814 British blood donors 23 

from INTERVAL. We identified significant associations with lipids at 38 independent loci 24 

(Figure 1, Supplementary Table 4). There was considerable consistency in the genomic 25 

regions identified in each study, with 18 (75%) of the significant genetic loci from PROMIS 26 

also found in INTERVAL (Figure 1). Six genetic loci were specific to lipid levels in the 27 

Pakastani population: ANGPTL3, UGT8, PCTP, C19orf80, XBP1, and GAL3ST1. There were 28 
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also twenty genetic loci associated with lipids in the British population that were not 1 

significantly associated with lipids in the Pakistani population. 2 

 3 

In PROMIS, the median proportion of variation in the lipidome explained by the genome-4 

wide significant conditionally independent variants was 1.7% (interquartile range: 1.5-5 

1.9%) (Supplementary Figure 2c), which is slightly less than that reported in 6 

metabolomics studies [16–19] but similar to the reported variation explained in previous 7 

lipidomics studies [20, 21]. There was a strong inverse relationship between effect size 8 

and minor allele frequency (MAF) (Supplementary Figure 2d), consistent with previous 9 

GWAS of quantitative traits [22, 23]. Approximately 70% of the analysed genetic variants 10 

in this analysis were common (MAF >5%) and 30% were low-frequency (MAF: 1-5%) with 11 

a median MAF of 8%. To help identify candidate causal genes through which genetic loci 12 

may influence lipid levels and thereby impact disease risk, we applied the ProGeM 13 

framework [11] (Supplementary Tables 7-13, Supplementary Figure 5). We identified a 14 

plausible or established link to biochemical function for 16 of the 24 loci (including GCKR, 15 

LPL, FADS1-2-3, and APOA5-C3), involving 34 unique genes. In cases where it was not 16 

possible to annotate SNPs using our systematic approach, we assigned them to their 17 

nearest protein-coding gene. 18 

 19 

Previous studies have shown that the ratios of metabolites can strengthen association 20 

signals and lead to a better understanding of possible mechanisms [16]. Thus, in addition 21 

to the individual lipid metabolites, we selected twenty-six ratios of lipid metabolites that 22 

act through well-understood metabolic pathways. These included ratios associated with 23 

lipase activity, elongases, docosahexaenoic acid (DHA) levels, dairy fat intake, insulin 24 

production, glucose control, de novo lipogenesis, and cardiovascular disease risk 25 

(Supplementary Table 5). Genome-wide association analyses of these ratios in PROMIS 26 

resulted in the identification of four additional loci that were not detected in the GWAS of 27 

individual lipid metabolites (MYCL1-MFSD2A, LPGAT1, LOC100507470, and HAPLN4-28 

TM6SF1) (Supplementary Table 6). 29 
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 1 

Network of genetic and metabolic associations 2 

To identify and visualise the connectivity between lipid subclasses, we generated a network 3 

of genetic and metabolic associations in PROMIS by summarising within each subclass the 4 

pairwise partial correlations between lipid metabolites and their genetic associations 5 

(Figure 3). This network diagram highlights that the number of connections between 6 

diglycerides and triglycerides was strongly over-represented in the Gaussian Graphical 7 

Model (GGM), indicating that there were more significant partial correlations between lipids 8 

from these subclasses than would be expected due to chance alone, whereas the number 9 

of connections between sphingomyelins and triglycerides was strongly under-represented 10 

in the GGM. In addition to being associated with variants from the SPTLC3 and FADS1-2-11 

3 loci, we found that sphingomyelins were associated exclusively with four loci that were 12 

not associated with any other lipid subclasses: GCKR, SGPP1, MLXIPL, and XBP1.  13 

 14 

Given the striking findings for triglycerides in the overall network diagram, we also 15 

generated a network in PROMIS for a subset of the triglyceride species showing the partial 16 

correlations of individual triglycerides and their detailed associations with genetic loci 17 

(Figure 4). This network diagram shows that variants in the APOA5-C3 locus are associated 18 

with a wide range of triglycerides, consistent with previous associations of Apolipoprotein 19 

A-V (ApoA5) with plasma triglyceride levels. ApoA5 is a component of a number of 20 

lipoprotein fractions including HDL, VLDL, and chylomicrons, and it may regulate the 21 

catabolism of triglyceride-rich lipoprotein particles by LPL and/or play a role in the 22 

assembly of VLDL particles [24–28]. The network mainly shows links with triglycerides 23 

containing polyunsaturated fatty acids (PUFAs), suggesting that variants in the APOA5-C3 24 

locus mainly affect the catabolism of lipoproteins containing triglycerides derived from 25 

adipose tissues that are relatively enriched in more unsaturated fatty acids. In contrast, 26 

we did not see direct links of fully saturated triglycerides with the APOA5-C3 locus, 27 

suggesting that genetic variation at this locus is not particularly involved in the assembly 28 

of VLDL particles in the liver as part of de novo lipogenesis (see Supplementary Figure 4). 29 
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 1 

Fatty acid desaturase is key in the production of PUFAs; therefore, differences in FADS1-2 

2-3 activity are expected to be observed in triglycerides with a large number of double 3 

bonds and carbon atoms. Indeed, the GGM concords with established biochemistry since 4 

this locus is associated with triglycerides (TG) 56:6, 56:7, and 58:9 but is not associated 5 

with triglycerides with fewer double bonds or carbon atoms. In contrast, it is unclear why 6 

variants in the PNPLA3 locus also have the strongest associations with triglycerides with a 7 

relatively larger number of carbon atoms and double bonds, namely TG(56:5) and 8 

TG(56:6) (see also Figure 5). One possible explanation is that significantly associated 9 

variants in the PNPLA3 locus are changing the substrate specificity so that there is a shift 10 

in the relative amounts of triglycerides that are exported from the liver. 11 

 12 

Additionally, the network diagram confirms that LPL is mainly active on MUFAs in 13 

triglyceride species. Variants in the LPL locus are significantly associated with TG(52:2), 14 

TG(52:3), TG(53:2), and TG(53:3), which have a high probability of containing one or 15 

more MUFAs within their fatty acid side chains. Figure 2 also shows that triglycerides and 16 

diglycerides are predominantly inversely associated with LPL variants, while triglycerides 17 

are positively associated with PNPLA3 variants. Variants in the LPL locus are also positively 18 

associated with phosphocholines, sphingomyelins, and cholesterol esters, although the 19 

associations for the majority of the lipids in these subclasses did not reach genome-wide 20 

significance. 21 

 22 

New biological insights into lipid metabolism 23 

Our analysis replicated known associations between lipids and genetic loci while also 24 

further extending what is known about these loci. We found significant associations of a 25 

wide range of lipids, including phosphatic acid (PA) 39:1, phosphatidylcholine (PC) 35:4, 26 

and phosphatidylethanolamines (PE) 36:4, 36:5, and 38:6, with variants in the LIPC locus 27 

(Supplementary Figure 6i); and significant associations of six specific sphingomyelins 28 

[SM(34:0), SM(40:0), SM(40:1), SM(40:2), SM(42:0)+AcO-, and SM(42:1)] and two 29 
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phosphatidylcholines [PC-O(37:1) and PC-O(39:1)] with variants in the APOE-C1-C2-C4 1 

locus (Supplementary Figure 6b). We also identified significant associations of four further 2 

sphingomyelins [SM(31:1)-H-, SM(32:1), SM(32:1)+AcO-, and SM(39:1)] with variants in 3 

the SGPP1 locus (Supplementary Figure 6s). Additionally, we found significant associations 4 

of nine ceramides [Cer(40:0)-H-, Cer(40:1)-H-, Cer(40:2)-H-, Cer(41:0)-H-, Cer(41:1)-H-5 

, Cer(41:2)-H-, Cer(42:0)-H-, Cer(42:1)-H-, and Cer(42:2)-H-] with variants in the SPTLC3 6 

locus, which have not previously been reported in relation to this locus, as well as 7 

significant associations with three phosphatidylcholines and fifteen sphingomyelins 8 

(Supplementary Figure 6t). 9 

 10 

We also discovered genetic associations with lipids at the patatin-like phospholipase 11 

domain containing protein 3 (PNPLA3) and membrane bound O-acyltransferase domain 12 

containing 7 (MBOAT7) loci that may have important biological and clinical implications. 13 

We found significant associations of two triglycerides—TG(56:6) (m/z 924.801) and 14 

TG(56:5) (m/z 926.817)—with rs12484809, an intronic variant in the PNPLA3 locus 15 

(Supplementary Figure 6q). We also we found that the lead SNP in the MBOAT7 locus, 16 

rs8736 (chr19:54677189), was associated with a wide range of phosphatic acids [e.g. 17 

PA(40:5) and PA(44:6)], phosphatidylcholines [e.g. PC(36:6) and PC(42:11)], 18 

phosphatidylethanolamines [e.g. PE(39:7)], and phosphoinositols [e.g. PI(34:1) and 19 

PI(36:1)] (Supplementary Figure 6k). 20 

 21 

We undertook further investigation of a related nonsynonymous PNPLA3 variant that is in 22 

moderate LD (r2 = 0.695), rs738409 (p.Ile148Met), to study the associations of lipids with 23 

PNPLA3 in greater detail, including those that did not reach genome-wide significance. We 24 

focused on this variant rather than rs12484809 because I148M is already known to be 25 

associated with total triglycerides [29] and has been extensively characterised in previous 26 

genetic and functional analyses, and therefore is more likely to have potential clinical 27 

applications. As shown in Figure 5a, the PNPLA3 I148M allele was associated with 28 

increased levels of lipids of higher carbon number and double-bond content, and 29 
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consistently, with decreased levels of lipids of lower carbon number and double-bond 1 

content. There were also significant differences between the mean levels of the 2 

triglycerides TG(57:10), TG(46:0), and TG(56:6) between individuals stratified by PNPLA3 3 

I148M genotype (Figures 5b, 5c, and 5d).  4 
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DISCUSSION 1 

Based on a comprehensive analysis of genetic influences on 360 human blood lipids 2 

assayed in 5,662 individuals from Pakistan, we identified 359 significant associations 3 

between 255 lipids and 24 genetic loci. Additionally, in our analysis of 432 lipids in 13,814 4 

British blood donors, we identified significant associations between 326 lipids and 38 5 

independent loci. The majority of genetic regions associated with lipids in PROMIS were 6 

also found in INTERVAL; those that did not replicate may be due to the increased sample 7 

size in INTERVAL which gave a substantial boost in power. These findings suggest that 8 

genetically determined aspects of lipid metabolism are broadly similar in individuals of 9 

South Asian and European ancestry, and that DIHRMS can reliably capture differences in 10 

lipid levels across diverse populations. 11 

 12 

There were six genetic loci specific to lipid levels in PROMIS: ANGPTL3, UGT8, PCTP, 13 

C19orf80, XBP1, and GAL3ST1. Angiopoietin-like 3 (ANGPTL3) is involved in regulation of 14 

lipid and glucose metabolism. SNPs in the ANGPTL3 region have previously been shown to 15 

be associated with major lipids, including LDL-C and total cholesterol [30, 31]. In PROMIS, 16 

rs6657050, an intronic variant in the ANGPTL3 locus, was significantly associated with 17 

PC(38:7)+AcO- (m/z 862.5603) and PI(36:2)-H- (m/z 861.5498) (Supplementary Figure 18 

6a). 19 

 20 

UDP glycosyltransferase 8 (UGT8) catalyses the transfer of galactose to ceramide, a key 21 

enzymatic step in the biosynthesis of galactocerebrosides, which are abundant 22 

sphingolipids of the myelin membrane of the central and peripheral nervous system. In 23 

PROMIS, rs28870381, an intergenic variant in UGT8, was associated with PG(32:1) (m/z 24 

779.5078) (Supplementary Figure 6u). 25 

 26 

Phosphatidylcholine transfer protein (PCTP) catalyses the transfer of phosphatidylcholines 27 

between membranes and is involved in lipid binding. Through regulation of plasma lipid 28 

concentrations it may also modulate the development of atherosclerosis [32]. In PROMIS, 29 
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rs11079173, an intronic variant in the PCTP locus, was associated with PA(40:5)+AcO- or 1 

PG(39:5)-H- (m/z 809.5337) (Supplementary Figure 6n). 2 

 3 

C19orf80, also known as angiopoietin-like 8 (ANGPTL8), is involved in the regulation of 4 

serum triglyceride levels, and is associated with major lipids including HDL-C and 5 

triglycerides [31]. In PROMIS, rs8101801, an intronic variant in the C19orf80 locus, was 6 

significantly associated with PC(40:9)+AcO- (m/z 886.5603) and PI(38:4)-H- (m/z 7 

885.5498) (Supplementary Figure 6d). 8 

 9 

Galactose-3-O-sulfotransferase 1 (GAL3ST1) catalyses the sulfation of membrane 10 

glycolipids and the synthesis of galactosylceramide sulfate, a major lipid component of the 11 

myelin sheath. In PROMIS, rs2267161, a missense variant in the GAL3ST1 locus, was 12 

associated with PG(32:1) (m/z 779.5078) (Supplementary Figure 6g). 13 

 14 

X-box binding protein 1 (XBP1) functions as a transcription factor during endoplasmic 15 

reticulum stress by regulating the unfolded protein response. It is also a major regulator 16 

of the unfolded protein response in obesity-induced insulin resistance and T2D for the 17 

management of obesity and diabetes prevention. Recent studies have shown that 18 

compounds targeting the XBP1 pathway are a potential approach for the treatment of 19 

metabolic diseases [33]. In addition, XBP1 protein expression, which is induced in the liver 20 

by a high carbohydrate diet, is directly involved in fatty acid synthesis through de novo 21 

lipogenesis. Therefore, compounds that inhibit XBP1 activation may also be useful for 22 

treatment of NAFLD [34]. In PROMIS, rs71661463, an intronic variant for which XBP1 is 23 

the candidate causal gene, was associated with SM(37:1) (m/z 745.6216) (Supplementary 24 

Figure 6v). Recent research across many species has shown that XBP1 is a transcription 25 

factor regulating hepatic lipogenesis. In mice, hepatic XBP1 expression is regulated by 26 

proopiomelanocortin (POMC) during sensory food perception and coincides with changes 27 

in the lipid composition of the liver with increases in PCs and PEs [35]. Although previous 28 

studies have shown direct links between XBP1 and overall lipid metabolism, this is the first 29 
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time a genetic association has been reported between XBP1 and lipid metabolites in 1 

humans, affecting sphingomyelins, PCs, and PEs (Supplementary Figure 6v). 2 

 3 

Our findings for the PNPLA3 and MBOAT7 loci were also notable. PNPLA3 is a 4 

multifunctional enzyme that encodes a triacylglycerol lipase, which mediates 5 

triacylglycerol hydrolysis in adipocytes and has acylglycerol O-acyltransferase activity. The 6 

relationship between rs738409, a nonsynonymous variant (p.Ile148Met) in the PNPLA3 7 

gene, and non-alcoholic fatty liver disease (NAFLD) has been well established [36]. This 8 

variant has been shown to impair triglyceride hydrolysis in the liver and secretion of 9 

triglyceride-rich very low density lipoproteins, leading to altered fatty acid composition of 10 

liver triglycerides, and is also associated with reduced risk of CHD [37] and increased risk 11 

of type 2 diabetes (T2D) [38]. This suggests that targeting hepatic pathways to reduce 12 

cardiovascular risk may be complex, despite the clustering of cardiovascular and hepatic 13 

diseases in people with metabolic syndrome. Our analysis offers granularity to the 14 

previously identified total triglyceride associations with PNPLA3 by identifying two specific 15 

triglyceride species that may have a role in PNPLA3 function. 16 

 17 

MBOAT7, which contributes to the regulation of free arachidonic acid in the cell through 18 

the remodelling of phospholipids, was reported as being associated with the metabolite 1-19 

arachidonoylglycerophosphoinositol in a previous mGWAS [16] [known as PI(36:4) in our 20 

study], but we found that the lead SNP in this locus, rs8736 (chr19:54677189), was also 21 

associated with a wide range of phosphatic acids, phosphatidylcholines, 22 

phosphatidylethanolamines, and phosphoinositols (Supplementary Figure 6k). Several 23 

studies have shown that MBOAT7 (also known as lysophosphatidylinositol‐acyltransferase 24 

1 [LPIAT1]) is responsible for the transfer of arachidonoyl‐CoA to lysophosphoinositides 25 

[39]. The creation of MBOAT7-deficient macrophages show a decreased level of PI(38:4) 26 

and an increase of PI(34:1) as well as PI(40:5) [40]. The T allele of rs8736, a 3’ UTR SNP, 27 

shows a similar shift in the phosphatidylinositol metabolism. Our work shows that this SNP 28 

is also strongly associated with PI(38:3), which is likely to be the dihomo-gamma linoleic 29 
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acid (20:3n6)-containing phosphoinositol. None of the papers testing the substrate 1 

specificity of MBOAT7 have included dihomo-gamma linoleic acid or PI(38:3) in their 2 

analysis. Thus, we provide novel evidence in humans that there is an association between 3 

MBOAT7 activity and circulating phosphatidylinositols, a finding that requires further 4 

replication. 5 

 6 

Our network diagram helped identify sphingomyelins that were associated exclusively with 7 

four loci that were not associated with any other lipid subclasses: GCKR, SGPP1, MLXIPL, 8 

and XBP1. Sphingomyelins have previously been shown to be associated with SGPP1 [41], 9 

but the associations of sphingomyelins with these other three loci are reported here for 10 

the first time. GCKR has been shown to be associated with total cholesterol and 11 

triglycerides (see Figure 2), and has also been associated with the plasma phospholipid 12 

fraction fatty acids 16:0 and 16:1 [42, 43]; most lipids that we found to be associated 13 

with GCKR (Supplementary Figure 6g) are likely to contain these particular fatty acids. It 14 

has been suggested that the glucokinase receptor, encoded by GCKR, affects the 15 

production of malonyl-CoA, an important substrate for de novo lipogenesis [42]. To a 16 

similar extent there is a known relation between MLXIPL and carbohydrate and lipid 17 

metabolism. MLXIPL is a transcription factor affecting carbohydrate response element 18 

binding protein (CREBP) and therefore also plays a role in lipogenesis. Although both these 19 

genes have previously been linked to lipogenesis, we discovered that genetic variation at 20 

genes involved in the regulation of lipogenesis have been implicated in altering 21 

sphingomyelin concentrations. 22 

 23 

The network diagram also helped recapitulate known biological relationships between 24 

lipids. As we established in our previous analysis [6], the number of significant partial 25 

correlations between lipids of different subclasses was significantly higher than would be 26 

expected due to chance alone. This analysis further showed that genes that were 27 

significantly associated with lipids of a particular subclass regulated all of the lipids within 28 

the subclass in a similar manner. Therefore, the total concentrations of a given lipid class 29 
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associated with a genetic locus are less affected by the proportion of fatty acids present 1 

in those lipid species. 2 

 3 

In summary, our analyses resulted in the following new insights in an understudied South 4 

Asian population: (1) we established that decreased levels of sphingomyelins are 5 

associated with genetically lower LPL activity; (2) we revealed a wide range of 6 

glycerophospholipids that are associated with variants in the MBOAT7 locus; (3) we 7 

identified several new associations of phosphatic acids, phosphocholines, and 8 

phosphoethanolamines with variants in the LIPC region; (4) we found several novel 9 

associations of sphingomyelins and phosphocholines with variants in the APOE-C1-C2-C4 10 

cluster; (5) we discovered four new associations of sphingomyelins with variants in the 11 

SGPP1 locus; and (6) we found several previously unreported associations of 12 

phosphocholines, sphingomyelins, and ceramides with variants in the SPTLC3 locus. These 13 

findings can help further the identification of novel therapeutic targets for prevention and 14 

treatment. 15 

 16 

Our investigation into the genetic influences of lipids has several strengths. First, the 17 

research involved participants from a population cohort in Pakistan, thereby enhancing 18 

scientific understanding of lipid associations in this understudied population, and we 19 

compared the findings with a typical Western population of British blood donors using the 20 

same lipid-profiling platform. Second, the analysis was based on a relatively large dataset 21 

of 5,662 participants from Pakistan and an even larger cohort of 13,814 individuals from 22 

the UK, thereby increasing statistical power to detect associations. Third, our mGWAS was 23 

performed in individuals free from established MI at baseline in PROMIS and healthy blood 24 

donors in INTERVAL, which reduces spurious associations due to the disease state or 25 

potential treatments. Finally, our newly developed open-profiling lipidomics platform was 26 

utilised to provide detailed lipid profiles, with a wider coverage of lipids than most other 27 

high-throughput profiling methods [6], which improved our ability to detect novel 28 
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associations and our understanding of the detailed effects of known lipid loci at the level 1 

of individual lipid species. 2 

 3 

Nevertheless, our study has several potential limitations. First, possible selection biases 4 

arise from the case-control design of PROMIS, although this was minimised by the 5 

recruitment of controls from patients, visitors of patients attending out-patient clinics, and 6 

unrelated visitors of cardiac patients. Second, serum samples in PROMIS were stored in 7 

freezers at -80 °C for between two to eight years before aliquots were taken for the 8 

lipidomics measurements, which we accounted for by adjusting the analyses by the 9 

number of years that the samples had been stored. Although residual confounding and 10 

deterioration of lipid profiles may still exist, such deterioration is unlikely to have been 11 

related to genotype. Third, a majority (76%) of PROMIS participants had not fasted prior 12 

to blood draw, and a small proportion of participants (7%) had reportedly fasted for an 13 

unknown duration. Recent food consumption may have had significant effects on lipid 14 

levels and influenced the results. Our analyses adjusted for fasting status although we 15 

lacked statistical power to stratify by fasting status. Fourth, PROMIS participants were 16 

recruited from multiple centres in urban Pakistan [6], but it is unclear whether the findings 17 

from this study would be generalizable to individuals living in rural villages and other parts 18 

of Pakistan, or in other countries in South Asia. However, the confirmatory analysis in 19 

INTERVAL, in which we identified significant associations with lipids for the majority of the 20 

genetic loci found in PROMIS, helps strengthen the argument that these findings are 21 

generalizable. Additionally, many of the lipids were associated with known genetic regions 22 

such as APOA5-C3 and FADS1-2-3, which have already been shown to be associated with 23 

multiple lipids in other Western populations, further strengthening the validity of the 24 

findings from this analysis. Finally, although two-sample Mendelian randomization 25 

approaches to make causal inferences about the association of lipids with CHD risk factors 26 

and disease outcomes holds great promise in the lipidomics arena [44], extensive 27 

pleiotropy made it too difficult to disentangle the findings and we chose not to pursue this 28 

avenue. Therefore, although especially stringent procedures were followed, highly 29 
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conservative cut-offs were used to determine statistical significance, and rigorous pre-1 

analysis and post-analysis quality control steps were performed, there is still a possibility 2 

that some of the findings were false positives that arose due to artefacts rather than being 3 

true signals. Additional analyses in other populations using the DIHRMS lipidomics platform 4 

would be helpful to further replicate our findings. Moreover, the identified pathways and 5 

proposed molecular mechanisms require validation through functional analyses in model 6 

organisms and humans. 7 

 8 

Further research will be able to leverage these lipidomics results in combination with 9 

whole-genome and whole-exome sequencing performed in PROMIS and INTERVAL to help 10 

understand the consequences of loss-of-function mutations identified in these participants 11 

[45]. 12 

 13 

CONCLUSIONS 14 

In conclusion, this article presents the results from a comprehensive analysis of genetic 15 

influences on human blood lipids in South Asians with a comparative analysis in the UK. 16 

Our findings strengthen and expand the knowledge base for understanding the genetic 17 

determinants of lipids and their association with cardiometabolic disease-related loci. 18 

These findings have important implications for the identification of novel therapeutic 19 

targets and advancement of mechanistic understanding of metabolic pathways that may 20 

lead to the onset of chronic diseases and lipid-related abnormalities.  21 
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LIST OF ABBREVIATIONS 1 

CHD: Coronary heart disease 2 

CVD: Cardiovascular disease 3 

DHA: Docosahexaenoic acid 4 

DIHRMS: Direct infusion high resolution mass spectrometry 5 

FDR: False discovery rate 6 

GGM: Gaussian Graphical Model 7 

HWE: Hardy-Weinberg Equilibrium 8 

MAF: Minor allele frequency 9 

MI: Myocardial infarction 10 

m/z: Mass-charge ratio 11 

NAFLD: Non-alcoholic fatty liver disease 12 

PROMIS: Pakistan Risk of Myocardial Infarction Study 13 

PUFA: Polyunsaturated fatty acid 14 

SD: Standard deviation 15 

SNP: Single nucleotide polymorphism 16 

T2D: Type 2 diabetes 17 

QC: Quality Control 18 

QTL: Quantitative trait loci 19 
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FIGURES 1 

 2 

Figure 1. Miami plot of combined association results from genome-wide association 3 

analysis for all lipids in PROMIS and INTERVAL 4 

Figure 2. Heat map showing associations of significant loci from conditional analyses 5 

with selected lipid metabolites in PROMIS 6 

Figure 3. Combined network graph summarising genetic associations and a Gaussian 7 

graphical model (GGM) relating to levels of individual lipid species in 8 

PROMIS 9 

Figure 4. Combined network graph summarising genetic associations and a Gaussian 10 

graphical model (GGM) relating to levels of individual triglycerides in 11 

PROMIS 12 

Figure 5. Association of lipids in PROMIS with PNPLA3 and differences in levels of 13 

triglycerides by genotype 14 

 15 
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Figure 1. Miami plot of combined association results from genome-wide association 1 
analysis for all lipids in PROMIS and INTERVAL 2 

 3 

 4 
 5 
The combined association results are shown for all lipids with each variant in PROMIS (top) 6 
and INTERVAL (bottom). P-values > 1 x 10-3 have been truncated at 1 x 10-3, and P-values 7 
< 1 x 10-200 have been truncated at 1 x 10-200. Actual P-value for lead SNP in FADS-1-2-3 8 
locus in INTERVAL is 1.6 x 10-286. 9 
 10 
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Figure 2. Heat map showing associations of significant loci from conditional analyses 1 
with selected lipid metabolites in PROMIS 2 

 3 
The effect estimates of the associations between significant variants and selected lipids are plotted as a heat 4 
map. Results are shown for selected top lipids with the strongest associations within each subclass (rows) against 5 
the most strongly associated genetic variant within each locus (columns). The associations with major lipids from 6 
the GLGC (total cholesterol, HDL-C, LDL-C, and triglycerides), DIAGRAM Consortium (type 2 diabetes), and 7 
CARDIoGRAMplusC4D Consortium (coronary artery disease) are also shown. The magnitude and direction of the 8 
effect estimates (standardised per 1-SD) are indicated by a colour scale, with blue indicating a negative 9 
association and red indicating a positive association with respect to the SNP effect on the trait. Asterisks indicates 10 
the degree of significance of the P-values of association. * = P < 1 x 10-4; ** = P < 5 x 10-8; *** = P < 8.9 x 11 
10-10.  12 
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Figure 3. Combined network graph summarising genetic associations and a 1 
Gaussian graphical model (GGM) relating to levels of individual lipid 2 
species in PROMIS 3 

 4 

 5 
 6 
Nodes representing genetic loci are each labelled with the most likely “causal” gene at that 7 
locus according to our functional annotation (see Methods). In order for an edge to be 8 
drawn between a genetic locus and a lipid subclass, there must have been a minimum of 9 
one variant at that locus significantly (P < 8.9 x 10-10) associated with a minimum of one 10 
lipid species belonging to that lipid subclass. Edges between lipid subclasses indicate 11 
whether there was either a significant over- (green) or under- (purple) representation (the 12 
magnitude is indicated in the thickness of the edges) of GGM connections between lipid 13 
species belonging to different lipid subclasses. 14 
 15 
 16 
  17 
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Figure 4. Combined network graph summarising genetic associations and a 1 
Gaussian graphical model (GGM) relating to levels of individual 2 
triglycerides in PROMIS 3 

 4 
 5 

 6 
 7 
Nodes representing genetic loci are each labelled with the most likely “causal” gene at that 8 
locus according to our functional annotation (see Methods). In order for an edge to be 9 
drawn between a genetic locus and a triglyceride, there must have been a minimum of 10 
one variant at that locus significantly (P < 8.9 x 10-10) associated with at least one 11 
triglyceride. Edges between triglycerides indicate whether there was either a significant 12 
over- (green) or under- (purple) representation, with the magnitude indicated by the 13 
thickness of the edges. 14 
  15 
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Figure 5. Association of lipids in PROMIS with PNPLA3 and differences in levels of 1 
triglycerides by genotype 2 

 3 

 4 
 5 
(a) Association of G allele of rs738409 in PNPLA3 locus with levels of various lipids in PROMIS. The 6 
black lines denote 95% confidence intervals. Difference in levels of triglycerides in PROMIS by 7 
genotype: (b) TG(57:10) (m/z 930.754), (c) TG(46:0) (m/z 796.7393), and (d) TG(56:6) (m/z 8 
924.801). P-values are for ANOVA test of difference in mean levels of triglycerides by genotype. 9 
 10 
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