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ABSTRACT 1 

Background: Air pollution has been consistently linked with dementia and cognitive decline. 2 

However, it is unclear whether risk is accumulated through long-term exposure or whether 3 

there are sensitive/critical periods. A key barrier to clarifying this relationship is the dearth of 4 

historical air pollution data. Objective: To demonstrate the feasibility of modelling historical 5 

air pollution data and using them in epidemiological models. Methods: Using the EMEP4UK 6 

atmospheric chemistry transport model, we modelled historical fine particulate matter (PM2.5) 7 

concentrations for the years 1935, 1950, 1970, 1980, and 1990 and combined these with 8 

contemporary modelled data from 2001 to estimate life course exposure in 572 participants in 9 

the Lothian Birth Cohort 1936 with lifetime residential history recorded. Linear regression 10 

and latent growth models were constructed using cognitive ability (IQ) measured by the 11 

Moray House Test  at the ages of 11, 70, 76, and 79 years to explore the effects of historical air 12 

pollution exposure. Covariates included sex, IQ at age 11 years, social class, and smoking. 13 

Results: Higher air pollution modelled for 1935 (when participants would have been in utero) 14 

was associated with worse change in IQ from age 11-70 years (β=-0.006, SE=0.002, P=0.03) 15 

but not cognitive trajectories from age 70-79 years (P>0.05). There was no support for other 16 

critical/sensitive periods of exposure or an accumulation of risk (all P>0.05). Conclusions: 17 

The life course paradigm is essential in understanding cognitive decline and this is the first 18 

study to examine life course air pollution exposure in relation to cognitive health.  19 

 20 

KEYWORDS: Ageing, dementia, Alzheimer’s disease, cognition, air pollution, life course 21 

epidemiology, atmospheric composition   22 
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INTRODUCTION 23 

Dementia is a global public health crisis with almost 47 million people affected in 2015 and 24 

almost 10 million new cases every year, leading to a projected prevalence of over 130 million 25 

by 2050.[1] The brain changes which lead to many dementias – including the most common 26 

form, Alzheimer’s dementia – begin in midlife and only manifest in later life.[2] Dementia 27 

prevention is now a worldwide priority and accepted risk factors include lower levels of 28 

educational attainment (in early life), cardiovascular disease risk factors (with hypertension 29 

and obesity particularly highlighted in mid-life), depression, hearing loss, and possession of the 30 

APOE ε4 allele.[3] A recent Lancet Commission report and other analyses have estimated 31 

that approximately a third of dementia risk can be explained by these common risk factors.[4, 32 

5] With genetic factors (most prominently APOE ε4 carriage) explaining approximately 33 

another third,[6] this leaves around a third of dementia risk unexplained. However, there is 34 

also evidence linking a number of environmental risk factors with dementia which might 35 

account for some of this unexplained risk.[7] The risk factor for which there is strongest 36 

evidence is air pollution.[8, 9] However, the field has been criticised since studies to date have 37 

lacked long-term (i.e. whole life) assessment of both exposure and outcome.[10]  Thus, no 38 

light has yet been shed on the question of when in the life-course exposure to air pollution is 39 

most harmful to the brain. Recent papers describing “long-term exposure” to air pollution only 40 

estimated air pollution exposure at one time point.[11, 12] Indeed, answering this question 41 

from a life-course epidemiology perspective is hampered by both a dearth of available air 42 

pollution data from earlier than a few decades ago, when systematic long-term monitoring of 43 

atmospheric concentrations was implemented and limited information about the geographical 44 

location of study participants over their lives.[13] Therefore, we modelled air pollution data 45 

(fine particulate matter, with an aerodynamic diameter of 2.5μm or smaller; PM2.5) for 46 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 18, 2020. ; https://doi.org/10.1101/2020.10.16.20163691doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.16.20163691
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5

multiple time periods and linked these with the Lothian Birth Cohort 1936 (LBC1936) — for 47 

whom lifetime residential history is available — to investigate links between air pollution and 48 

cognitive change over more than six decades. 49 

 50 

MATERIALS & METHODS 51 

Study participants  52 

The LBC1936 is a well-established cohort study, originally comprising 1091 men and women 53 

aged approximately 70 years at recruitment. Almost all sat the Moray House Test (MHT) of 54 

general cognitive ability in the Scottish Mental Survey in 1947 when they were aged about 11 55 

years.[14] Thus, general intelligence data are available for almost all participants at ages 11 56 

years, and repeatedly from approximately 70 years onwards. In the present study, we used data 57 

from waves 1, 3 and 4 when participants had mean ages of 69.5 (SD=0.8), 76.3 (0.7), and 58 

79.3 (0.6) years respectively; the MHT was not administered in wave 2. We operationalised 59 

cognitive function in the same way as previous studies, adjusting for age in days and 60 

standardising to an IQ-type score with mean 100 and SD 15.[15] In line with previous 61 

analyses, change in IQ score was computed as the standardised residual from a linear 62 

regression model with age 11 IQ as the independent variable and age 70 IQ as the dependent 63 

variable; this is superior to computing the arithmetic difference.[16, 17] 64 

 65 

In 2014, surviving LBC1936 participants were asked to complete a lifetime residential 66 

questionnaire and 593 of 704 approached provided usable life grid data (full addresses) which 67 

were geocoded to latitude and longitude.[15] Participants had a mean (SD) 11.3 (2.9) 68 

separate locations throughout life, ranging from six to 27, with the years they lived there also 69 

recorded. Each location was allocated to the closest time period for which air pollution data 70 
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were available: 1935 (location year 1942 or earlier); 1950 (1943-1959); 1970 (1960-1975); 71 

1980 (1976-1985); 1990 (1986-1995); or 2001 (1995-2004); locations after 2004 were 72 

excluded to avoid overlap with cognitive testing (wave 1 of the LBC1936 took place from 73 

2004-2007[14]). Participants may have had more than one location allocated to each time 74 

point — e.g., all locations between the years 1995 and 2004 would be allocated to the 2001 75 

time point. Thus, participants had up to ten locations per time point (mean [SD] values 76 

ranged from 1.11 [0.34] locations recorded in 2001 to 3.38 [1.33] locations in 1970). Twenty 77 

one participants (3.5%) were missing location data for at least one time point, leaving 572 in 78 

the final sample who had location (and therefore air pollution) data available for every time 79 

point.  80 

 81 

Other covariate data available in the LBC1936 and used in the models included sex, parental 82 

occupational social class (using the Registrar General 1951 classification from I to V[18]), and 83 

self-reported smoking status (current smoker at wave 1 or non-/ex-smoker). 84 

 85 

Air pollution modelling 86 

The EMEP4UK atmospheric chemistry  transport model (rv4.3 for 1970-2010 and rv4.10 for 87 

1935/50) [19] was used to model historical ambient concentrations of fine particulate matter 88 

(PM2.5) for the years 1935, 1950, 1970, 1980, and 1990 which were combined with 89 

contemporary modelled data from 2000 onwards and residential histories to estimate life 90 

course exposure. The EMEP4UK model setup, geographical coverage, and configuration used 91 

here has been described previously.[20, 21] The model covers the European Union with a 92 

horizontal resolution of 0.5° x 0.5° used to provide the boundary condition for a nested UK 93 

domain (resolution of 0.055° x 0.055°). The modelled PM2.5 and other key air pollutant 94 
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concentrations are routinely validated against observations across UK monitoring 95 

networks[20-25] and have been used for the assessment of population exposure over longer 96 

time scales in other studies for the period 1970 to 2010.[26] Emission data have been 97 

identified as key sources of uncertainty in modelling historic air pollution. A detailed 98 

assessment of sensitivity and uncertainty of the Atmospheric Chemistry Transport Models 99 

(ACTM) applied in this study has been published elsewhere.[27] 100 

 101 

UK-specific gridded emissions of nitrogen oxides (NOx), sulphur oxides (SOx), ammonia 102 

(NH3), non-methane volatile organic compounds (NMVOCs), carbon monoxide (CO), and 103 

coarse (PM10) and fine (PM2.5) particulate matter — all necessary for the atmospheric 104 

composition calculations — were produced for the target years on a nominal 1km x 1km grid 105 

covering the United Kingdom. Emissions data were internally re-projected and processed by 106 

the EMEMP4UK model to provide output concentration data at the model grid resolution of 107 

0.055° x 0.055° resolution (~5km x 6km) for the UK. The concentrations of PM2.5 calculated 108 

by the EMEP4UK model were used in conjunction with the residential history data (as 109 

described above). The sources of primary emitted PM are varied but the main contributors are 110 

essentially fuel combustion (from all sources) and the use of any mobile machinery, including 111 

road traffic. This is in contrast to secondary produced PM — such as ammonium sulphate 112 

which is formed by the interaction of ammonia gas and sulphur dioxide — which are strongly 113 

linked to specific sectors, such as SOx (energy) and NH3 (agriculture). The PM components 114 

included in the EMEP4UK model are; primary PM, secondary inorganic and organic aerosols, 115 

sea salt, and mineral dust.[22] Although this work is focused on the UK the EMEP4UK 116 

requires emission data for the whole of Europe to account for the transboundary 117 

imports/export. EU data were kindly supplied at a 50km x 50km resolution.[28, 29] The 118 
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EMEP4UK model is driven by 3D hourly meteorology calculated by the weather and research 119 

forecast model.[30] The meteorological year used for the 1935 and 1950 emission scenario 120 

was the year 2014, for the 1970, 1980, 1990 emission scenario was the year 2012, and for the 121 

2001 emission scenario the year was 2001. 122 

 123 

For the years 1970, 1980 and 1990, emission data in the official UK inventory, the National 124 

Atmospheric Emissions Inventory,[31] were used to scale 2017 spatial distributions (1km x 125 

1km resolution) of sectoral totals per pollutant, reported via the Selected Nomenclature for 126 

sources of Air Pollution system (SNAP sectors). While the use of contemporary distributions 127 

back to 1970 is imperfect, the majority of the time series had the best possible emissions 128 

estimates per sector. Emissions for 1950 were estimated and distributed in the Long Term 129 

Large Scale project,[32] while the 1935 emissions were a scaled version of the 1950 130 

distributions based upon activity data research, using the same spatial methods. Non-NH3 131 

activity data prior to 1970 are largely a reflection of the use of fossil fuels such as coal and of 132 

oil-derived products such as diesel (DERV); coal usage in the UK had a double peak either 133 

side of World War Two before a rapid decline in the 1960s. Agricultural activity data such as 134 

animal numbers, principally associated with emissions of NH3, were derived from the Vision of 135 

Britain database.[33] For source strength emission factors (EFs), many were similar to those 136 

used by the UK National Atmospheric Emission Inventory (NAEI) in 1970 while in terms of 137 

the spatial distribution of pre-1970 data, the principal differences from the NAEI distributions 138 

were: power stations relevant to the time period were mapped and the distribution of 139 

industrial activity was tied to census employment data.[32] 140 

 141 
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Raster files for each location year (1935, 1950, 1970, 1980, 1990, and 2001) were read into 142 

the R statistical computing environment version 4.0.2 using the raster package.[34] The 143 

latitude and longitude for each location were used to derive values from these raster files for 144 

each participant at each time point. Since participants may have had multiple locations within 145 

each time band, the unweighted mean of these multiple values per time point was calculated 146 

and used in the analyses as the value for that participant at that time point. For example, the 147 

mean of all the air pollution values corresponding to locations recorded between the years 148 

1995 and 2004 would be allocated to the 2001 time point for an individual participant. For 149 

the purposes of sensitivity analyses, we also computed the maximum value for each time point 150 

per participant and the 90% percentile value. 151 

 152 

Statistical modelling 153 

Following the convention in previous LBC1936 analyses, we modelled change in IQ score 154 

from age 11 to age 70 years separately from changes between the ages of 70, 76, and 79 years. 155 

The former used a linear regression model of in utero air pollution exposure (i.e., using PM2.5 156 

data for 1935; this was the only measurement of air pollution which predated the MHT 157 

administration at age 11 years) and residualised change in IQ score from age 11 to age 70 158 

years in the R statistical computing environment version 4.0.2. We adjusted this model for 159 

sex, parental occupation, and smoking status. 160 

 161 

To estimate linear late life cognitive trajectories, we fitted latent growth models to IQ scores 162 

from ages 70, 76, and 79 years to estimate the average population cognitive curves. These 163 

longitudinal models permit estimation of the outcome’s mean and individual trajectories while 164 

permitting the inclusion of predictors (time-invariant or time-varying) to study their 165 
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association with curve parameters such as the intercept and slope parameters. Latent growth 166 

models were estimated using maximum likelihood under a ‘missing at random’ missing data 167 

assumption. All latent growth models were estimated using MPLUS.[35] 168 

 169 

We summarise the models fitted in Figure 1, in which observed data are represented within 170 

rectangles, and latent variables such as the model’s intercept and slope are represented within 171 

circles. The one-way arrows indicate that the variable at the end of the arrow is explained in 172 

the model by the variable at the beginning of the arrow. Often in such figures, two-way curved 173 

arrows indicate covariances but as is commonly done – in order to simplify the figure – we 174 

have omitted these arrows here as well as the arrows that indicate error terms.  175 

 176 

Life course models 177 

The two main models in life course epidemiology are critical/sensitive periods and 178 

accumulation of risk.[2] To evaluate questions about any critical/sensitive period(s) of air 179 

pollution exposure and maximise the use of pollution data collected over the life course, we 180 

estimated late life trajectories of IQ scores at ages 70, 76 and 79 years, adjusting the intercept 181 

and rate of change for air pollution measures collected at different ages in the life course, age 182 

11 IQ scores, sex, parental social class, and smoking status. Specifically, we adjusted the 183 

models separately for PM2.5 in 1935, 1950, 1970, 1980, 1990, or 2001. Figure 1a depicts an 184 

example of the critical/sensitive period model fitted here. 185 

 186 

In order to evaluate an accumulation of risk model, we estimated a series of latent growth 187 

models similar to the previous ones, adjusting the level and rate of change for variables 188 

defined as the sum of air pollution to which the individual was exposed up to different stages 189 
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in life. That is, we added in utero air pollution measures (i.e., from 1935) to air pollution 190 

measures collected in 1950 to derive an indicator of early life exposure; the sum of air 191 

pollution measures from 1935 to 1970 covered early life to young adulthood; additionally 192 

adding pollution from 1980 encompassed early life to mid-adulthood; the addition of air 193 

pollution in 1990 covered early life to late adulthood; finally, adding air pollution from 2001 194 

covered early life to later life.  Figure 1b depicts an example of the accumulation period 195 

model fitted here. Text Box 1 summarises the models used in the present analyses. 196 

 197 

RESULTS 198 

A total of 572 LBC1936 participants were included in the present analyses. Their 199 

characteristics are summarised in Table 1. Briefly, just under half were female, and had 200 

completed more than compulsory education. Just over a quarter had parents from 201 

occupational social classes I or II (i.e., less deprived),  and about half were smokers at the time 202 

of recruitment to the LBC1936. Comparing the 572 LBC1936 participants for whom we had 203 

location (and therefore air pollution) data with the 519 participants excluded from these 204 

analyses revealed no major differences. 205 

 206 

Air pollution 207 

Table 2 shows the average air pollution estimates for the LBC1936 participants and 208 

Supplementary Figure 1 shows the distribution of air pollution exposure at each time period. 209 

Supplementary Figure 2 shows participants’ PM2.5 exposure changes over time and 210 

Supplementary Table 1 shows the correlations between individuals’ PM2.5 exposure ranking 211 

at different time points.  Rankings varied over time — likely due more to participants moving 212 

than the relative ranking of areas changing — but were more closely correlated when closer in 213 
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time, suggesting it is feasible to explore critical/sensitive time periods. Figure 2 shows the 214 

modelled PM2.5 values for Scotland in 1935; the urban centres are clearly visible. 215 

  216 
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Is in utero air pollution exposure associated with cognitive trajectories over the life course? 217 

Results from this model are presented in Table 3a, where the potential impact of air pollution 218 

measured in 1935 on the residualised change in IQ between the ages of 11 and 70 years, 219 

controlling for sex, parental social, class, and smoking was explored. There was a small 220 

association between higher levels of air pollution exposure in 1935 and in utero and a poorer 221 

IQ trajectory in IQ from 11 to 70 years (β=-0.006 IQ point per 1 μg/m3 increase in PM2.5, 222 

SE=0.002, P=0.03).  223 

 224 

Is in utero exposure to air pollution associated with late life cognitive trajectories? 225 

Figure 1a depicts the model that estimates linear changes in IQ scores between the ages of 70, 226 

76, and 79 years. In this model, the intercept represents the average IQ score at age 70 for a 227 

reference individual (a male whose father had a skilled job, who was exposed in utero to 228 

average levels of pollution, and who had an average IQ score at age 11 years) and the slope, 229 

the average rate of change of IQ scores from age 70 to 79 years. There was a small association 230 

between air pollution values for 1935 and the intercept (IQ score at age 70 years), albeit only 231 

of borderline statistical significance at conventional levels (P=0.06), but no association with 232 

rate of change in IQ score from age 70 to 79 years (P=0.36; Table 3b).  233 

 234 

Critical/sensitive period 235 

For the sake of brevity, Table 4 only contains estimates of the average value of IQ scores at 236 

age 70, their rate of decline until age 79 (for a reference individual, as defined above) and 237 

estimates of the association of air pollution exposure at each of the life course time points 238 

(apart from 1935 which was reported above) with IQ level at age 70 and rate of change 239 

(Figure 1b). No period of air pollution exposure had an effect on either the intercept or the 240 
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rate of change of the models which reached statistical significance at conventional levels (all 241 

P>0.05).  242 

 243 

Accumulation model 244 

Summary results of the models are presented in Table 5, where estimates of average IQ level 245 

at age 70, average IQ linear rate of change from that same age, and coefficients of the 246 

association between air pollution exposure at different stages of life with these parameters are 247 

presented. None of the risk periods had an effect on either the intercept or the rate of change 248 

of the models which reached statistical significance at conventional levels (all P>0.05). Our 249 

findings were robust to the sensitivity analyses varying the aggregation method used for 250 

multiple air pollution values. 251 

 252 

DISCUSSION 253 

Our main finding is that it is feasible to model historical air pollutant concentration data and 254 

incorporate them in epidemiological models to explore the influence of exposure to air 255 

pollution across the life course. We found little evidence that exposure to air pollution at 256 

different stages of the life course was associated with cognitive health and there was no 257 

support for an accumulation of risk. There was some evidence of exposure to air pollution in 258 

utero being associated with worse cognitive change between the ages of 11 and 70 years, but 259 

the effect size was small (β=-0.006). In particular we would highlight that these results have 260 

large degrees of uncertainties, considering the various methodologies used to produce the 261 

different air pollution concentration estimates due the wide range of emissions estimates, 262 

particularly for earlier estimates which have a lack of measured air quality data against which 263 

to be evaluated. 264 
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 265 

Comparison with other literature 266 

As noted in the introduction, there is a growing wealth of literature on the association 267 

between air pollution and subsequent cognitive impairment and dementia, but the majority of 268 

publications share the same shortcomings:[10] (1) an inability to explore when in the life 269 

course exposure to air pollution has the most impact?; (2) which pollutant(s) or components 270 

are most important?; and (3) since dementia describes a heterogeneous group of conditions, 271 

which are most affected by exposure to air pollution?  272 

 273 

Investigators from the Washington Heights–Inwood Community Aging Project (WHICAP) 274 

and the Northern Manhattan Study (NOMAS) recently reported their findings of the impact 275 

of “long-term” exposure to air pollution (nitrogen dioxide, PM10, and PM2.5), but these 276 

participants (aged 65 years or older) were only recruited in the early 1990s and only their 277 

residential address at the time of recruitment was used to estimate their exposure to air 278 

pollution; air pollution values for the year before recruitment were used as the exposure.[11, 279 

12] Our study was able to track migration and movement throughout the life course, 280 

combined with modelled atmospheric concentration data covering most of the twentieth 281 

century, to give a much better estimate of each person’s exposure to air pollution at different 282 

points in their lives. 283 

 284 

Limitations and Strengths 285 

Referring to the three criticisms of the air pollution literature described above,[10] the present 286 

study could potentially shed some provisional light on the first (when in the life course is most 287 

important), but not the second or third. A decision was taken early on to minimise the impact 288 
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of multiple testing by restricting the pilot modelling (of 1935 data) to a single pollutant; PM2.5 289 

was chosen since the majority of the literature linking air pollution and dementia focused on 290 

that pollutant. Modelling other pollutants — such as smaller PM, NOx etc. — is feasible and 291 

we hope to do this in the future, now that the feasibility of this approach has been 292 

demonstrated.  293 

 294 

The collection of lifetime residential histories is rare and greatly augments the other data 295 

available in the LBC1936. However, there are limitations to the approach taken 296 

(retrospective collection of residential address history), including the fact that it is prone to 297 

recall bias. Furthermore, only participants who were alive in 2014 were approached, 298 

additionally introducing survivor bias. Finally, the accumulated PM2.5 exposure was calculated 299 

using an unweighted method – i.e. not taking into account the length of time an individual 300 

lived at each address. Our main aim in the present analysis was to establish proof of concept 301 

and hope that a more sophisticated weighted calculation – which could arguably be more 302 

accurate – could be taken by future studies. 303 

 304 

Almost all participants — until 2001 — were exposed to levels of PM2.5 in excess of the World 305 

Health Organization’s guidelines of a maximum annual mean of 10μg/m3.[36] For 306 

comparison, approximately half of UK Biobank participants were exposed to similarly 307 

excessive values at baseline (mean [SD] 10.0 [1.1])[37], in line with most of the world.[38] 308 

There was a general reduction in air pollution over time — and marked step-changes between 309 

some time points — but it is unclear how much of this is artefactual, relating to 310 

methodological differences between the procedures used to generate these historical estimates. 311 

There are inherent uncertainties at all stages of the emissions estimation process, even for the 312 
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present day, and many of these problems are magnified when trying to recreate an historical 313 

context. The lack of measurement data to verify source strength, the lack of data regarding 314 

the chemical composition of fuel and the behaviour of combustion technologies prior to 315 

emissions mitigations are just some of the many issues that can influence the uncertainty. 316 

From 1970 onwards, emissions uncertainties were estimated from the UK Inventory[39] while 317 

for 1935 and 1950, uncertainty estimations are expert judgement.[40] Given the assumptions 318 

that the fuel use data are lacking some detail (such as certain oil-based products, wood etc.), 319 

combustion technology was a lot more polluting than in 1970 due to a lack of various 320 

mitigating options such as scrubbers and particulate filters and that there are some missing 321 

sources such as construction etc., it is very likely that the uncertainty range is asymmetric with 322 

respect to the best estimate. To reflect this probable under estimation, the asymmetry was 323 

estimated to be one order of magnitude centred on the mean, that is 
�

√��
� � � √10. As an 324 

example, the emissions of PM2.5 in 1935 were 715kt (range 226-2261kt). Whilst the 325 

uncertainties were not utilised within the EMEP4UK model, it is important to note these 326 

qualitative estimates and the potential impacts on the final results. Figure 3 shows the final 327 

emissions estimates for all pollutants per year (2015 is displayed for context). 328 

 329 

The focus of this paper is cognitive change rather than dementia. It is important to assess pre-330 

dementia cognitive change and its determinants in their own right, but dementia is inarguably 331 

important. However, there were not sufficient LBC1936 participants who had developed 332 

dementia to allow meaningful models to be constructed. A comprehensive programme of 333 

dementia ascertainment in LBC1936 participants (who are currently in their mid-80s) is 334 

currently underway and, once these data are available, similar models focused on dementia 335 

will be possible. 336 
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 337 

Statistically, the life course model (change between ages 11 and 70 years) and late life models 338 

(intercept and change from 70 to 79 years) are not comparable. Furthermore, a linear 339 

assumption for the late life cognitive trajectories may be too strong. It may be necessary to 340 

explore more complex models, such as quadratic trajectories, but the primary aim of this study 341 

was proof of concept and so we have not taken that approach here. With additional time 342 

points, we could have constructed a model that would permit estimation of piecewise 343 

trajectories. This may become possible as further waves of data become available — wave 5 of 344 

the LBC1936 was completed last year and wave 6 was due to begin in Spring 2020 but had to 345 

be delayed because of the Covid-19 pandemic. 346 

 347 

Future directions 348 

This paper is the first step towards an understanding of the associations between air pollution 349 

and cognitive decline and dementia from a life course epidemiology perspective. The modelled 350 

historical air pollution data need to be refined and harmonised across different time points – 351 

and these data used to provide a robust estimate of life course exposure – but we believe that 352 

we have demonstrated the feasibility and value of this approach. However, these air pollution 353 

data will be of little value without well-characterised cohort studies with full residential 354 

histories for participants, such as are available for the LBC1936. All high quality longitudinal 355 

cohort studies should explore whether it is possible to obtain such data through record linkage 356 

or — as in the LBC1936 — self-report. 357 

 358 

Conclusions 359 
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We have shown the feasibility of modelling historical air pollution data and incorporating 360 

them in epidemiological models. This is the first step in a new area and we look forward to a 361 

greater understanding of the life course effects of air pollution on the brain in coming years. 362 
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Text Box. Summary of the models used in the present analyses 

OUTCOME EXPOSURE 
Sensitive/critical period(s)  
Change in IQ from age 11 to age 70 years In utero PM

2.5
 exposure (1935) 

  
Trajectories of IQ from age 70 to 79 years In utero PM

2.5
 exposure (1935) 

(intercept and rate of change) PM
2.5 

exposure aged ~14 years (1950) 
 PM

2.5 
exposure aged ~34 years (1970) 

 PM
2.5 

exposure aged ~44 years (1980) 
 PM

2.5 
exposure aged ~54 years (1990) 

 PM
2.5 

exposure aged ~65 years (2001) 
  
Accumulation of risk  
Trajectories of IQ from age 70 to 79 years Early life  
(intercept and rate of change) (1935 + 1950) 
 Early life to young adulthood  
 (1935 + 1950 + 1970) 
 Early life to mid-adulthood  
 (1935 + 1950 + 1970 + 1980) 
 Early life to late adulthood  
 (1935 + 1950 + 1970 + 1980 + 1990) 
 Early life to later life 
 (1935 + 1950 + 1970 + 1980 + 1990 + 2001) 
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Table 1. Sample characteristics: life course air pollution exposure and cognitive decline in the 

LBC1936 

 Includeda Excludedb Pc Total LBC1936 

sample 

N 572 519  1091 

Age at SMS1947 (mean [SD] 

years) 

10.92 

(0.27) 

10.96 

(0.29) 

0.027 10.94 (0.28) 

Female (%) 46.9 53.0 0.0497 49.8 

Age 11 IQd (mean [SD]) 101.6 

(15.0) 

98.2 (14.9) <0.001 100.0 (15.0) 

Parental occupational social class  

(% class I or II) 
27.7 26.3 0.011 27.1 

Current smoker at baseline (%) 49.3 42.2 0.022 45.9 
a Participants were included if they had at least one location recorded for each time period.  
b Excluded participants included 21 with missing location data for at least one time period, 111 who 

did not respond to the questionnaire requesting lifetime residential history, and 387 who were 

not approached, mainly because they had died or withdrawn from the study prior to the 

questionnaire being used in 2014.  
c P-values from comparisons of included and excluded participants 
d 31 participants were missing age 11 intelligence data 
e Self-reported 

 

LBC1936: Lothian Birth Cohort 1936 (N=1091);  

SMS1947: Scottish Mental Survey 1947 (N=70,805, of which the LBC1936 is a subset) 
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Table 2. Annual average particulate matter (PM2.5) values at different time points for all 

participants: life course air pollution exposure and cognitive decline in the LBC1936 

 

Year Mean (sd) Range Ntotal

a 
>10μg/m3 b 

1935 34.8 (16.0) 5.2-133.0 590 562 (95%) 

1950 32.4 (12.8) 6.0-113.3 591 578 (98%) 

1970 17.0 (1.5) 9.5-23.9 585 584 (100%) 

1980 15.0 (1.5) 7.3-24.0 580 575 (99%) 

1990 13.4 (1.2) 6.7-21.4 580 579 (100%) 

2001 7.9 (0.6) 4.8-15.9 591 4 (0.7%) 
a 593 participants provided lifetime residential histories; 572 had air pollution data from all time 

periods and were included in the present analyses 
b The number (%) of participants whose PM2.5 exposure exceeded the WHO guidelines of an annual 

mean of ≤10μg/m3 
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Table 3. Results from (a) linear regression of residualised change in IQ from age 11 to age 70 years and (b) latent growth models fitted to IQ scores to 

estimate cognitive trajectories at ages 70, 76, and 79 years: life course air pollution exposure and cognitive decline in the LBC1936 

 

(a) Change in IQ between ages 11 and 70 years     

 ß (SE) P    

In utero exposure to air pollution -0.006 (0.002) 0.03    

      

(b) IQ trajectories from age 70 to age 79 years     

Intercept (average IQ at 70 years) 97.74 (1.38)  Rate of change (in IQ from age 70 to 79 years) -0.11 (0.31) 0.71 

Random Intercept Variance 71.12 (5.61)  Random Slopes variance 2.36 (0.31) <0.001 

Intercept-slope correlation -3.02 (0.06) <0.001    

 ß (SE) P  ß P 

In utero exposure to air pollution 0.05 (0.02) 0.06 In utero exposure to air pollution -0.006 (0.006) 0.36 

 

Model (a) is adjusted for sex, parental (father’s) occupation, and smoking 

Model (b) is adjusted for sex, age 11 IQ, parental (father’s) occupation, and smoking 

Coefficients (β) represent the change in IQ and rate of change per 1 μg/m3 increase in PM2.5 
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Table 4. Estimates of the association between air pollution exposures at different time points in the life course with mean IQ at age 70 and its rate of 

change from 70 to 79 years: life course air pollution exposure and cognitive decline in the LBC1936 

 

 Level and change in IQ between ages 70, 76, and 79 years 

 IQ ß (SE) P  ß (SE) P 

Age 70 IQ 102.14 (1.62)   Rate of change in IQ from age 70-79 -0.14 (0.33) 0.46 

Pollution 1950  -0.027 (0.04) 0.52  -0.001 (0.006) 0.84 

Age 70 IQ 105.14 (5.56)    0.21 (1.13) 0.85 

Pollution 1970  -0.22 (0.04) 0.46  -0.03 (0.06) 0.65 

Age 70 IQ 96.38 (4.94)    0.84 (1.51) 0.57 

Pollution 1980  0.32 (0.32) 0.32  -0.07 (0.10) 0.45 

Age 70 IQ 99.39 (7.34)    1.46 (1.51) 0.33 

Pollution 1990  0.14 (0.54) 0.79  -0.13 (0.11) 0.24 

Age 70 IQ 103.21 (8.84)    -0.91(1.86) 0.62 

Pollution 2001  -0.24 (1.10) 0.82  0.08 (0.23) 0.74 

 

Models adjusted for sex, age 11 IQ, parental (father’s) occupation, and smoking status 

Coefficients (β) represent the change in IQ and rate of change per 1 μg/m3 increase in PM
2.5
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Table 5. Estimates of IQ intercept (at age 70 years) and rate of change from age 70 and of the association of cumulative air pollution exposure at 

various stages of life: life course air pollution exposure and cognitive decline in the LBC1936 

 

Level and change in IQ between ages 70, 76, and 79 years 

 IQ ß (SE) P   ß (SE) P 

Age 70 IQ 100.49 (1.63)    Rate of change in IQ from age 70-79 -0.12 (0.34) 0.72 

Early life  

(1935 + 1950) 
 0.01 (0.02) 0.54   -0.002 (0.003) 0.47 

Age 70 IQ 100.42 (1.86)     -0.07 (0.39) 0.84 

Early life to young adulthood  

(1935 + 1950 + 1970) 
 0.01 (0.02) 0.58   -0.002 (0.003) 0.46 

Age 70 IQ 100.19 (2.08)     -0.02 (0.43) 0.96 

Early life to mid-adulthood  

(1935 + 1950 + 1970 + 1980) 
 0.01 (0.02) 0.54   -0.003 (0.003) 0.42 

Age 70 IQ 100.03 (2.27)     0.04 (0.47) 0.92 

Early life to late adulthood  

(1935 + 1950 + 1970 + 1980 + 1990) 
 0.01 (0.02) 0.54   -0.003 (0.003) 0.38 

Age 70 IQ 99.96 (2.39)     0.06 (0.49) 0.89 

Early life to later life 

(1935 + 1950 + 1970 + 1980 + 1990 + 2001) 
 0.01 (0.02) 0.54   -0.003 (0.003) 0.38 

 

Models adjusted for sex, age 11 IQ, parental (father’s) occupation, and smoking status 

Coefficients (β) represent the change in IQ and rate of change per 1 μg/m3 increase in PM
2.5
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FIGURE LEGENDS 

Figure 1. Directed Acyclic Graphs representing the (a) critical/sensitive period and (b) 

accumulation models fitted to IQ scores: life course air pollution exposure and cognitive decline in 

the LBC1936 

 

Figure 2. Modelled particulate matter (PM2.5) values in 1935: life course air pollution exposure and 

cognitive decline in the LBC1936  

 

Figure 3. Modelled emission totals (Gg) with uncertainty ranges for five air pollutants (CO, NH3, 

NMVOCs, NO
x
, and SO

x
), plus PM

2.5
, across five model years (2015 is included for context) for use 

in the EMEP4UK model: life course air pollution exposure and cognitive decline in the LBC1936 
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Figure 1. Figure representing the (a) critical/sensitive period and (b) accumulation models fitted to IQ 

scores: life course air pollution exposure and cognitive decline in the LBC1936 

 

(a) Critical/sensitive period models 

 
 

 

(b) Accumulation models 
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Figure 2. Modelled particulate matter (PM2.5) values in 1935: life course air pollution exposure and 

cognitive decline in the LBC1936  

 

 
 

25 50 75 100

PM2.5 concentration in 1935 (μg/m3)
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The area displayed in the lower panel and enclosed in a box on the upper panel is the central belt of 

Scotland including Glasgow (left) and Edinburgh (right). Over half of the population of Scotland lives in this 

area.
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Figure 3. Modelled emissions totals (Gg) with uncertainty ranges for five air pollutants (CO, NH3, NMVOCs, NOx, and SOx), plus PM2.5, across five model 

years (2015 is included for context) for use in the EMEP4UK model: life course air pollution exposure and cognitive decline in the LBC1936 
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Supplementary Figure 1a. Mean PM2.5 exposure for each participant at each time point for which air 

pollution concentration data were modelled: life course air pollution exposure and cognitive decline in the 

LBC1936 

 
Blue dotted line — mean PM2.5 value; Solid red line — WHO guidelines (annual average ≤10μg/m3) 
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Supplementary Figure 1b. Mean PM2.5 exposure for each participant at each time point for which air 

pollution concentration data were modelled (all plotted on the same x and y scales): life course air pollution 

exposure and cognitive decline in the LBC1936 

 
Blue dotted line — mean PM2.5 value; Solid red line — WHO guidelines (annual average ≤10μg/m3)
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Supplementary Figure 2. Sankey diagram indicating the change in mean annual PM2.5 exposure within individuals over time: life course air pollution exposure 

and cognitive decline in the LBC1936 
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Supplementary Table 1. Correlations between PM2.5 exposure rankings at different time 

points: life course air pollution exposure and cognitive decline in the LBC1936 

 

 1935 1950 1970 1980 1990 2001 

1950 0.53 -     

1970 0.13 0.22 -    

1980 0.06 0.18 0.57 -   

1990 0.09 0.19 0.53 0.82 -  

2001 0.003 0.10 0.05 0.03 0.08 - 
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