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Abstract

A population attributable fraction (PAF) represents the relative change in
disease prevalence that one might expect if a particular exposure was absent
from the population. Often, one might be interested in what percentage
of this effect acts through particular pathways. For instance, the effect of
excessive alcohol intake on stroke risk may be mediated by blood pressure,
body mass index and several other intermediate risk factors. In this situation,
attributable fractions for each mediating pathway of interest can be defined
as the relative change in disease prevalence from disabling the effect of the
exposure through that mediating pathway.

This quantity is related to, but distinct from the recently proposed met-
rics of direct and indirect PAF by Sjölander. In particular, while differing
pathway-specific PAF will each usually be less than total PAF, they may
sum over differing mediating pathways to more than total PAF, whereas di-
rect and indirect PAF must sum to total PAF. Here, we present definitions,
identifiability conditions and estimation approaches for pathway-specific at-
tributable fractions. We illustrate results, and comparisons to indirect PAF
using INTERSTROKE, a case-control study designed to quantify disease
burden attributable to a number of known causal risk factors.
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Pathway specific population

attributable fractions

Introduction

Population attributable fractions (PAF) represent the relative change in dis-

ease prevalence that one might expect if a particular exposure was absent

from the population. This metric was originally introduced by [1] in 1952 to

estimate the percentage of lung cancer that would not have occurred under

a counterfactual scenario that nobody smoked from the population. Since

then, these family of metrics have become a standard way of measuring total

disease burden attributable to a risk factor [2], and also to rank differing risk

factors for prioritization as intervention targets [3].

Partitioning this overall disease burden into contributions from the known

pathways through which the risk factor affects disease is also useful both in

understanding pathogenic mechanisms and also when comparing interven-

tions that may reduce disease. For instance, we might estimate that in a
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hypothetical world, where dietary red-meat was completely substituted for

plant based protein, the prevalence of heart disease might be reduced by 10%.

How much of this reduction in disease burden is attributable to the pathway

by which diet affects blood pressure? Here, we introduce the Pathway Spe-

cific population attributable fraction (PS-PAF) to help answer this question.

In the preceding example, the PS-PAF can be informally understood as the

relative change in disease prevalence in a hypothetical world where the dis-

tribution of blood pressure was altered to match the distribution expected

under the afore-mentioned dietary substitution. Under certain assumptions

(described later), the same quantity can be described more mechanistically

as the proportion of disease that would be avoided from completely dis-

abling the corresponding mediating pathway (here the pathway is diet →

blood pressure → heart disease). PS-PAFs can be calculated for multiple

mediating pathways for the same exposure. For example, the effect of the

previous dietary substitution might be partially mediated by the effect on

cholesterol as well as blood pressure; separate PS-PAFs could be compared

for both pathways. In this case, the aim is not to provide a decomposition

of the overall attributable fraction into the mediating pathways, and we ar-

gue later that such a decomposition would not be sensible. Just as differing

attributable fractions for a set of risk factors typically sum to more than the

joint attributable fraction [15], differing PS-PAFs corresponding to various

mediating pathways between a particular risk factor and disease typically

sum to more than the overall PAF for the risk factor. Rather than decom-

posing the total PAF, the aim instead is to fairly compare disease burden

attributable to differing pathways and as a result gain insights into the dom-
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inant mechanisms by which the risk factor affects disease on a population

level. These insights may in turn be useful in comparing possible interven-

tions to prevent disease.

In the next Section, we will introduce notation and carefully describe

PS-PAFs under various identifiability assumptions. We also will also com-

pare and contrast PS-PAFs with the related concepts of indirect and direct

PAF recently introduced by Sjölander [13]. Later, we illustrate results using

data from INTERSTROKE, a case-control study designed to quantify dis-

ease burden attributable to a number of known causal risk factors for stroke.

A further discussion section concludes the manuscript.

Methods

Potential outcome notation used for mediation analyses

We borrow notation from Vanderweele, [16], in defining nested counterfac-

tuals. As is usual in the causal inference literature, random variables for

observed variables will be denoted with unscripted notation, and potential

outcomes will be denoted using subscripts. In all cases, we use upper case

letters to denote random quantities, and lower-case to denote quantities that

are fixed or intervened on. In particular, let C denote a vector of known

baseline covariates not effected by the exposure, A ∈ {0, 1} a binary expo-

sure of interest and M1, ...MK mediatos on separate causal pathways from

A to Y , (note that each Mk could be binary, multi-category or continuous).

Finally Y ∈ {0, 1} is a binary disease outcome. Figure 1 below demonstrates
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a multi-mediator scenario with 3 mediators, M1, M2 and M3.

AC M2

M1

M3

Y

Figure 1: DAG showing causal structure linking exposure, mediators and
outcome

The potential outcome setting exposure to a and the mediators tom1,...mK

is denoted Ya,m1,...,mK . One can also define counterfactuals for each mediator

k, assuming A is set to a as Mk
a . In addition, we will use the following abrievi-

ated notation: Ya = Ya,M1
a ,...,M

k
a
, YA,mj = YA,m1,m2,...,mK where mk = Mk

A for

k 6= j, and Y0,Mj = Y0,m1,m2,...,mK , where mj = M j and mk = Mk
0 for k 6= j.

As is usual with causal inference using the potential outcomes framework,

we make Stable Unit Treated Value Assumptions (SUTVA) [18], which im-

plies that the relationship between potential and observed outcomes satisfy

‘consistency’, or that Y = Ya,Ma when A = a. In addition, mediation analysis

requires some technical conditional independence assumptions which we will

list as needed in the following sections.
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The population attributable fraction

Despite being an intrinsically causal idea, attributable fractions were origi-

nally defined via conditional probabilities in a non-causal framework, which

has contributed to confusion regarding what they really purport to measure.

Here, we will instead use a definiton based on potential outcomes which is

now becoming more prominent [9, 8].

PAFtotal =
P (Y = 1)− P (Y0 = 1)

P (Y = 1)
. (1)

Thinking of Y0 as the potential outcome for a random individual in a

population where no-one was exposed to the risk factor, (1) can be directly

interpreted as the relative change in disease prevalence if that risk factor was

absent from the population.

The Pathway Specific population attributable fraction

For a binary risk factor A ∈ {0, 1}, the PS-PAF for the mediating pathway

A− > M j− > Y is defined as

PAFA−>Mj−>Y =
P (Y = 1)− P (YA,Gj

0|C
= 1)

P (Y = 1)
(2)

where the random variable Gj
0|C is a random draw from the conditional

distribution of M j
0 given an individual’s covariates, C. Marginally, Gj

0 (sim-

ulated via first randomly sampling an individual from the population and

using their covariates, C, to generate Gj
0|C) is a draw from the population

distribution of M j
0 , that is the distribution that M j would have in a hypo-
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thetical world where the risk factor was eliminated. Noting this, the PS-PAF

can then be interpreted in terms of a population intervention on M j, where

its distribution is shifted to the distribution that would be observed in a

population where the risk factor A was eliminated, with other quantities in

the population (covariates C, exposure A and other mediators Mk, k 6= j)

remaining unchanged. This idea of randomly assigned interventions has pre-

viously been introduced to estimate versions of natural direct and indirect

effects (sometimes termed interventional direct and indirect effects) in the

presence of exposure-induced confounding [?]. Comparing PS-PAFs for the

various known mediating pathways can help in determining the predominant

pathways by which the risk factor is effecting disease in the population. One

might also want to compare disease burden attributable to pathways that

are either unknown (or involve unobserved mediators). To do this, we will

adapt the concept of Direct PAF proposed by Sjölander [13] as follows:

PAFA−>Y =
P (Y = 1)− P (Y0,M1,...,MK = 1)

P (Y = 1)
(3)

We will refer to equation (3) as the PS-PAF for the direct pathway

A− > Y . (3) measures the disease burden attributable to direct pathogenic

pathways from A to Y , that is any pathway from A to Y (that may or may

not be known) excluding the set of mediating pathways under considera-

tion. The definition in [13] is very similar, except that it refers to the direct

pathway with reference to a single mediating pathway, j, and will change

dependent on that mediating pathway as follows:
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PAFdirect,Mj =
P (Y = 1)− P (Y0,Mj = 1)

P (Y = 1)
(4)

As alluded to in the previous section, Y0,Mj = Y0,m1,m2,...,mK , where mj =

M j and mk = Mk
0 for k 6= j, and is not necessarily equal to Y0,M1,...,MK .

Identifiability conditions

Idetifiability conditions are needed to estimate (2) even when values on the

exposure, mediators, observed covariates and outcome are available. In par-

ticular, conditions 1. and 2. below are necessary to identify PS-PAFs for

each mediator j of interest.

1. M j
0 ⊥⊥ A|C (informally, associations between the risk factor and medi-

ator have causal interpretations within strata of covariates)

2. Ya,mj ⊥⊥ M j|A,C (informally, associations between the mediator and

outcome have causal interpretations within joint strata of risk factor

and covariates)

An additional condition is necessary to identify the PAFA−>Y

3. Ya,M1,...,MK ⊥⊥ A|M1, ...,MK , C, (informally, associations between the

risk factor and outcome have causal interpretation within joint strata

of mediators (M1, ...,MK) and covariates)

Under identifiability conditions 1, 2 and 3 we show in the supplementary

material that:
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PAFA−>Mj−>Y =
P (Y = 1)− EA,C(EMj |A=0,C(P (Y = 1|A,C,M j)))

P (Y = 1)
(5)

and

PAFA−>Y =
P (Y = 1)− EC,M1,...,MK (P (Y = 1|A = 0, C,M1, ...,MK))

P (Y = 1)

(6)

where EA,C(g(A,C)) =
∫
a,c
g(a, c)dFA,C(a, c) andEC,M1,...,MKg(C,M1, ..,MK) =∫

c,m1,...,mK g(a,m1...,mK)dFA,M1,...,MK (a,m1, ...,mK) represent expectations in-

tegrated over the marginal distributions FA,C and FA,M1,...,MK of the sub-

scripted variables and EMj |A=0,c(g(M j)) =
∫
mj g(mj)dFMj |A=0,C=c(m

j) is an

expectation integrated according to the conditional distribution of M j given

A = 0 and C = c, FMj |A=0,C=c. Note that condition 2. implies that there is

no post treatment confounding of the mediator outcome relationship; that is

there is no variable L that is affected by the risk factor A such that L is a

joint cause of M j and Y . If such a variable L exists, condition 2. would then

become Ya,mj ⊥⊥M j|A,C, L, and the pathway specific PAF would change to

PAFA−>Mj−>Y =
P (Y = 1)− EA,C,L(EMj |A=0,C,L(P (Y = 1|A,C, L,M j))

P (Y = 1)
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Mechanistic pathway specific PAF and disabling path-

ways

Under an extra identifiability condition, the pathway specific PAF can be

also expressed in a mechanistic form where the mediator assignment to an

individual (within the hypothetical population where the distribution of the

mediator is altered) is the mediator that would result for that individual

under no exposure to the risk factor:

PAFA−>Mj−>Y =
P (Y = 1)− P (YA,Mj

0
= 1)

P (Y = 1)
(7)

This final condition is:

4. Ya,mj ⊥⊥M j
0 |A = a, C.

This condition is less intuitive than the conditions 1., 2. and 3. described

in the preceding section and involve consideration of cross-world counterfac-

tuals (that is if a = 1, Ya,mj and M j
0 would never be observed on the same

individual). However, as shown in the supplementary material, this condi-

tion does hold in a non-parametric structural equations model. Under this

mechanistic interpretation, the pathway specific PAF can be thought of as

the relative change in disease burden in a hypothetical population where the

mediated pathway A− > M j− > Y was disabled. For example, in a simple

setting where there is only a single known mediator, M , there are 2 potential

pathways by which the risk factor effects disease, represented by the path-

ways A− > M− > Y and A− > Y in Figure 2(a). The total PAF (which
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corresponds to a population where a binary risk factor was eliminated corre-

sponds to the disabling both pathways, that is a comparison of disease risk

in the populations with causal graphs show in the left hand and right hand

panes of Figue 2(a). In contrast, direct PAF involves a comparison of disease

risk in the current population with the hypothetical population where the

direct pathway is disabled (Figure 2(b)) whereas the pathway specific PAF

represents a comparison of the current population with a hypothetical pop-

ulation where the pathway A− > M− > Y is disabled (Figure 2c). Note

that in each case, current disease risk is compared to disease risk in some

hypothetical population where a pathway has been disabled.

(a) Total PAF A M Y M0 Y0,M0

(b) Direct PAF A M Y A M Y0,M

(c) PS-PAF A M Y A M0 YA,M0

Figure 2: Illustration of total, direct and pathway specific PAF as a compar-
ison between disease risk in current population (graph on LHS) and counter-
factual disease risk in a population where particular pathways through which
the risk factor effects disease are disabled (graph on RHS). A situation with a
single mediated pathway A− > M− > Y is illlustrated. Sub-figure (a) Total
PAF compares observed disease risk P (Y = 1) vs disease risk P (Y0,M0 = 1)
in a hypothetical population where both direct and mediated pathways are
disabled. Sub-figure (b) Direct PAF compares observed disease risk vs dis-
ease risk P (Y0,M = 1) in a hypothetical population where the direct pathway
is disabled. Sub-figure (c) Pathway specific PAF compares observed disease
risk Y vs disease risk P (YA,M0 = 1) in a hypothetical population where the
mediated pathway A− > M− > Y is disabled
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Pathway Specific PAF vs indirect PAF

In addition to proposing the direct PAF (PAFdirect,Mj , defined in equation

(4)) [13] introduced the concept of indirect PAF, defined as:

PAFindirect,Mj = PAFtotal − PAFdirect,Mj (8)

defined in the context of a single mediating pathway, so that the direct

and indirect attributable fractions sum to the total PAF. Rather than com-

paring disease risk in the current and hypothetical populations, (8) implicitly

compares disease risk in two hypothetical popualtions: one where the direct

pathway A− > Y has been disabled, with a second where the direct and me-

diated pathway are both disabled (see Figure 3). Indirect PAF will usually be

smaller than the corresponding pathway specific PAF in a one mediator situ-

ation, as it is likely that some disease cases in the current population (which

are exposed to the risk factor) might be equally well prevented by either

eliminating the effect of the direct pathway (that is perhaps Y1,M1 = 1, but

Y0,M1 = 0, or eliminating the mediated pathway (that is perhaps Y1,M1 = 1,

but Y1,M0 = 0). The prevention of such disease cases would contribute to the

pathway specific PAF, but not to the indirect PAF.

Estimation

In cohort and cross-sectional studies (5) and (6) can be estimated without

bias from empirically estimated conditional distributions, given the iden-
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A M Y0,M M0 Y0,M0

Figure 3: Indirect PAF compares disease risk P (Y0,M = 1) in a hypothetical
population with the direct pathway disabled with the disease risk P (Y0,M0 =
1) in a hypothetical population with both direct and mediated pathways have
been disabled.

tifiability conditions discussed earlier. For case control studies, we use a

simple-reweighting trick which assumes that the prevalence of disease, π, is

known and the sampled disease cases and controls are randomly selected from

their respective populations. We assume for simplicity that the case:control

matching ratio is 1:r, for some r ≥ 1. Under these assumptions, the compo-

nents of (5) and (6) can be found using a re-weighted dataset where cases are

assigned weights wi = 1, and controls are assigned weights wi = (1/π− 1)/r.

(Note that under the assumptions that prevalence is known and the cases and

controls are randomly selected from their source populations, this reweighted

sample is a representative sample from the source population; that is means of

any variable in this reweighted population agree with the source population,

and statistical estimation is consistent). Suppose then, that the researcher

specifys and estimates correct models for P (Y = 1|A,C,M1, ...,MK) and a

correct conditional model for each Mk, conditioned on A and C (perhaps in

the re-weighted population if the original data is from a case-control study).

To avoid numerical integration in the continuous mediator case, and sim-

plify the algorithm, we propose that for mediator j, EA,C(EMj |A=0(P (Y =

1|A,C,M j))) is estimated via the following algorithm. In the algorithm,

we set j = 1 for simplicity of notation, however an algorithm with obvious

12
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modification can be used to estimate the pathway specific PAF for other

mediators j ≤ K. The algorithm assumes that the mediators M1, ...,MK

are conditionally independent given A and C, which implies for instance

that EA,C(EM1|A=0,C(P (Y = 1|A,C,M1))=EA,C,M2,...,MK (EM1|A=0,C(P (Y =

1|A,C,M1, ...,MK))). With this assumption, only a single model for the out-

come: P (Y = 1|A,C,M1, ...,MK) that depends on all mediators M1,...,MK

needs to be specified. If the user prefers not to assume this conditional in-

dependence condition, the algorithm could be modifed by fitting K separate

models for Y each using a single mediator; that is the jth model would regress

Y on A, C and M j to estimate P (Y = 1|A,C,M j).

1. Choose a number of simulation iterates, S

2. for(j in 1:S){

(a) For each individual in the data, i, with exposure, Ai, covariate

vector Ci and mediators M1
i , ...,M

K
i simulate M1∗ from the esti-

mated conditional distribution of M1 given Ai = 0 and Ci

(b) Calculate P̂ (Y = 1|Ai, Ci,M
1∗,M2

i , ...M
K
i ) for each i using the

fitted statistical model

(c) Calculate Ej =
∑

i≤N P̂ (Y = 1|Ai, Ci,M
1∗,M2

i , ...,M
K
i )/N for

cohort/cross sectional designs; calculate

Ej =
∑

i≤N wiP̂ (Y = 1|Ai, Ci,M
1∗,MK

i , ....,M
K
i )/

∑
i≤N wi for

case control designs.

}
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3. ̂EA,C(EM1|A=0,C(P (Y = 1|A,C,M j))) =
∑

j≤S Ej/S

To estimate direct PAF, EC,M1,...,MK (P (Y = 1|A = 0, C,M1, ...MK))) can

be estimated more simply by estimating P (Y = 1|A = 0, Ci,M
1
i , ...,M

K
i ) for

each individual, and averaging over individuals in the data, taking care to

incorporate weighting under a case control design. As an alternative, a double

robust estimator for E(P (Y = 1|A = 0, C,M1, ...,MK)) can be derived using

the same approaches Sjölander describes in [13].

Data Example

INTERSTROKE, [20], is a large international case control study designed

to quantify the contribution of established risk factors to stroke prevalence

at a global level. Here we investigate the possible mediating effects of physi-

cal activity on stroke through waist hip ratio, apolipoproteins B to A1 ratio

and diagnosis of high blood pressure. We treat waist hip ratio and apo-

lioproteins as continuous variables, whereas diagnosed high blood pressure

is binary. Covariates and assumed mediators are as assumed in the causal

structure shown by Figure 4. To estimate Sjölander’s direct and indirect at-

tributable fractions, and the pathway specific attributable fractions described

above, we fit a main-effects logistic regression predicting stroke status as a

function of age,sex,region,eduction diet,physo-social stress factors,smoking

status, alcohol use, physical activity, waist hip ratio, apoB/apoA ratio and

clinically diagnosed high blood pressure, with the terms for wasit hip ratio

and apoB/apoA ratio entering as 5-degree of freedom natural cubic splines.

In this regression, stroke controls were upweighted by a factor of 284 to re-
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flect a yearly stroke incidence of first stroke of 0.0035 or 3.5 strokes per 1000

individuals per year, estimated via data from the global burden of disease

[21]. To apply the algorithm in the previous section, we also need to sim-

ulate from the predicted distribution for the mediators, ApoB/ApoA ratio,

waist hip ratio and clincially diagnosed hypertension (conditioned on values

for age, sex, education, region, physical activity, diet-score, stress, smoking

and alcohol). To do this, we resample residuals from a fitted linear model

for ApoB/ApoA ratio and waist hip ratio and add these resampled residu-

als to the fitted values, whereas for hypertension we simply draw Bernoulli

variables with probabilities with probabilities according to the fitted logistic

models.
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Note that while there is only one pathway specific PAF from A to Y ,

Sjolander’s definition of direct PAF is with reference to a single mediating

pathway and will change depending on that pathway. For instance, in this

example the direct PAF with reference to high blood pressure essentially

pools together all other pathways not going through high-blood pressure.

In this example, the mediating pathways and direct pathway due to lack of

exercise are likely to increase the probability of stroke, and one would ex-

pect PS-PAFs to be somewhat larger than the corresponding indirect PAFs.

This pattern is seen in Table 1; the estimated pathway specific PAFs when

expressed as percentages range from 3.2%-4.5%, whereas the indirect PAFs

range from 0.5% to 1.8%. On the other hand, PAFA−>Y (defined in equation

(3)) is 34.3%. According to this analysis, while population disease burden for

stroke attributable to physical activity may partially depend on the mediat-

ing pathways through blood pressure, waist hip ratio and lipids, it depends

heavily on other (unknown) mechanisms. As with any causal analysis, these

tentative conclusions depend jointly on correct modeling of conditional prob-

ability distributions and on the validity of the causal identifiability assump-

tions that we listed earlier. Sensitivity analysis [16] could be performed to

guage the biases in these results that might be expected due to violations of

these conditions. However, the differences between PAFA−>Y and pathway

specific mediated PAFs observed here are so large that it would be hard to

completely attribute these differences to incorrect modeling or an incomplete

causal model.
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Discussion

In this paper we have introduced pathway specific attributable fractions as

a metric to measure the disease burden attributable to particular exposure

mediator pathways. The idea is related to the recently proposed ideas of di-

rect and indirect PAF by Sjölander, but more suitable to multiple mediators

[13]. Some differences between the two metrics are summarized in Table 2.

In a one mediator situation, one way to understand the distinctions between

these concepts is in terms of modified sequential attributable fractions [15],

that is attributable fractions that are constructed from disabling pathways

in a particular order (as demonstrated in Figures 2 and 3) with the order in

which pathways are disabled differing for PS-PAFs and indirect PAFs. In

more detail, a PS-PAF can be interpreted as the relative change in disease

burden from disabling a particular mediating pathway. The corresponding

indirect PAF is also associated with disabling that same mediating pathway,

but this time subsequent to disabling the direct pathway. Since the effect of

disabling both the direct and mediating pathways is equivalent to the effect

of eliminating the risk factor, this effectively forces the additivity property

that total PAF is the sum of direct and indirect PAF. Note that in general

sequential attributable fractions are constructed to sum to some well-defined

overall PAF but usually the sequence corresponds the hypothetical elimina-

tion of each of a group of risk factors in some order, rather than disabling

pathways for a particular risk factor in some order.

While this additivity property at first seems appealing, it perhaps is un-

natural in the context of attributable fractions, where it is well recognized
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that the PAF for differing risk factors may sum to more than the joint PAF

and sometimes to more than 1 [22]. The sufficient/component cause frame-

work [23] gives a simple but enlightening explanation for this phenomenon.

For particular individuals, a certain collection of risk factors (perhaps diet,

stress and tobacco usage) might collectively lead to disease at a particular

point in time, but the disease may not have occurred at that time if any of

the risk factors were not present. This implies that pathway specific PAFs

will tend to be larger than indirect PAFs as illustrated in this manuscript,

if we view the direct and indirect pathways as independent disease-causing

mechanisms.

Whereas attributable fractions can measure the total disease burden as-

sociated with a risk factor, there are less useful to measure the real-world

impact of a public health intervention on that risk factor since even success-

ful health interventions usually only partially eliminate a risk factor and in

addition cannot alter prior history to a risk factor when cumulative exposure

might also impact disease. As an example, rather than considering a hypo-

thetical population where smoking is elimated, a realistic population level

intervention (such as increasing the tax on cigarettes) may result in a 5%

decrease in the number of cigarettes consumed rather than total elimination

of smoking. Impact fractions are generalized versions of attributable frac-

tions that measure the reduction in disease prevalence associated with such

a population intervention. The ideas described here can easily be adapted

to define and estimate pathway specific impact fractions for such real world

interventions which may characterize the dominant mechanisms by which

the intervention affects disease burden. For example, the pathway specific
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impact fraction for the pathway A− > M j− > Y could be defined by letting

Gj
|C represent a random variable having the population distribution of the

mediator M j under the proposed intervention (simulated again conditional

on an individuals covariate vector C) and replacing Gj
0|C with Gj

|C in equation

(2).
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Figure 4: DAG showing assumed causal structure for risk factors in IN-
TERSTROKE. The direct and mediating pathways associated with physical
activity are highlighted in bold red. Age, sex and geographic region are con-
founders for the risk/factor disease relationship for all listed factors on the
figure (these are omitted for display purposes)
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