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Abstract

Around 40% of school leavers in the UK attend university and individual universities generally host
thousands of students each academic year. Bringing together these student communities during the
COVID-19 pandemic may require strong interventions to control transmission. Prior modelling anal-
ysis of SARS-CoV-2 transmission within universities that use compartmental modelling approaches
suggest that outbreaks are almost inevitable.

We constructed a network-based model to capture the interactions of a student population in different
settings (housing, social and study). For a single academic term of a representative campus-based
university, we ran a susceptible-latent-infectious-recovered type epidemic process, parameterised ac-
cording to available estimates for SARS-CoV-2. We investigated the impact of: adherence to (or
effectiveness of) isolation and test and trace measures; single-room isolation of cases; supplementary
mass testing.

In the absence of interventions our model estimated that 69% (55% - 76%) of the student population
could be infected during the autumn term. With full adherence to test, trace and isolate measures,
we found lower cumulative infection estimates of 20% (5% - 40%). Irrespective of the adherence to
isolation measures, on average a higher proportion of students resident on-campus became infected
than off-campus. Room isolation generated minimal benefits. Regular testing, together with high
adherence to isolation, test and trace measures, could reduce the proportion infected during the term
by more than 50% compared to having no mass testing.

Our findings suggest SARS-CoV-2 may readily transmit in a university setting if there is limited ad-
herence to nonpharmaceutical interventions and/or there are delays in receiving test results. Following
isolation guidance and effective contact tracing curbed transmission and reduced the expected time an
adhering student would spend in isolation. Additionally, widespread adherence throughout the term
suppresses the amount of unwitting asymptomatic transmission to family and community members in
the students’ domicile regions at the end of term.
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Introduction 1

Globally, many countries have employed social distancing measures and nonpharmaceutical interven- 2

tions (NPIs) to curb the spread of SARS-CoV-2 [1]. In the UK, the enaction of lockdown on 23rd 3

March 2020 saw the closure of workplaces, pubs and restaurants, and the restriction of a range of 4

leisure activities. The education sector was also impacted, with schools closed (with the exception of 5

children of key workers) and higher education establishments, such as universities, delivering the end 6

of the 2019/2020 academic year via online means. 7

In the summer months, the national implementation of strict measures transitioned to a localised 8

approach, targeting regions experiencing the highest burden of transmission. As the number of SARS- 9

CoV-2 confirmed hospitalised cases and deaths began to decline, many sectors of society cautiously 10

reopened, with measures in place to reduce transmission. Universities began to develop plans to 11

reopen, with several adopting a blended learning strategy of limited face-to-face teaching combined 12

with online lectures. Higher education in the UK comprises a sizeable population of students, with 13

over 2.3 million higher education students enrolled in the 2018/2019 academic year across over 160 14

higher education providers [2]. This results in a sizeable movement of students nationwide at the 15

beginning and end of academic terms (in addition to international student travel). The migration 16

of students would contribute to increased population mobility, which had already grown since the 17

easement of lockdown measures occurred [3, 4], with an associated need for careful management in 18

order to minimise the risk of seeding outbreaks in low prevalence locations. 19

As of 7th November 2020, the United Kingdom (UK) has reported in excess of one million cases and 20

more than 48,000 COVID-19 deaths [5]. There is, however, a lower risk of severe case outcomes in 21

typical student age groups compared with older sections of the population; a higher proportion of 22

cases are expected to be asymptomatic [6], while hospitalisation and mortality rates are lower [7]. In 23

particular, of 34, 374 COVID-19 associated deaths in hospitals reported in England by 6th November 24

2020, 235 (0.007%) were 20-39 years of age [8]. 25

Nevertheless, the typical contact patterns of students means they could have significant potential of 26

transmitting the virus within their social group, amplifying the risk of infection to staff members and 27

those in the local community who may be more vulnerable. Contact studies indicate that students, 28

and in general those aged 20 to 30, report higher numbers of social contacts in their everyday lives 29

compared with other age-groups and occupations [9]. In addition, as a consequence of those of younger 30

age being more likely to experience asymptomatic infection, there is the prospect of infected students 31

returning home at the end of term in an asymptomatic state, heightening the risk of unwittingly 32

transmitting to more vulnerable family members. 33

A small number of modelling analyses have already been carried out pertaining to transmission of 34

SARS-CoV-2 within universities, and subsequent levels of COVID-19 disease [10]. These modelling 35

studies have been predominately US-focused [11–15], potentially due to their earlier return. Paltiel et 36

al. [11] modelled the effect of a variety of testing strategies on the number of infections that would 37

arise among 5,000 students during an 80-day semester. Cashore et al. [12] and Lopman et al. [14] 38

investigated the impact of testing, screening and isolation for Cornell’s Ithaca campus and Emory 39

University in Atlanta, Georgia, respectively. 40

With regard to UK Higher Education institutions, the size and set-up of universities can differ markedly 41

to US counterparts, influencing contact patterns and thus the spread of infection. Though the majority 42

of prior work has not had access to realistic contact structures within the university setting, Brooks- 43

Pollock et al. [16] have developed a stochastic transmission model based on realistic mixing patterns 44

between students and applied to the University of Bristol. Other UK-centric work has included 45

investigations into the expected number of cases that may be present at the outset of the autumn 46
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term in 2020 [17], and a working paper looking at how mathematical approaches may help inform the 47

reopening of higher education spaces to students whilst minimising risk [18]. 48

Many of the previous studies of SARS-CoV-2 outbreaks in a university setting have adopted com- 49

partmental modelling approaches, in which individual behaviour and interventions such as contact 50

tracing cannot be readily captured. In this paper, we present an individual-level network-based model 51

framework for transmission of SARS-CoV-2 amongst a student university population, which includes 52

test, trace and isolation interventions. Contacts occur across household, study and social settings, 53

underpinned by empirical data where possible. We find that maintaining strong adherence to isola- 54

tion guidance and engagement in test and trace could both curb the amount of infection throughout 55

the academic term and limit SARS-CoV-2 prevalence at the beginning of the winter break. Use of 56

room isolation and a single mass testing instance may offer marginal benefits, though the underlying 57

adherence to interventions remains crucial. These results show the possible impact of SARS-CoV-2 58

transmission intervention measures that may be enacted within a university population during the 59

forthcoming academic year. 60

Methods 61

To enable a modelling analysis of the transmission of SARS-CoV-2 within a university population, we 62

adopted a network approach to capture the interactions between students in different settings, upon 63

which we ran an epidemic process. In this section we provide in some detail: (i) a description of 64

the network model; (ii) the data sources used to parameterise the network contact structure; (iii) the 65

model for SARS-CoV-2 transmission and COVID-19 disease progression; (iv) the simulation protocol 66

employed to assess the scenarios of interest. 67

Network model description 68

We used a multi-layered network model to encapsulate identifiable groupings of contacts. Our model 69

was comprised of four layers: (i) households, (ii) study groups/cohorts, (iii) organised societies and 70

sports clubs, and (iv) dynamic social contacts. 71

Household contact layer 72

In our model we considered contact networks on campus and off campus separately. The network 73

for on-campus accommodation contained a hierarchical structure, from the smallest scale to largest, 74

of a household (typically based around a shared kitchen), floor, block, hall (comprised of multiple 75

blocks). We constructed the on-campus accommodation units to match that of a representative campus 76

based university. We assigned students resident off-campus to households with sizes sampled from an 77

estimated student household size distribution (see Supporting Text S1: Off-campus student household 78

size). 79

Within a household, irrespective of on-campus or off-campus location, we assumed each individual 80

to have the potential to transmit infection to each other person within their household (i.e. a fully 81

connected network). In addition, on any given day, on-campus students could randomly make contact 82

with any other individual outside their direct household, though situated on the same floor or contained 83

within the same accommodation block. 84

Study/cohort contact layer 85

We partitioned the student population into 84 cohorts based on department and stage of study: first 86

year undergraduate, non-first year undergraduate, postgraduate (see Supporting Text S2: Cohort 87

data). To generate the contacts made within each cohort, we used a configuration model [19] to allow 88

the specification of a desired degree distribution. 89
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Note that we assumed these cohort contacts occurred between study friendship groups outside of any 90

face-to-face classes. In other words, we have presumed for teaching spaces the enforcement of COVID- 91

secure measures sufficiently minimises the transmission risk to prevent the onward spread of infection 92

within that setting. 93

Contacts in organised societies and sports clubs 94

A prominent aspect of the university experience is the presence of societies and sports clubs. For 95

constructing contacts resulting from involvement in such groups, we applied a uniform probability of 96

forming a contact with each other individual in the group, with that probability differing based on 97

whether the group was a society or sports club. As simplifying assumptions, these links did not alter 98

during the course of a simulation and we set each social group to meet three times per week with 99

assigned members attending all sessions. 100

Dynamic social contacts 101

The final contact layer sought to capture random, dynamic, contacts made each day with any other 102

individual in the student population. For each timestep, random connections were selected for each stu- 103

dent according to a specified cohort-dependent distribution. We carried out the contact network gen- 104

eration using the Erdös-Rényi model [20], which assumes a Poisson distribution degree sequence. 105

Contact parameterisation 106

We characterised the network structure across the various contact layers by applying two differing 107

approaches. 108

The first method was a data-driven approach, using data from the Social Contact Survey [9, 21]. 109

The Social Contact Survey was a paper-based and online survey of 5,388 participants in the United 110

Kingdom conducted in 2010. We extracted records provided by 347 students, with a total of 10,302 111

contacts. These data informed the network construction parameters for the cohort and dynamic 112

social contact layers, with stratification according to the student’s level of study (undergraduate or 113

postgraduate). We fit parameters for these contact distributions using maximum likelihood estimation 114

via the fitdistrplus package in R. 115

The second method was a subjective approach, used when we did not have relevant empirical mea- 116

sures available to enable the parameterisation of the given contact layer. This was applied to the 117

formulation of random contacts within on-campus accommodation blocks (though outside the direct 118

household) and organised social club contacts. We provide a summary of the network parameterisation 119

in Table 1. 120

Cohort contacts 121

To estimate the number of contacts occurring with those in the same study cohort, we used the 122

student contact survey records listed as occurring in the work or school setting. We kept entries 123

specifying a duration of 60 minutes or more and that occurred more than once per week, assuming 124

the retained contacts with these characteristics would be reflective of a university study cohort. We 125

independently fit using maximum likelihood estimation lognormal distributions for undergraduates 126

and postgraduates, using a mean and standard deviation parameterisation, acquiring distributions of 127

Lognormal(1.646,1.590) and Lognormal(1.211,1.128), respectively (Fig. 1). 128

Dynamic social contacts 129

For estimating a distribution for dynamic social contacts, we considered contacts reported within the 130

Social Contact Survey occurring in all locations except home and all non-‘first-time’ contacts. We 131

limited valid contacts to those recorded as either involving touch or lasting longer than 10 minutes. 132

Valid contacts also had to last less than 60 minutes, with a view that longer duration contacts would 133

be captured by the cohort and society contact layers. 134
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Fig. 1: Cumulative distribution functions for number of daily cohort contacts for all students,
undergraduates and postgraduates. Black dots and lines depict the empirical data. The red solid line
corresponds to the best-fit lognormal distribution.

Overall, undergraduates and postgraduates had a very similar number of social contacts (daily medians 135

of 5.19 and 4.9 respectively). We acquired lognormal distributions with mean 1.748, standard deviation 136

1.331 for undergraduates, and mean 1.223, standard deviation 1.125 for postgraduates (Fig. 2). 137

Fig. 2: Cumulative distribution functions for number of daily social contacts (outside of society
and sports clubs) for all students, undergraduates and postgraduates. Black dots and lines depict
the empirical data. The red solid line corresponds to the best-fit lognormal distribution.

Random on-campus accommodation contacts 138

Given the limited available data to be able to parameterise a degree distribution for those contacts, 139

we took a pragmatic approach and assumed a low constant probability of contacts occurring in the 140

broader accommodation unit. We additionally assumed these contact probabilities lessened for higher 141

levels of accommodation hierarchy. Specifically, we attributed a higher chance of interacting with 142

someone on the same floor (daily chance of contact of 10%) than someone on another floor within 143

the same block (daily chance of contact of 5%). We assumed no random accommodation associated 144

contacts with other students living in different blocks in the same hall. 145

Contacts in organised society and sports club activities 146

We also did not have available the necessary information to parameterise contacts within organised 147

social groups using a data-driven approach. Therefore, we stress that the values stated here are 148

subjective and alternative proposals would add to result variability. 149

We considered a community of 335 organised social groups, comprising 270 societies and 65 sports 150

clubs. In the absence of a membership size distribution, we allowed a breadth of group sizes by ran- 151
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domly assigning each group a membership size of 10 to 100 (in increments of 10). We also subjectively 152

chose a monotonically decreasing probability mass function for the number of organised social groups 153

students actively participated in: 50% of students not in any group; 40% involved in a single group; 154

2.5% a piece in two, three, four or five groups. 155

Following group assignment, within each group we established contacts between students with a fixed 156

probability of each link existing. These probabilities we set at 0.05 for societies and 0.1 for sports 157

clubs. Accordingly, a student was likely to make more contacts in groups with large membership. For 158

simplicity, we retained the same arrangement of contacts for each meeting. 159

Table 1: Description of network contact parameters.

Description Degree distribution Source

Household (static) Fully connected Assumption

Within accommodation block
(on-campus only)

Floor contact: daily contact
probability of 0.1. Block con-
tact: daily contact probability
of 0.05.

Assumption

Study cohort (undergraduate) Lognormal(1.646,1.590) Fitted from Social Contact Sur-
vey [9, 21]

Study cohort (postgraduate) Lognormal(1.211,1.128) Fitted from Social Contact Sur-
vey [9, 21]

Societies & sports clubs Probability of link with each
group member: 0.05 for soci-
eties, 0.1 for sports clubs

Assumption

Dynamic social (undergradu-
ate)

Lognormal(1.748,1.331) Fitted from Social Contact Sur-
vey [9, 21]

Dynamic social (postgraduate) Lognormal(1.223,1.125) Fitted from Social Contact Sur-
vey [9, 21]

Epidemiological model 160

Disease states 161

We ran a susceptible-latent-infectious-recovered (SEIR) type disease process on the network structure. 162

Once infected, we assumed infectiousness could not start immediately (i.e. on the same day), with the 163

earliest permitted moment being the following day. We assumed an Erlang-distributed incubation 164

period, with shape parameter 6 and scale parameter 0.88 [22]. 165

The distribution of infectiousness had a four day pre-symptomatic phase, followed by a ten day symp- 166

tomatic phase. This gave a total of 14 days of infectivity and a minimum 15 day infection duration 167

(for the full temporal profile, see Table 2). It was based on a Gamma(97.2,0.2689) distribution, with 168

shape and scale parameterisation, shifted by 25.6 days [23, 24]. Following completion of the infectious 169

period, the individual entered the recovered state. 170

Asymptomatic transmission 171

Infected individuals could be either asymptomatic or symptomatic, with an ascribed probability deter- 172

mining the chance of each individual being asymptomatic. There remains uncertainty in the fraction of 173

COVID-19 cases that are asymptomatic and how that statistic may vary with age, however community 174

surveillance studies have been performed to help diminish this uncertainty. The REal-time Assessment 175

of Community Transmission-1 (REACT-1) study found approximately 70% of swab-positive adults and 176

80% of swab-positive children were asymptomatic at the time of swab and in the week prior [25]. To 177
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reflect the uncertainty in this value, which includes a portion of the previously stated estimate being 178

presymptomatic infected individuals who would later go on to display symptoms, and the propor- 179

tion of people who tested positive and were non-symptomatic being lower in round 5 at 50% [26], in 180

each simulation we sampled the asymptomatic case probability from a uniform distribution within the 181

interval 0.5 and 0.8. 182

There is currently limited data available to provide a robust quantitative estimate of the relative 183

infectiousness of asymptomatic and symptomatic individuals infected with SARS-CoV-2, though there 184

are some indications that asymptomatic individuals could be considered to be less infectious than 185

symptomatic individuals [27, 28]. Therefore, we set an asymptomatic individual to have a lower risk 186

of transmitting infection compared to a symptomatic individual, with the current uncertainty reflected 187

by sampling the value for the relative infectiousness of an asymptomatic in each simulation replicate 188

from a Uniform(0.3,0.7) distribution. We applied the scaling consistently throughout the duration of 189

infectiousness for asymptomatics, meaning there was no time dependence on the scaling term over the 190

course of infectiousness. 191

Setting transmission risk 192

Attributing risk of transmission to any particular contact in a particular setting is complex. This 193

is partly due to the huge heterogeneity in contact types, and partly due to the different scales of 194

data: contact information is by its nature individual-based, whereas transmission rates are generally 195

measured at the population level. Therefore, whilst we can attribute a relative risk to each contact 196

type (home, social, study), there is an arbitrary scaling to translate these relative risks to an absolute 197

growth rate of infection in the population. 198

For household transmission, we attributed a household secondary attack rate to each individual based 199

on their household size. We sampled from a normal distribution whose mean value depended on the 200

household size, based on estimates of adjusted household secondary attack rates from a UK based 201

surveillance study [29]. The mean values used were: 0.48 for a household size of two, 0.40 for for a 202

household size of three, 0.33 for a household size of four, 0.22 for a household size of five or above. 203

The standard deviation of the normal distribution for households of size two or three was 0.06, and 204

for households of four or above was 0.05. 205

For transmission risk in other settings, we performed a mapping from the Social Contact Survey [9] 206

to obtain a relative transmission risk compared to the central estimate of adjusted secondary attack 207

rate in the household setting against those aged 18-34 of 0.34 [29] (further details in Supporting 208

Text S3: Parameterisation of contact risk). The relative magnitude of those means when compared 209

to the household transmission risk were used to scale the standard deviation. Transmission risks 210

were consistent across all non-household settings, with the exception being in student societies where 211

we assigned a lower transmission risk to reflect the implementation of COVID-secure measures that 212

would be required to permit these meetings to take place. We also reiterate that we attributed zero 213

transmission risk to face-to-face study. 214

To calibrate the relative transmission risks to achieve an uncontrolled reproductive number, Rt, in the 215

expected range of 3− 4, we applied a universal scaling of 0.8 to all of the above rates (see Supporting 216

Text S4: Non-intervention scenario calibration). 217

Isolation, test and trace 218

Testing and isolation measures 219

Upon symptom onset, students adhering to guidance enter isolation for ten days. At that moment, 220

fellow household members of the symptomatic case that adhere to guidance enter self-isolation for 14 221

days [30]. Students that are symptomatic and that engage with the test and trace process take a test 222
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Table 2: Description of epidemiological parameters.

Description Distribution Source

Incubation period Erlang(6,0.88) [22]

Infectiousness profile Infectivity profile over 14 days:
[0.0369, 0.0491, 0.0835, 0.1190,
0.1439, 0.1497, 0.1354, 0.1076,
0.0757, 0.0476, 0.0269, 0.0138,
0.0064, 0.0044]

[23, 24]

Proportion of cases asymp-
tomatic

Uniform(0.5,0.8) REACT-1 study [25, 26]

Relative infectiousness of an
asymptomatic

Uniform(0.3,0.7) [27, 28]

upon symptom onset. We included a two day delay before receiving the test result. 223

Once isolation periods began they were seen out in full unless the test result was negative. We 224

assumed the test had 100% specificity and its sensitivity was dependent upon time since infection 225

(we used a posterior median profile of the probability of detecting infection reported by Hellewell et 226

al. [31], obtained by fitting the model developed by Kucirka et al. [32] combined with the SAFER 227

study data [33]). 228

On occasions where a negative result was given, household members would be released from isolation, 229

as long as no other symptomatic cases (that are confirmed positive or awaiting test result) were present 230

in the household. The index case remained in self-isolation if they had independently been identified via 231

contact tracing as a contact of a known infected; otherwise, that student also left self-isolation. 232

Forward contact tracing 233

Contacts of a confirmed case, and that were adhering to self-isolation guidance, spent up to 14 days 234

in self-isolation [34]. We set the time required to be spent in self-isolation to elapse 14 days from the 235

day the index case became symptomatic. 236

The modelled tracing scheme looked up contacts for an index case up to two days before onset of 237

symptoms. We assumed that the probability of an individual being able to recall their ‘dynamic’ 238

contacts diminishes with time, from 0.5 one day previously, reducing in increments of 0.1, such that the 239

probability of successfully tracing a contact five days prior to the tracing occurring is 0.1. Once again, 240

other assumptions could be explored and a wider range of assumptions, collectively, would generate 241

more variation in the results. We give an overview of isolation, test and trace related parameters in 242

Table 3. 243

Simulation outline 244

We used this model framework to evaluate the transmission dynamics of SARS-CoV-2 amongst a 245

university student population during the autumn term of the 2020/2021 academic year, and the 246

potential impact of both adherence to the guidance and additional interventions. 247

We ran all simulations with an overall student population of 25,000, with 7,155 students resident on- 248

campus and the remainder off-campus. Simulation time corresponded to 77 days, encompassing the 249

length of welcome week plus the ten week academic autumn term. 250

We seeded the number of latent, asymptomatic and recovered individuals based on UK regional preva- 251

lence estimates for 26th September 2020 and student flow data (we provide further methodological 252
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Table 3: Description of isolation, test and trace related parameters.

Description Value Source

Duration of self-isolation if
symptomatic

10 days UK government guidance [30]

Household isolation period 14 days UK government guidance [30]

Duration of isolation if contact
traced

14 days (beginning from the
day the index case first displays
symptoms)

UK government guidance [34]

Delay in receiving test result 2 days Assumption

Dynamic contact recall For five previous days,
[0.5, 0.4, 0.3, 0.2, 0.1]. Zero
probability beyond five days.

Assumption

details in Supporting Text S5: Initial seeding of infected and recovered individuals). We assumed there 253

were no symptomatic infected (ill) students present at the beginning of each simulation replicate. 254

Our assessment comprised of three strands. First, we analysed how the strength of adherence to 255

guidance on isolation and engagement with test and trace affected case burden and accumulated 256

isolation time (total number of student isolation days over the term). Second, we considered adoption 257

of a policy of strict room isolation for on-campus residents displaying COVID-like symptoms. Third, 258

we analysed a collection of scenarios involving mass testing of students to study the impact on overall 259

case load, the expected time spent in isolation per adhering student and the prevalence of infection at 260

the conclusion of the autumn academic term. 261

We outline each of the three assessments in further detail below. Unless stated otherwise, for each 262

parameter configuration we ran 1,000 simulations, amalgamating 50 batches of 20 replicates; each 263

batch of 20 replicates was obtained using a distinct network realisation. We performed the model 264

simulations in Julia v1.4 - 1.5. 265

Adherence to isolation, test and trace 266

We sampled adherence to isolation from zero compliance (value 0) to full compliance (value 1) in 267

increments of 0.1. We assumed an identical adherence to isolation restrictions independent of the 268

cause (presence of symptoms, household member displaying symptoms, identified as a close contact 269

of an infected by contact tracing). Additionally, we assumed those that would engage with isolation 270

measures would also engage with testing and tracing. 271

Use of room isolation 272

For those resident in on-campus accommodation and suffering from COVID-like symptoms, another 273

applicable intervention may be to bolster household isolation by mandating quarantine of those indi- 274

viduals in en-suite rooms (with meals and essentials delivered). Those residing in accommodation with 275

communal bathrooms would be re-housed. Those already living in en-suite accommodation would be 276

isolated in their rooms. 277

We modelled this intervention by assuming those rehoused or put into room isolation had no contacts. 278

We applied these measures on the same timestep the student reported being symptomatic. 279
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Mass testing 280

We explored altering the timing and frequency mass testing was carried out: a single instance on day 281

21 (end of week 2 of the academic term); a single instance on day 63 (end of week 8 of the academic 282

term); regular mass testing every two weeks (‘fortnightly’, on day 1, then day 14, day 28,. . ., day 70); 283

regular mass testing on a weekly basis (on day 1, then day 7, day 14,. . ., day 70). 284

Additionally, we varied coverage amongst the eligible student population: all students, on-campus 285

resident students only, off-campus resident students only. We carried out sensitivity to the underlying 286

adherence to isolation measures by performing the analysis for adherence probabilities of 0.2 (low), 287

0.5 (moderate) and 0.8 (high), respectively. 288

We did not include with the mass testing procedure students that had previously reported infection 289

and then subsequently received a positive test. We also assumed that all tests were performed on 290

the same day, those latently infected (thus not yet infectious) would always return a negative test 291

result, and contact tracing was performed rapidly such that those contacts who were both traceable 292

and adhered to isolation guidance were isolated from the next timestep. 293

Results 294

Trade-offs between case load and isolation 295

With high adherence to isolation measures and engagement with test and trace, a lower number of 296

infections (the sum of both identified cases and undiagnosed infections) would be expected to arise 297

during the course of the autumn term (Table S3). Specifically, with no interventions we estimated 298

a median proportion of 0.69 (95% prediction interval: 0.55-0.76) of the entire student population to 299

be infected during the autumn term. In contrast, with full adherence the median proportion infected 300

was 0.19 (95% prediction interval: 0.055-0.40). Irrespective of the adherence level, we found that (on 301

average) a higher proportion of students resident on-campus would become infected versus students 302

resident off-campus (Fig. 3(a)). 303

In addition to strong adherence leading to suppression of case numbers, it also delivered benefits 304

from the perspective of time spent in isolation. Out of those students that would adhere to isolation 305

guidance, those resident on-campus were expected to spend a greater proportion of time in isolation 306

compared to adhering students living off-campus. Further, we witnessed greater variability in the 307

predicted time an adhering individual spent in isolation for those resident on-campus versus those 308

resident off-campus (Fig. 3(b), Table S3). 309

Inspecting temporal patterns of infection prevalence and proportion of the student community in isola- 310

tion demonstrated trade-offs between case numbers and the requirement for portions of the population 311

to isolate (Fig. 4). Averaging across all simulation replicates, zero adherence led to the occurrence of 312

a large outbreak that had subsided by the conclusion of the term, although no one entered isolation 313

at any time. With half of the student population adhering to control measures, we observed a slower 314

growth of the epidemic concurrent with a steady rise in the proportion of students entering isolation. 315

Under complete adherence the expected prevalence of infection was kept low, although this generated 316

an initial surge in the amount of students isolating that then stabilised in the latter weeks. With full 317

adherence the number of students expected to be isolated at the end of term was also expected the be 318

greater than if only half of the student community adhered to isolation and tracing guidance. 319

The effect of strong adherence in suppressing case numbers is reflected in the reduction in the amount 320

of tests carried out on those that are infected with SARS-CoV-2, compared to moderate adherence 321

(Fig. 5(a)). For an expected fraction of the population adhering surpassing 0.4, median estimates 322

for the maximum proportion of students isolated at any given time were between 20-30% (Fig. 5(b)). 323
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Therefore, for high levels of adherence, the substantial decline in cases compensates for the greater 324

number of individuals who adhere to the rules and isolate as a consequence of the cases identified. 325

Prevalence at the end of term may be as high as 15% of the population under no interventions, whilst 326

for full adherence it is unlikely to be above 6%. The smaller central estimates for low adherences 327

were a consequence of infection having swept through the majority of the student population during 328

the prior weeks (Fig. 5(c), Table S4). Furthermore, in the situation where spread of infection had 329

been subdued during the term due to moderate adherence to NPIs, the results display potential for 330

there being a sizeable number of non-symptomatic infecteds (comprising latent, asymptomatic and 331

presymptomatic) at the end of the term (approximately 4% , Fig. 5(d)). Given complete adherence to 332

NPIs, central estimates for non-symptomatic infecteds at the conclusion of the academic term dropped 333

below 3%, reducing the risk posed by students returning home for the winter break. 334

(a)

(b)

Fig. 3: Infection and isolation epidemiological measures over the autumn term under differing
levels of adherence to NPIs. Outputs summarised from 1,000 simulations (with 20 runs per network,
for 50 network realisations) for various levels of adherence to NPIs. Over the duration of the autumn term,
distributions relative to students resident on-campus only (green violin plots), students resident off-campus only
(orange violin plots) and to the overall student population (purple violin plots) for (a) proportion infected,
and (b) proportion of time adhering students spend in isolation. The white markers denote medians and solid
black lines span the 25th to 75th percentiles. For percentile summary statistics, see Table S4. Maintenance
of nonpharmaceutical interventions and effective contact tracing curbed transmission, with the expected time
an adhering student would spend in isolation also reduced. On-campus residents were more likely to become
infected and spend a greater proportion of time in isolation compared to students living off-campus.
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(a) (b)

Fig. 4: Temporal profiles of epidemiological measures over the autumn term under differing levels
of adherence to nonpharmaceutical interventions. Outputs produced from 1,000 simulations (with 20
runs per network, for 50 network realisations) for three levels of adherence to nonpharmaceutical interventions:
0% (grey), 50% (blue), 100% (red). Solid lines depict the median profile and shaded regions the 50% prediction
interval. Patterns of infection prevalence and proportion of the student community in isolation demonstrated
trade-offs between case numbers and the need for portions of the population to isolate. (a) Proportion infected.
(b) Proportion isolated.
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Fig. 5: Cumulative epidemiological measures over the autumn term under differing levels of ad-
herence to nonpharmaceutical interventions. Outputs summarised from 1,000 simulations (on 50 network
realisations with 20 runs per network) for various levels of adherence to nonpharmaceutical interventions. White
markers denote medians and solid black lines span the 25th to 75th percentiles. (a) Proportion of population
infected by SARS-CoV-2 and tested. (b) Maximum proportion of students isolated at any single time. (c)
Proportion of students infected at the end of the autumn term. (d) Under each level of adherence, median pro-
portion of student population in latent (blue), asymptomatic (orange), presymptomatic (yellow), symptomatic
(purple) infected states at the end of the autumn term. For percentile summary statistics, see Table S4.
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Minor gains associated with room isolation as an additional intervention 335

Isolation rooms, where on-campus students reporting symptoms and testing positive are rehoused to 336

prevent further transmission to housemates, has been postulated as an additional measure of social 337

distancing and control. For all tested adherence levels, we found median estimates for the number of 338

on-campus SARS-CoV-2 infected students being rehoused were below 400. In addition, the majority 339

of simulations returned counts less than 600 (Fig. 6(a)). For low adherence, despite the large number 340

of symptomatic cases present in the student population, under-reporting results in fewer rehousing 341

instances compared to situations where there is stronger adherence to NPIs. Similarly to observations 342

for tests used and cumulative isolation time, with high adherence the curbing of spread of infection 343

results in a reduction in the expected number of SARS-CoV-2 infected on-campus students being 344

rehoused. 345

When including room isolation as an extra intervention measure, in addition to social distancing, 346

isolation guidance and contact tracing, we observe a slight reduction in the median for estimated case 347

load over the autumn term (Fig. 6(b)). There was also a reduced probability of a large number of 348

cases over the course of the autumn term. The number of tests administered on COVID-19 infected 349

individuals was generally lower (Fig. 6(c)). 350

When considering the maximum number of students isolated at a single time and cumulative isolation 351

days, central estimates and variability were also reduced when mandating room isolation for students 352

experiencing COVID-like symptoms who were resident on-campus (Figs. 6(d) and 6(e)). 353
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Fig. 6: Impact on epidemiological measures across the student population of including rehous-
ing/room isolation as part of the intervention strategy. For specified adherence levels, we compare
two scenarios: one without rehousing/room isolation as part of the management strategy (red boxplots), and
one including rehousing/room isolation as part of the management strategy (blue boxplots). We ran 1,000
replicates for each scenario. (a) Maximum number of students rehoused at any one time for the additional
isolation strategy. (b) Proportion infected. (c) Proportion of population infected by SARS-CoV-2 and tested.
(d) Proportion of time adhering students spend in isolation. (e) Maximum proportion of students isolated at
any single time. (f) Proportion of students infected at the end of the autumn term. For percentile summary
statistics, see Table S4. The addition of a rehousing/room isolation control measure generally resulted in slight
reductions in central estimates and a narrowing of distributional ranges across all measures.
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Identifying a preferred mass testing strategy dictated by the objective 354

Our investigation of the utility of mass testing during the course of the academic term involved three 355

variables: (i) the timing and frequency of mass testing that was carried out: a single instance on day 356

21 (end of week 2 of the academic term); a single instance on day 63 (end of week 8 of the academic 357

term); regular mass testing on a fortnightly basis (on day 1, then day 14, day 28,. . ., day 70); or regular 358

mass testing on a weekly basis (on day 1, then day 7, day 14,. . ., day 70); (ii) the coverage amongst 359

the eligible student population: all students; on-campus resident students only; or off-campus resident 360

students only; (iii) underlying adherence to isolation and contact tracing (tested values of 0.2 (low) 361

0.5 (moderate) and 0.8 (high), respectively). 362

We compared the considered mass testing options to a baseline scenario that had identical parameters 363

with the exception of no mass testing being performed. More intense testing (greater coverage) and 364

earlier testing on average led to a smaller outbreak. However, intense testing resulted in a greater 365

amount of time spent in isolation for those students adhering to isolation measures (Fig. 7). These 366

relationships remain contingent on the proportion of students arriving infected. 367

In more detail, for the single instance mass testing options and for the high adherence setting, an 368

early mass test (day 21) covering all students resulted in the lowest relative median estimate (0.94) 369

for the proportion infected and caused only a minor increase in the time each adhering student would 370

be estimated to be isolated (1.04, see Fig. 7(a) and Table S5). In contrast, a late date mass test (day 371

63) of all students, combined with a low adherence to isolation measures, led to a similar minor drop 372

in the proportion infected but a greater increase in the time spent in isolation for those students that 373

do adhere to isolation measures (1.22, see Fig. 7(b) and Table S5). 374

Given low adherence circumstances, regular testing (either weekly or fortnightly) amplified the charac- 375

teristic that adhering students are likely to be in isolation for a greater portion of term-time (Figs. 7(c) 376

and 7(d), Table S5). In particular, having weekly mass testing compared to no mass testing led to a 377

doubling in the expected median time that adhering students spent in isolation (in the case of all stu- 378

dents being mass tested each round). In a similar manner to the one-off mass test strategies, we found 379

testing that covered all students (combined with high adherence to other control measures) returned 380

the lowest relative median estimate (0.65 and 0.49 for fortnightly and weekly testing, respectively) in 381

the proportion of the student population infected over the course of the academic term. Targeting 382

testing at students resident off-campus only was comparably less effective (proportional size of median 383

estimates across adherence settings ranged from 0.76-0.96). 384

Across the mass test scenarios there was a large amount of variability in the proportion of infected 385

students at the end of term (Figs. 8(a) to 8(c), Table S6). With the exception of the early single instance 386

mass test strategy, we saw the greatest reductions in median outcomes when mass testing rounds 387

covered all students and adherence to other intervention measures was high (Figs. 8(d) to 8(f), Table 388

S7). The top-performing strategy of weekly mass testing involving all students and high adherence 389

to other control measures resulted in an end of term prevalence roughly two-thirds of the size of the 390

estimated end of term prevalence in the absence of no-mass testing. On the other hand, given low 391

or moderate adherence to other control measures, we would not anticipate reductions in the expected 392

proportion of students infected at the end of term unless carrying out a one-off mass test instance 393

ahead of the final two weeks of the academic term. 394

Overall, at low, moderate and high adherence levels to other SARS-CoV-2 transmission control mea- 395

sures, having a single mass test event towards the end of the academic term increased the likelihood of 396

there being fewer infected students at the end of term compared to the baseline scenario. Regular mass 397

testing, combined with the vast majority of people adhering to other NPIs, was also likely to perform 398

well (Fig. S7, Table S7). Inspection of temporal profiles reveals how, compared to the one-off use 399
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of mass testing, regular mass testing flattens the infection curve, whilst simultaneously causing both 400

more individuals to enter isolation and a chance of there being a relatively higher infection prevalence 401

at the conclusion of the academic term (Figs. S8-S10). 402
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Fig. 7: Measures of relative case load and isolation burden under the tested mass testing options.
Mass testing was either not used (baseline scenario), a single instance took place at the end of week two or week
eight of the academic term (corresponding to simulation day numbers 21 and 63, respectively), or regular mass
testing was performed on a fortnightly or weekly basis. We present in each panel outputs from 1000 simulations
for mass testing covering all eligible students (red), on-campus only (blue), off-campus only (grey). The left
hand side of each panel corresponds to the relative proportion (compared to the baseline scenario) of the student
population infected over the duration of the autumn academic term under low, moderate and high adherence.
In a similar way, the right hand side of each panel presents data on the relative time adhering students spend
in isolation. The one-off mass testing was performed on: (a) day 21; (b) day 63. Frequent mass testing was
performed (c) fortnightly; (d) weekly. Full estimates are given in Table S5.
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Fig. 8: Proportion infected at the end of the academic term under differing mass testing strategies.
Mass testing was either not used (baseline scenario), a single instance took place at the end of week two or
week eight of the academic term (corresponding to simulation day numbers 21 and 63, respectively), or regular
mass testing was performed on a fortnightly or weekly basis. In each panel, we summarise outputs from 1000
simulations for mass testing covering all eligible students (red), on-campus only (blue), off-campus only (grey).
Panels (a-c) compare the distributions of end of term infection prevalence with no mass testing (black) with
outcomes for the various mass testing strategies. Panels (d-f) show the average scale of end of term infection
prevalence for the given mass testing strategy relative to the scenario where no one-off mass testing event took
place. The dashed line signifies parity between the scenarios. We used the following underlying probabilities of
adhering to isolation measures: (a,d) 0.2; (b,e) 0.5; (c,f) 0.8. For a listing of values, see Tables S6-S7. End of
term prevalence was minimised with a single one-off mass testing instance a fortnight before the term ended.
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Discussion 403

In this paper, we have described the construction and application of a network model to characterise 404

the transmission of SARS-CoV-2 amongst a student population in a UK campus-based university. Our 405

findings suggest SARS-CoV-2 could readily transmit amongst a student population within a univer- 406

sity setting over the course of a single academic term. Maintaining nonpharmaceutical interventions 407

and effective contact tracing curbed transmission, while also reducing the expected time an adhering 408

student would spend in isolation. 409

Our findings demonstrate the efficacy of isolation and tracing measures in controlling the spread of 410

SARS-CoV-2 if they are broadly adhered to. Reducing the quantity and riskiness of contacts breaks 411

chains of transmission, with the projected potency in the use of nonpharmaceutical interventions to 412

control spread of SARS-CoV-2 at a national scale previously documented [35–37]. 413

Irrespective of adherence probability, we predicted that a higher proportion of the on-campus popu- 414

lation would typically be infected compared to those living off-campus. In general, household sizes 415

within on-campus halls of residence are larger than those living in households off-campus. As a con- 416

sequence, a higher level of mixing is expected, with an associated increased risk of infection; halls 417

of residence have been identified as environments conducive to the transmission of other respiratory 418

illnesses [38]. This outcome reinforces the importance of monitoring the situation in halls of residence, 419

in agreement with prior studies [16]. 420

We also analysed what impact separating on-campus residents who were confirmed infected from 421

household members (for the duration of the infected individual’s isolation period) could have as a 422

potential extra barrier to disease spread. Though we saw marginal improvements compared to not 423

including the intervention, practicalities of the strategy and the outlay on required resources may 424

prohibit it as an implementable option. In particular, there would need to be the spare housing 425

capacity with suitable facilities to accommodate those confirmed infecteds that are living in households 426

with communal bathrooms, and a safe way of moving infectious individuals to the new rooms. 427

Whilst we found the absolute impacts of running a single mass test across the student population on 428

particular epidemiological measures to be small, it does illustrate the importance the stated objective 429

can have on what is ascertained as the preferred strategy. Based on our modelling framework, if one 430

was looking to minimise the proportion of students infected, then earlier testing with large coverage 431

would be selected. However, an additional concern is the potential risks of asymptomatic students 432

returning home for the winter break and unwittingly spreading infection to their domiciled community. 433

Given an objective of minimising the prevalence of infection at the end of term, then performing the 434

mass test later in the term would be preferable. 435

Our findings from computational simulations of frequent mass testing strategies are in agreement with 436

prior modelling works indicating that mass testing of students would need to take place at regular 437

intervals, such as fortnightly or weekly, to suppress SARS-CoV-2 transmission [11, 16]. There have 438

been calls that, before universities allow students to return home, community transmission must first 439

be curbed and frequent testing subsequently provided [39]. As an additional aid to help track and 440

monitor the spread of COVID-19 in their student and staff communities, several universities have set 441

up public-facing data dashboards in both the USA [40] and the UK [41]. 442

Where possible, we have taken a data-driven approach to parameterise the system and instruct hetero- 443

geneities we expect to be present, such as in student contact patterns. Nevertheless, this work has made 444

simplifying assumptions and our results therefore have limitations. Student numbers and estimates of 445

regional movements between term-time and out-of-term time addresses were taken from pre-pandemic 446

academic years; these movements may not accurately reflect the situation for the 2020/2021 academic 447

year during the COVID-19 pandemic. Additionally, we assumed there would be no students beginning 448
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term with COVID-like symptoms, and there was no transmission to students from the wider commu- 449

nity. Relaxation of either of these assumptions is likely to generate a larger outbreak throughout the 450

term. 451

When constructing the contact networks, for simplicity we assumed each student maintained consistent 452

contacts throughout the entire term with others in their household, and selected others from their 453

cohort and the organised societies and sports clubs they were members of. While the assumption 454

for households may reasonably hold, given shared use of communal spaces, one would expect less 455

rigidity in the study and organised social group related contacts. We also used a fixed distribution 456

for drawing random daily social contacts throughout the term, whereas in reality it may be expected 457

the distribution of such contacts to vary temporally. A set of distributions could instead be used 458

to capture these temporal heterogeneities, were the necessary data available to initially discern the 459

amount of time periods warranting a distinct distribution and then subsequently parameterise each 460

distribution. Finally, the level of transmission through this network is contingent on the behaviour 461

of students and their compliance with social distancing measures. We have assumed an uncontrolled 462

reproduction number in the range 2-4 (dependent on the proportion of students that are asymptomatic 463

and the relative transmission rate from asymptomatic infections); unfortunately, the precise value can 464

only be estimated once students return and any emerging outbreak can be measured. In the event of 465

student populations at universities suffering outbreaks, there is scope for the network model framework 466

presented here to be used for real-time parameter estimation. Larger values of R are likely to result 467

in a higher number of cases and greater pressure being exerted on test and trace services earlier in the 468

term. 469

Multiple refinements of the model structure are still possible and may yield a better understanding 470

of the outbreak impact on the broader university community. We have not included university staff 471

members, or infection to and from the local community. Students with asymptomatic infection inter- 472

acting with elder individuals in non-COVID secure environments may result in silent transmission of 473

SARS-CoV-2 into more vulnerable groups at risk of severe outcomes from COVID-19. Similarly, given 474

the observed rise with age of the likelihood of severe health outcomes due to COVID-19 disease [7], in 475

the event of widespread community transmission staff and surrounding communities would be likely 476

to experience higher levels of morbidity than students. Another aspect we have not included here is 477

the presence of other respiratory infections. Such an extension would permit the study of test capacity 478

requirements when levels of cough and fever are high due to non-COVID-19 causes, especially of con- 479

cern in the winter period; were such a scenario to arise it would apply significant stress to the national 480

test and trace system [42]. 481

In the context of the COVID-19 pandemic the movement of students to attend universities, creating 482

large communities of predominately young adults, poses specific challenges in controlling transmission. 483

Infectious disease models may be a useful part of the public health decision-making process, deter- 484

mining the most appropriate interventions to be applied in a university setting. Our work highlights 485

a network modelling approach to capture heterogeneities in contact structure that are particular to 486

the university student population and its projected impact on transmission of SARS-CoV-2. This 487

model suggests that encouraging student adherence with test-trace-and-isolate rules (as well as good 488

social-distancing, mask-use and hygiene practices) is likely to lead to the greatest reduction in cases 489

both during and at the end of term; mass testing is also found to produce strong benefits in terms of 490

reducing infection, generally leading to a greater number of cases being found and isolated. 491
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