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SUMMARY 29 

Immune responses to respiratory viruses like SARS-CoV-2 originate and function in the lung, 30 

yet assessments of human immunity are often limited to blood. Here, we conducted longitudinal, 31 

high-dimensional profiling of paired airway and blood samples from patients with severe 32 

COVID-19, revealing immune processes in the respiratory tract linked to disease pathogenesis. 33 

Survival from severe disease was associated with increased CD4
+
T cells and decreased 34 

monocyte/macrophage frequencies in the airway, but not in blood. Airway T cells and 35 

macrophages exhibited tissue-resident phenotypes and activation signatures, including high level 36 

expression and secretion of monocyte chemoattractants CCL2 and CCL3 by airway 37 

macrophages. By contrast, monocytes in blood expressed the CCL2-receptor CCR2 and aberrant 38 

CD163
+
 and immature phenotypes. Extensive accumulation of CD163

+
monocyte/macrophages 39 

within alveolar spaces in COVID-19 lung autopsies suggested recruitment from circulation. Our 40 

findings provide evidence that COVID-19 pathogenesis is driven by respiratory immunity, and 41 

rationale for site-specific treatment and prevention strategies. 42 
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INTRODUCTION 1 

The novel respiratory virus SARS-CoV-2 has resulted in devastating impacts to the 2 

world’s population, both as a result of morbidity and mortality caused by COVID-19, as well as 3 

the life-altering measures implemented to mitigate spread. While the majority of infected 4 

individuals (>90%) develop a self-limiting disease and recover, approximately 5-10% of 5 

individuals develop severe respiratory disease marked by lung infiltrates and reduced oxygen 6 

saturation, which can progress to acute respiratory distress syndrome (ARDS), multi-organ 7 

failure, and death (Wu and McGoogan, 2020). Risk factors for severe COVID-19 include older 8 

age and co-morbidities like obesity and diabetes, although younger and previously healthy 9 

individuals can also be susceptible (Cummings et al., 2020; Davies et al., 2020). For individuals 10 

who recover from self-limiting illness, the immune system acts in a coordinated fashion to clear 11 

the virus and establish virus-specific immunity (Moderbacher et al., 2020). However, the role of 12 

the immune response in the pathogenesis of severe COVID-19 remains unclear, and 13 

understanding this phenomenon is urgently required to develop new treatment and prevention 14 

strategies.  15 

A key aspect of the immune response to respiratory virus infection is the activation and 16 

mobilization of immune cells to the lung for viral clearance. Innate immune responses are 17 

initiated within infected lung epithelial cells and local immune cells, including tissue resident 18 

alveolar macrophages and infiltrating monocytes and granulocytes (Yoo et al., 2013). The initial 19 

production of pro-inflammatory cytokines in the lung can precipitate cytokine storms in severe 20 

respiratory infections (Teijaro et al., 2011b). Adaptive immune responses are also mobilized in 21 

the lung; antigen-loaded dendritic cells migrate from the infected lung to the draining lymph 22 

node where they prime CD4
+
 and CD8

+
T cells. The resultant effector T cells traffic to the lung to 23 
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mediate clearance of infected cells in situ (Yoo et al., 2013). A proportion of these lung effector 1 

T cells develop into tissue resident memory T cells (TRM), which are retained in the lung and 2 

can mediate rapid protective responses upon viral challenge in mouse models (Teijaro et al., 3 

2011a; Turner et al., 2014; Turner and Farber, 2014; Wu et al., 2014). TRM in mice and humans 4 

are phenotypically and transcriptionally distinct from circulating effector-memory (TEM) cells 5 

(Kumar et al., 2017; Mackay et al., 2016; Masopust and Soerens, 2019). In adult lungs, TRM are 6 

the predominant T cell subset and persist in stable frequencies throughout life (Kumar et al., 7 

2018), suggesting a crucial role in protection to respiratory pathogens. Moreover, CD4
+
TRM-8 

like cells in the airway are required for protection against SARS-CoV-1 in mice (Zhao et al., 9 

2016). At present, we lack information on the role of resident immune cells, including alveolar 10 

macrophages and lung TRM in protection against SARS-CoV-2 infection, and their function in 11 

the pathogenesis of severe COVID-19.  12 

Studies of the immune response to SARS-CoV-2 have examined innate and adaptive 13 

immune cells, as well as soluble mediators in blood and plasma of infected individuals, revealing 14 

elevated levels of pro-inflammatory cytokines (Hadjadj et al., 2020; Laing et al., 2020) and 15 

robust virus-specific adaptive immune responses. Virus-specific CD4
+
 and CD8

+
T cells are 16 

found in most infected individuals with varying disease severities and persist following recovery 17 

(Grifoni et al., 2020; Thieme et al., 2020; Weiskopf et al., 2020). Antibodies specific for 18 

different viral proteins, including anti-Spike (S) protein-specific neutralizing antibodies (Long et 19 

al., 2020; Ni et al., 2020), also persist after resolution. How these systemic immune responses 20 

relate to innate and adaptive immunity in the respiratory tract is unclear and difficult to assess.  21 

Here, we present in-depth, high-dimensional profiling of innate and adaptive immune 22 

cells and their functional responses in paired airway and blood samples obtained longitudinally 23 
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from 15 patients with severe COVID-19, along with control airway and blood samples. We 1 

identified robust innate and adaptive immune responses in the airway, which were distinct from 2 

blood in cellular composition, function and transcriptional profile. Notably, increased 3 

frequencies CD4
+
T cells and decreased frequencies monocytes/macrophages in airways were 4 

associated with survival and younger age, suggesting key roles for these cells at the infection 5 

site. COVID-19 airways contained activated TRM, high frequencies of inflammatory tissue 6 

monocytes/macrophages, and supranormal levels of the monocyte chemoattractant cytokines 7 

CCL2, CCL3, and CCL4 — all lacking in blood, which contained predominant populations of 8 

immature monocytes. Excessive macrophage/monocyte content in COVID-19 lung autopsies 9 

compared to control lungs provide evidence for dynamic monocyte recruitment to the respiratory 10 

tract. Our results reveal compartmentalization of innate and adaptive immune responses in the 11 

respiratory tract of COVID-19, which drives peripheral immune cell infiltration and disease 12 

pathogenesis. 13 

  14 
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RESULTS 1 

Obtaining paired airway and blood samples from severe COVID-19 patients 2 

 During the height of the pandemic in New York City, between April and June 2020, we 3 

enrolled patients from adult and pediatric intensive care units at New York Presbyterian hospital 4 

with severe COVID-19 (confirmed by positive SARS-CoV-2 PCR). Enrolled patients required 5 

mechanical ventilator support enabling us to obtain paired airway and blood samples 6 

longitudinally for up to 10 days during their hospitalization (average 6-7 sample days per 7 

patient). Sampling for each patient began within 24-36 hours of intubation. Patients represented a 8 

broad age range (14-84 yrs) and 8/15 (53%) died during enrollment or soon after (Table S1). 9 

Enrolled COVID-19 patients exhibited similar clinical severity measures regardless of outcome; 10 

the extent of ARDS, inflammation, neutrophil levels and comorbidities were similar between 11 

deceased patients and those who survived, while median age differed significantly (72yrs, 12 

deceased; 39yrs, survived). All patients developed robust SARS-CoV-2-specific neutralizing 13 

antibodies as measured in plasma (Weisberg et al., 2020).   14 

 Airway samples were obtained using a saline wash of the endotracheal tube performed 15 

daily as part of clinical care, which we have previously shown contain respiratory immune cell 16 

populations (Connors et al., 2018; Connors et al., 2016). A total of 141 paired blood and airway 17 

cell preparations were analyzed by high-dimensional spectral flow cytometry and successive 18 

samples from four patients were profiled by scRNAseq (Figure 1A, Table S2, S3). Airway 19 

supernatants and blood plasma from early and late time points were also assayed for cytokines 20 

and chemokines (Figure 1A, Table S2).  21 

 22 

Distinct immune cell composition in airway and blood of COVID-19 patients 23 
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 Mononuclear cells from paired airway and blood samples were isolated by centrifugation 1 

through ficoll (see methods), stained using a 34 marker panel containing antibodies specific for 2 

major lineage determinants and markers for differentiation, tissue residence, activation, and 3 

function (see methods), and analyzed by spectral flow cytometry (gating strategy for 4 

mononuclear cells shown in Figure S1). Principal component analysis (PCA) of mean marker 5 

expression for each sample showed distinct clustering of airway and blood samples by site, but 6 

not by outcome or by patient (Figure 1B, Table S4). Computational analysis of flow cytometry 7 

data visualized by uniform manifold approximation and projection (UMAP) embedding (see 8 

methods) showed distinct separation of the major lineages into monocytes/macrophages, CD4
+
T 9 

cells, CD8
+
T cells, B cells, and innate lymphoid cells (predominantly NK cells) for all samples 10 

(Figure 1C, Figure S2A). Compiled data for each timepoint revealed distinct immune cell 11 

composition in airway compared to blood (Figure 1D). Airway samples had predominant 12 

frequencies of monocytes/macrophages (40-90%), lower T cell frequencies, and very low-to-13 

negligible frequencies of B cells and ILCs, while blood contained higher lymphocyte frequencies 14 

with monocytes comprising ~50% of all non-neutrophil leukocytes (Figure 1D). Similar immune 15 

cell compositions were confirmed by scRNAseq analysis of airway and blood from four 16 

individuals (Figure S2B). These results show distinct immune cell profiles in airway compared to 17 

blood across all patients and timepoints analyzed. 18 

 We investigated whether the airway or blood immune cell composition differentiated 19 

between patients or correlated with overall survival. Hierarchical clustering of aggregated 20 

samples from each individual revealed two major patterns of immune cell composition in the 21 

airways; one pattern showing a predominance of monocytes/macrophages, while the second 22 

pattern had higher frequencies of CD4
+
T cells, B cells, and ILCs compared to the first (Figure 1E 23 
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left).  However, neither pattern significantly correlated to outcome as patients who survived or 1 

succumbed were represented in both groups (Figure 1E, left). Hierarchical clustering of blood 2 

immune cell data revealed multiple clusters with different numbers of patients in each with no 3 

clear distinction in patterns or by patient outcome (Figure 1E, right). The longitudinal profiles of 4 

immune cell composition for individual patient samples also showed distinct composition in 5 

airways, which did not correspond to blood either in frequency or in changes over time (Figure 6 

1F, Figure S3A). However, examination of specific lineages showed significant associations with 7 

outcome and correlation with age. Notably, there was a significant decrease in frequencies of 8 

airway monocytes/macrophages and an increase in airway CD4
+
T cells in patients who survived 9 

the disease versus those who succumbed (Figure 1G, left, Figure S3B), while the frequency of 10 

the corresponding blood immune cell subsets did not significantly differ between patients based 11 

on outcome, nor did they correlate with age (Figure 1G, right, Figure S3B). Accordingly, 12 

clustering the longitudinal patterns of cell type frequencies using K-means further suggests that 13 

airway immune cell trajectories are a better indicator of clinical outcome than their blood 14 

counterparts (Figure S3C). Together, these results show that airways exhibit an immune cell 15 

composition distinct from blood, and that the dynamics of airway T cells and 16 

monocyte/macrophages are significantly associated with outcome, suggesting key roles for these 17 

cell types in disease pathogenesis.  18 

  19 

Tissue resident memory T cells are the major T cell subset in airways 20 

The subset composition and transcriptional profile of airway T cells in comparison to 21 

those in blood was further examined through high-dimensional, single cell approaches. Multiple 22 

markers of T cell differentiation were used to distinguish naïve and memory populations 23 
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(CD45RA, CCR7, CD95, CD27), activation (HLA-DR, PD-1), functional subsets (FOXP3/CD25 1 

for Tregs, CXCR5/PD-1 for Tfh-like, TCRGD for  T cells), specific states of senescence or 2 

terminal differentiation (CD57, KLRG1), and tissue residence (CD69, CD103). We used UMAP 3 

embedding to visualize expression of these multiple markers by airway and blood T cells, 4 

showing increased expression of CD69, CD103, PD-1, and HLA-DR in the airways and 5 

increased CCR7, CD45RA, and CD127 expression in the blood (Figure S4A and S4B). 6 

Phenograph clustering based on marker expression by CD4
+
 and CD8

+
T cells yielded 27 7 

clusters, which were coalesced into 15 clusters denoting biological subsets or 8 

functional/activation states in airway and blood (Figure 2A, 2B). 9 

There were significant qualitative and quantitative differences in T cell subset 10 

composition and activation state between airway and blood. In particular, airway contained CD4
+
 11 

and CD8
+
TRM cells (CD69

+
CD103

+/-
) along with activated TRM subsets expressing elevated 12 

levels of HLA-DR and PD-1, and reduced levels of CD127 compared to non-activated TRM 13 

(Figure 2A, 2B). TRM cells, regardless of activation state, were largely confined to the airways 14 

and not significantly present in blood (Figure 2B, 2C), consistent with virus-responding T cells 15 

located at the site of infection. Innate-like  cells were also present in higher frequencies in 16 

airways compared to blood (Figure 2C). Circulating TEM cells (CD69
-
CD103

-
) were present in 17 

both sites, with non-activated CD8
+
TEM enriched in the blood (Figure 2B, 2C). Blood also 18 

contained higher frequencies of naïve CD4
+
 and CD8

+
T cells, CD4

+
TCM cells (Figure 2B, 2C). 19 

Between patients, there was variability in the proportions of the major subsets represented; most 20 

patients (9/13) had predominant CD8
+
TRM in airways, while 3/13 patients had higher 21 

frequencies of CD4
+
TRM in airways (Figure 2D). Together, these analyses indicate that both 22 

TRM and activated memory T cells (TRM and TEM) exhibit biased distribution in favor of the 23 
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airways and not blood, and that the subset composition and activation states of blood T cells does 1 

reflect the dynamics in airways.  2 

Consistent with the flow cytometry results, analysis of T cells by scRNA-seq revealed 3 

distinct transcriptional profiles expressed by airway compared to blood T cells. TRM signature 4 

genes CXCR6 and ITGA1 were uniquely expressed by airway T cells (Figure 2E, F, Table S5), 5 

consistent with previous scRNA-seq analysis of human TRM cells in lung and other sites 6 

(Snyder et al., 2019; Szabo et al., 2019). Naïve and TCM cells distinguished by SELL expression 7 

were highly enriched in blood, while CCL5 expression indicating TEM cells were found in both 8 

sites (Figure 2F). Identification of the top differentially expressed genes between airway and 9 

blood revealed that T cells from the airway exhibit a gene signature associated with TRM and 10 

tissue T cells (Kumar et al., 2017; Szabo et al., 2019), including upregulated expression of 11 

CXCR6, ITGA1, PDCD1, LGALS, LAG3, and RBPJ compared to blood T cells (Figure 2E, F, 12 

Table S5). Airway T cells also showed upregulated expression of genes encoding key cytokines 13 

and chemokines, including IFNG, CCL2, and CCL4 (Figure 2E, F), consistent with an activated 14 

and pro-inflammatory state. By contrast, blood T cells exhibited higher expression of genes 15 

associated with quiescence (TCF7, LEF1) (Choi et al., 2015) and lymphoid homing (SELL) 16 

compared to airway T cells (Figure 2E,F). These scRNA-seq results demonstrate 17 

compartmentalization of activated TRM populations in the airway of severe COVID-19 in the 18 

context of relatively quiescent blood T cells, suggesting that the protective T cell response is 19 

targeted to the respiratory environment.  20 

 21 

Resident B cell subsets in the airway of COVID-19 patients 22 
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The vast majority of B cells profiled in COVID-19 patients were from the blood; 1 

however, there was a small but detectable population in the airways (Figure 1C, 1D). Comparing 2 

B cell profiles by flow cytometry analysis revealed differential expression of key B cell markers 3 

delineating specific B cells subsets in the airways and blood (Figure S5A, S5B). In particular,  4 

airway B cells exhibited increased expression of CD69, a marker expressed by human tissue 5 

resident B cells (Weisel et al., 2020), and activation markers CD86 and CD95 (Figure S5A, 6 

S5B). Phenograph clustering further delineated subsets of activated and tissue-resident B cells 7 

present in airways, while blood contained higher frequencies of CXCR5
+
 and naïve B cells 8 

(Figure S5C-E). These results indicate compartmentalization of specific B cell subsets in airway, 9 

providing further support for spatial segregation of adaptive immunity.    10 

 11 

Airway monocytes/macrophages exhibit activation and inflammatory profiles  12 

We applied similar high-dimensional flow cytometry and scRNA-seq analysis to the 13 

monocyte/macrophage populations in paired airway and blood samples from COVID-19 14 

patients. Phenotypic profiling of airway and blood samples defined a major 15 

monocyte/macrophage population (see Figure 1), which largely segregated by site (Figure 3A). 16 

Expression of markers HLA-DR, CD11c, and CD16 distinguished airway from blood 17 

monocyte/macrophages, while those in blood expressed higher levels of CD14 and CD163 18 

(Figure 3A, B). There was no difference in the relative expression of CD64 and CD86 between 19 

airway and blood monocyte/macrophages (Figure 3B). Phenograph clustering of 20 

monocytes/macrophages identified 20 clusters, which were coalesced into 6 clusters classified by 21 

activation (HLA-DR and CD86) and major monocyte subsets: classical, intermediate, and non-22 

classical (Kapellos et al., 2019) (Figure 3C). Non-classical monocytes/macrophages (both non-23 
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activated and activated) and activated classical monocytes/macrophages were enriched in the 1 

airway (Figure 3D, E). By contrast, classical and intermediate monocytes/macrophages without 2 

activation markers were increased in the blood (Figure 3D, E). These data indicated increased 3 

activation of monocyte/macrophage lineages in the airway compared to blood. 4 

 We further investigated the subset delineation, differentiation, and functional state of 5 

monocyte/macrophages by scRNA-seq. Transcriptionally, airway monocyte/macrophages 6 

exhibited certain shared and distinct gene expression patterns compared to blood counterparts, 7 

which were consistent across individuals (Figure 4A, Table S6). There was comparable 8 

expression of lineage-defining genes, including CD14, FCGR3A (CD16), CD68, and CD163, for 9 

monocyte/macrophages in the airway and blood. However, several genes distinguished the two 10 

sites, including airway-specific expression of tissue macrophage markers MARCO and MRC2 11 

(CD206) (Bharat et al., 2016) and the integrin ITGAV (encoding the vitronectin receptor for 12 

tissue matrix interactions), while blood counterparts expressed higher levels of transcripts for 13 

chemokine and homing/egress receptors (CX3CR1, CCR2, SELL, S1PR4) (Figure 4A). For genes 14 

associated with myeloid cell function, airway monocytes/macrophages expressed highly elevated 15 

levels of transcripts for pro-inflammatory mediators compared to blood, including chemokines 16 

for recruitment of monocyte/macrophages (CCL2, CCL3, CCL4), lymphocytes (CCL18, CCL20, 17 

CCL23), and neutrophils (CXCL3, CXCL5), complement components (C3, C1QB, C1QC), and 18 

matrix metalloproteinases (MMP9, MMP14) implicated in tissue damage in ARDS (Hendrix and 19 

Kheradmand, 2017) (Figure 4A). Together, these results demonstrate distinct tissue and 20 

functional profiles of airway monocyte/macrophages compared to those in the blood. 21 

Importantly, airway monocytes/macrophages persist in a highly inflammatory state with elevated 22 
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expression of chemotactic mediators, suggesting potential roles for lung macrophages in 1 

recruiting immune cells to the lung in severe COVID-19.  2 

Interferon (IFN)-regulated genes are associated with innate anti-viral immunity and may 3 

be dysregulated in COVID-19 (Hadjadj et al., 2020). Accordingly, we found negligible 4 

expression of genes encoding Type I, Type II, and Type III IFNs from monocyte/macrophages 5 

(Figure 4B) or epithelial cells (Figure S6), consistent with the lack of SARS-CoV-2 viral 6 

sequences (see methods) in scRNA-seq data from 4 patients.  However, transcripts associated 7 

with multiple interferon-regulated gene families (i.e., ISG, IFI, IFIT, IRF, MX and OAS) were 8 

detected in both the airway and blood monocyte/macrophages (Figure 4B), as well as airway 9 

epithelial and T cells (Figure S6), suggesting a persisting anti-viral state in these cells. This 10 

expression of IFN-regulated genes may be propagated by IFNG expressed by airway T cells 11 

(Figure 2, S6). Together these results indicate that the principal innate immune function of 12 

myeloid-derived cells in severe COVID-19 is production of pro-inflammatory mediators by 13 

airway monocyte/macrophages.   14 

 15 

Compartmentalized production of cytokines and chemokines in airway and blood  16 

 We further assessed inflammation in both sites by direct examination of cytokine and 17 

chemokine content in airway supernatants and plasma samples from an early (day 1) and later 18 

(days 3-7) timepoint for each patient (Table S2). We used a microfluidic chip multiplexed 19 

secretome proteomic platform for assessment of soluble mediators from each site with high 20 

sensitivity from small volumes (see methods)(Farhadian et al., 2020).  Overall, we found major, 21 

significant differences in the cytokine and chemokine protein content in the airway compared to 22 

plasma, but no significant differences between the two timepoints within a site (Figure 5A, 23 
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Figure S7A,B). Analytes significantly elevated in airways compared to blood include 1 

monocyte/macrophage chemoattractants MCP-1 (CCL2), MIP-1CCL3and MIP1CCL4 2 

in all samples, as well as granzyme B, IL-7, and TNF- associated with T cells and homeostasis 3 

(Figure 5A, 5B, Figure S7B). By contrast, in the blood, MCP-1 (CCL2), MIP-1CCL3, 4 

granzyme B, TNF- and IL-7 were undetectable, while MIP-1 (CCL4was present at variable 5 

levels across patients (Figure 5A, B). Both blood and airways contained low and/or variable 6 

levels of molecules associated with T cell effector function (perforin, IFN-, IL-17, and IL-2), 7 

additional innate cytokines (IL-6 and IL-8), and TGF-while none of the analytes measured 8 

were uniquely expressed by blood and not found in airways  (Figure 5A, 5B, Figure S7B). 9 

Together, these results show compartmentalized production of pro-inflammatory chemokines 10 

and cytokines in the airway with a subset of these detected in blood, suggesting that systemic 11 

cytokines may derive from inflammatory processes originating at the infection site. 12 

 To define the cellular origin of the chemokines and cytokines detected in each 13 

compartment, we analyzed transcript expression for each of the analytes from Figure 5B by 14 

scRNA-seq. Overall, transcript expression of prominent cytokines/chemokines largely correlated 15 

to the protein data; airway myeloid cells expressed high levels of CCL2, CCL3 and CCL4 16 

transcripts corresponding to the high levels of the respective proteins in airways, while blood 17 

myeloid cells expressed lower or undetectable levels of these transcripts (Figure 5C). Airway and 18 

blood myeloid cells also expressed CXCL8 and TGFB1, consistent with the protein data (Figure 19 

5C). In the airways, T cells expressed GZMB, CXCL8, CCL4, PRF, IFNG, and TGFB1 20 

transcripts, which were expressed by blood T cells at lower or variable levels (Figure 5C). 21 

Airway epithelial cells expressed predominantly CXCL8 transcripts, as well as lower levels of 22 

transcripts for IL-7 and several chemokines (Figure 5C). Overall, these results demonstrate 23 
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compartmentalized secretion of monocyte/macrophage-derived chemokines and inflammatory 1 

mediators in the airways with potential roles for recruiting immune cells to the lung that may 2 

contribute to lung inflammation and tissue damage.   3 

 4 

COVID-19-induced features of airway and blood immune cells 5 

To assess COVID-19-related alterations in airway and blood immune cells that could 6 

potentially contribute to disease pathogenesis, we obtained baseline controls of blood from 7 

uninfected, healthy adults, and airway washes from lungs of SARS-CoV-2-negative organ 8 

donors as done previously (Snyder et al., 2019). High-dimensional flow cytometry analysis of 9 

control healthy blood (HB) and airway (HA) samples (Table S7), in conjunction with the 10 

COVID-19 patient samples from Figure 1 (COVID-19 blood (CB); COVID-19 airway (CA)) 11 

revealed non-overlapping features of COVID-19 and healthy samples for all lineages and 12 

particularly within T cells and monocyte/macrophages (Figure 6A, left). Overall immune cell 13 

composition and T:monocyte/macrophage cell ratio were similar in healthy and COVID-19 14 

airway samples; however, a dramatic increase in circulating monocyte frequency resulting in a 15 

reduced T: monocyte/macrophage ratio was observed in COVID-19 blood relative to healthy 16 

controls (Figure 6A, middle and right). By PCA, airway and blood samples were distinct, 17 

irrespective of disease; however, healthy and COVID-19 airway samples were intermixed, while 18 

healthy blood samples clustered separately from COVID-19 blood samples (Figure 6B). These 19 

findings indicate that COVID-19-specific alterations in immune cell composition are manifested 20 

more dramatically in blood than in airways.  21 

To more closely examine site-specific differences between immune cells in healthy and 22 

COVID-19 individuals, we analyzed T cell and monocyte/macrophage populations separately. 23 
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UMAP embeddings of T cells from blood and airway showed compartmentalized profiles for 1 

both healthy and COVID-19 samples (Figure 6C, left). We calculated a Minkowski Distance 2 

(MD; see methods) to quantify the similarity in T cell populations across conditions and sites, 3 

with higher values denoting greater similarity. T cell populations within each site were similar in 4 

healthy and COVID-19 samples (HB v. CB MD = 0.77; HA v. CA MD = 0.74), whereas T cell 5 

populations in the two sites were more distinct (HA v. HB MD = 0.39, CA v. CB MD = 0.57) 6 

(Figure 6C). Comparing T cells in healthy and COVID-19 samples, there were increased 7 

frequencies of CD69
+
CD103

+
 TRM and T cells expressing activation markers HLA-DR and PD-8 

1 in the airways of COVID-19 patients compared to uninfected individuals; these markers were 9 

not expressed significantly by blood T cells in COVID-19 nor in healthy controls  (Figure 6D). 10 

The compartmentalized activation of T cells in airways in COVID-19 provides further evidence 11 

for dynamic T cell immunity at the infection site.  12 

For monocytes/macrophages, UMAP embeddings revealed compartmentalized profiles 13 

between healthy airway and blood, but considerable overlap of monocyte/macrophage profiles 14 

between COVID-19 airway and blood (Figure 6E). Accordingly, Minkowski distance 15 

calculations confirmed that healthy airway and blood monocyte/macrophage subsets were 16 

distinct (MD = 0.47), while in COVID-19 patients airway and blood myeloid cell profiles were 17 

more similar (MD = 0.72) (Figure 6E, right). Specifically, CD163, a scavenger receptor typically 18 

expressed by tissue macrophages and monocytes in response to inflammation (Buechler et al., 19 

2000), was expressed in control airway macrophages and not by blood monocytes; however, in 20 

COVID-19 samples, the proportion of monocytes/macrophages expressing high levels of CD163 21 

(CD163
hi

) was similar in both sites (Figure 6F). Moreover, monocytes in healthy blood samples 22 

uniformly expressed HLA-DR and CD86, while monocytes from COVID-19 blood exhibited 23 
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significantly reduced proportions of HLA-DR
hi

 and CD86
hi

 cells (Figure 6F), consistent with 1 

recent findings regarding blood monocyte profiles in severe COVID-19 and suggestive of an 2 

immature phenotype (Schulte-Schrepping et al., 2020). Taken together, these results indicate 3 

profound alterations in blood monocytes in COVID-19, which also share similar features with 4 

airway macrophages, suggesting that airway resident myeloid cells in severe COVID-19 may 5 

derive, in part, from these circulating precursors and that interactions between airway and blood 6 

myeloid cells may contribute to disease pathology.  7 

Accumulation of CD163
+
 cells in the lungs of severe COVID-19 patients 8 

We hypothesized that the production of monocyte-chemoattractant chemokines by airway 9 

monocyte/macrophages along with the elevated levels of CD163
+
 monocytes in COVID-19 10 

blood may result in their dysregulated infiltration into the lung. We therefore examined immune 11 

cells in lung autopsy samples from COVID-19 patients with diffuse alveolar damage, the main 12 

pathological finding associated with COVID-19 ARDS (De Michele et al., 2020), relative to 13 

lungs from uninfected, deceased organ donor controls (Carpenter et al., 2018) (Table S7). In the 14 

airways of uninfected lungs, T cells were clustered around the airway epithelium, while CD163
+
 15 

monocytes/macrophages were dispersed in the parenchyma (Figure 7A, top left). In the lungs of 16 

individuals who succumbed to COVID-19 ARDS, there was a marked and dramatic increase in 17 

CD163
+
 monocytes/macrophages and damaged airway epithelium that was partially denuded and 18 

sloughing off into the lumen (Figure 7A, top right). In particular, CD163
+
 19 

monocytes/macrophages aggregated in the alveolar spaces of COVID-19 infected lungs and not 20 

in controls, suggesting their participation in lung damage in COVID-19. Quantitative analysis of 21 

the lung imaging data showed significant increases in the frequency and density of CD163
+
 22 

monocytes/macrophages in COVID-19 versus controls, while lymphocyte content was not 23 
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similarly increased (Figure 7B). We assessed expression of genes associated with cell cycle or 1 

proliferation (Ki67, TOP2A, UBE2C) in monocyte/macrophage populations in the airway or 2 

blood by scRNA-seq, revealing no significant expression of these markers (Figure 7C). Together 3 

with the high-dimensional analysis of airway immune cells, these findings implicate the 4 

recruitment of immature monocytes from the periphery into the lung, where they subsequently 5 

become highly pro-inflammatory and drive the pathogenesis of severe COVID-19. 6 

  7 
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DISCUSSION 1 

 During the SARS-CoV-2 pandemic, restoration of normal life is impeded first and 2 

foremost by the most severe COVID-19 cases, including debilitating ARDS and its high 3 

mortality.  Numerous studies have now identified characteristic features of innate and adaptive 4 

immunity to SARS-CoV-2 infection that are detectable in blood (Kuri-Cervantes et al., 2020; 5 

Laing et al., 2020; Lucas et al., 2020; Mathew et al., 2020; Moderbacher et al., 2020; Schulte-6 

Schrepping et al., 2020); however, the initiation, function, and establishment of immune 7 

responses for respiratory viruses occur in the lung and respiratory tract. Several studies have 8 

separately assessed cellular composition within the respiratory environment in bronchiolar 9 

lavage samples and lung autopsies (Damiani et al., 2020; Liao et al., 2020; Veras et al., 2020). 10 

Characterizing respiratory immune responses in situ in the context of circulating immune cell 11 

populations is needed to dissect mechanisms of disease pathogenesis to combat this pandemic.   12 

 In this study, we obtained paired respiratory and blood samples from patients with severe 13 

COVID-19 longitudinally during the course of intensive care hospitalization. We employed high 14 

dimensional profiling by spectral flow cytometry and scRNA-seq as well as multiplex cytokine 15 

quantification and immunofluorescence imaging to characterize airway and systemic immune 16 

responses and their interactions, revealing key insights into disease pathogenesis. Importantly, 17 

we found that innate and adaptive immune responses in severe COVID-19 predominate in the 18 

respiratory tract and are qualitatively and quantitatively distinct from immune dynamics in the 19 

blood. The most striking differences in immune cells between airways and blood were identified 20 

within both T cell and monocyte/macrophage populations. Moreover, increased frequencies of T 21 

cells and decreased macrophage/monocyte frequencies exclusively in the airways correlate with 22 
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better outcome and younger age, further indicating key roles for these cells at the infection site in 1 

disease pathogenesis.  2 

 T cells in COVID-19 airways were predominately TRM, most of which exhibited 3 

features of activation, including surface phenotypes (HLA-DR
hi

PD-1
hi

CD127
lo

) and upregulated 4 

expression of transcripts for effector molecules such as perforin, GZMB and IFNG. This was not 5 

the case in the blood of COVID-19 patients, which lacked TRM and activated T cell profiles. 6 

Furthermore, activated TRM were detected specifically in airways of COVID-19 patients and not 7 

in airway washes of organ donor controls, indicating a virus-directed response, although 8 

insufficient T cell numbers in airways precluded direct measurement of SARS-CoV-2-specific T 9 

cells. In mouse influenza infection, the presence of activated lung TRM in situ to influenza 10 

infection correlates with virus-specific responses (Paik and Farber, 2020; Turner et al., 2014), 11 

further supporting that in situ activation is a surrogate for anti-viral responses. In human SARS-12 

CoV-2 infection, blood may serve as a consistent and reliable indicator for detection of SARS-13 

CoV-2-specific T cells and the establishment of adaptive immune memory (Grifoni et al., 2020; 14 

Moderbacher et al., 2020; Weiskopf et al., 2020). However, our results suggest that measuring 15 

global T cell activation markers in the periphery, as done in recent studies (Mathew et al., 2020; 16 

Takahashi et al., 2020), may not provide an accurate assessment of the virus-targeted immune 17 

response in situ during active disease.  18 

Airway monocytes/macrophages in COVID-19 patients differed significantly from their 19 

blood cell counterparts, with increased frequencies of activated subsets, increased expression of 20 

transcripts associated with tissue macrophages (e.g. MARCO, MRC1, ITGAV), and high-level 21 

expression of genes encoding pro-inflammatory mediators such as CCL2, CCL3, CCL4, 22 

CXCL8, matrix metalloproteases, and complement components. Consistent with this 23 
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inflammatory profile,  excessive levels of MCP-1/CCL2, MIP-1/CCL3, and MIP-1/CCL4 1 

protein were detected in the airways, but not in blood, further supporting a role of airway 2 

macrophages in initiating and perpetuating the inflammatory responses in severe COVID-19. 3 

This phenotypic and functional profile of  COVID-19 airway monocytes/macrophages shares 4 

features with human macrophages in ARDS due to non-infectious causes, including the 5 

production of CCL2 and CXCL8, as well as induction of MMPs and complement (Aggarwal et 6 

al., 2014; Morrell et al., 2019). In ARDS, CCL2-expressing airway macrophages recruit 7 

inflammatory monocytes expressing the CCL2 binding receptor CCR2, which contribute to lung 8 

damage; airway macrophages can subsequently facilitate repair through TGF- production 9 

(Aggarwal et al., 2014). Our results indicate that COVID-ARDS shares some key features with 10 

ARDS resulting from other infectious or non-infectious causes. 11 

Our coordinate analysis of airway and blood myeloid cells and soluble mediators suggest 12 

an analogous role for airway macrophages driving lung damage in COVID-19 ARDS through 13 

recruitment of circulating monocytes. We show that blood monocytes in severe COVID-19 14 

express increased levels of CCR2 transcripts and aberrant CD163
+
HLA-DR

lo
/CD86

lo
 phenotypes 15 

compared to healthy blood monocytes. Reduced HLA-DR expression indicative of immature 16 

monocytes has been identified in blood myeloid cells in severe COVID-19 (Schulte-Schrepping 17 

et al., 2020; Silvin et al., 2020) and may derive from inflammation-induced mobilization of 18 

immature monocytes from the bone marrow, termed emergency myelopoiesis (Schultze et al., 19 

2019; Shi et al., 2011; Venet et al., 2020). While a cytokine storm marked by elevated levels of 20 

serum cytokines is implicated in pathogenesis of severe COVID-19 and emergency myelopoiesis 21 

(Chau et al., 2020; Copaescu et al., 2020; Lucas et al., 2020; Schulte-Schrepping et al., 2020), 22 

our results show that inflammatory cytokines detected in the blood lacked CCL2 and other 23 
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chemokines, which direct recruitment of multiple immune cell types. Our findings rather suggest 1 

that pro-inflammatory cytokines emanating from the respiratory tract recruit circulating 2 

inflammatory monocytes to the lungs and perpetuate lung damage. Immunofluorescence imaging 3 

of lungs from severe COVID-19 patients shows a striking increase in CD163-expressing 4 

monocytes/macrophages within the damaged lung tissue that lack proliferative signatures and 5 

therefore likely derive from recruitment. These cells specifically accumulate in the alveolar 6 

spaces of the lungs, a key site for blood gas exchange, suggesting their involvement in diffuse 7 

alveolar damage commonly seen in COVID-19 pathology (De Michele et al., 2020).  8 

 Our results defining airway immune responses in COVID-19 and their relation to the 9 

corresponding immune reactants in blood have profound implications for treating and preventing 10 

disease. Treatments targeting systemic inflammation, either globally with steroids or specifically 11 

with cytokine blockade, have shown variable efficacy in severe COVID-19 (Della-Torre et al., 12 

2020; Furlow, 2020). Our results suggest that targeting airway-derived cytokines such as CCL2 13 

through CCR2 antagonists or other airway-specific mediators may be more effective in reducing 14 

lung damage or even promoting recovery from ARDS in severe COVID-19.  A similar role for 15 

CCL2-mediated monocyte recruitment in lung pathology was demonstrated in mouse models of 16 

influenza infection (Lin et al., 2008; Lin et al., 2011), suggesting a generalized mechanism for 17 

respiratory virus-induced lung injury. Because our scRNA-seq analysis showed that the elevated 18 

airway mediators derive chiefly from the lung macrophages, treatments which regulate these 19 

cells may also mitigate the clinical course of disease.    20 

Our finding that increased proportions of airway T cells are associated with better 21 

outcome and younger age suggests that promoting lung-localized immune responses is an 22 

important consideration for vaccine design. In mouse models, intranasal administration of the 23 
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live-attenuated influenza vaccine or bacterial-based vaccines can promote establishment of lung 1 

TRM that mediate protective immunity to pathogen challenge (Allen et al., 2018; Zens et al., 2 

2016). Intravenous administration of the BCG vaccine to non-human primates was recently 3 

shown to generate substantial populations of lung TRM, which correlated strongly with 4 

protection from tuberculosis (Darrah et al., 2020). The current SARS-CoV-2 vaccines in phase 5 

III trials target generation of neutralizing antibodies and are robust strategies for establishing 6 

sterilizing immunity (Jeyanathan et al., 2020); however, respiratory targeting could be 7 

considered for individuals who are unable to develop effective antibody responses. These cohorts 8 

may include the immunocompromised or the elderly, or this strategy could be used as a booster 9 

for those at risk for infection due to frequent interactions with others through their living or work 10 

situations. Indeed, a recent pre-clinical study demonstrated that intranasal administration of a 11 

recombinant SARS-CoV-2 vaccine promoted lung TRM generation and protection from viral 12 

challenge in a mouse model (Hassan et al., 2020). 13 

 In summary, our study provides a dynamic view of ongoing respiratory immunity in 14 

severe COVID-19, revealing compartmentalization of protective and pathogenic immune 15 

responses in the lung. These findings have important implications for how we monitor, treat and 16 

protect from this pandemic and future infectious challenges to the respiratory tract.        17 
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FIGURE LEGENDS 1 

Figure 1. Distinct immune cell composition in airways compared to blood is associated with 2 

outcome and age (A) Schematic diagram showing assays performed on COVID-19 patient 3 

airway and blood samples for this study. (B) Principal component analysis (PCA) of all COVID-4 

19 samples based on mean marker expression colored by site (left), outcome (middle) and by 5 

donor (right). (C) UMAP embedding of flow cytometry results from all airway and blood 6 

samples combined colored by major cell lineage (top panel), and separated by tissue site (bottom 7 

two panels). (D) Immune cell composition over time in airways and blood. Box plots show the 8 

frequency of each major cell lineage of CD45
+
CD66B

-
 cells in airway (left) and blood (right) 9 

samples collected longitudinally for each sample day. Color of boxes corresponds to lineage and 10 

each dot is an individual patient sample. (E) Hierarchical clustering of airway (left) and blood 11 

(right) samples based on average lineage frequency across all time points for each donor-site 12 

group. Heatmaps are colored by row normalized value for each sample. (F) Line plots showing 13 

frequency of major lineages of total CD45
+
CD66B

-
 cells in airway (top row) and blood (bottom 14 

row) samples collected longitudinally for representative donors. (G) Association of 15 

monocyte/macrophage and T cell frequencies in airway (left) and blood (right) with outcome 16 

(deceased or survived) and correlation with age. Statistical significance was calculated using 17 

Mann-Whitney U-tests (box-plots) or Pearson correlations (scatter plots) and indicated by ***, p 18 

≤ 0.001; **, p ≤ 0.01; *, p ≤ 0.05. 19 

Figure 2. Airway T cells in COVID-19 are dominated by TRM and activated phenotypes. 20 

(A) Heatmap displaying expression of markers within phenograph-generated, hierarchical T cell 21 

clusters. The 27 phenograph clusters were collapsed into 15 definable cell subsets indicated at 22 

bottom. Heatmap data are colored by row normalized value for each sample. (B) UMAP 23 
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embedding of 15 T cell subsets in the airway (upper) and blood (lower) with labels denoting the 1 

specific subset as defined in A. (C) T cell subset frequencies in airway compared to blood 2 

samples. Boxplots showing frequency of the indicated T cell subset for each patient (average of 3 

all time points collected) in the airway (blue) and blood (red). Statistical significance was 4 

calculated using a paired T-tests and indicated by ***, p ≤ 0.001; **, p ≤ 0.01; *, p ≤ 0.05. (D) 5 

Frequencies of the major T cell subsets in airway and blood shown for each individual patient 6 

and their outcome in airway (left) and blood (right) shown in a heat map. (only select subsets 7 

shown) (E) Heatmap showing major differentially expressed genes in airway compared to blood 8 

T cells by scRNA-seq from each individual patient and timepoint. Data are colored by row z-9 

score for each sample. (F) Separate UMAP embeddings of gene expression by scRNA-seq from 10 

total T cells obtained from airway and blood of paired samples from four patients. UMAP shows 11 

airway (blue) and blood (red) origin of samples, patient, and indicated gene expression (based on 12 

Log2(CPM+1)).  13 

Figure 3. Monocyte/macrophage lineage cells are activated in airway of COVID-19 patients 14 

(A) UMAP embedding of aggregated flow cytometry data obtain in Figure 1 showing expression 15 

of major myeloid markers in airway and blood. (B) Mean expression of each myeloid-associated 16 

marker within the airway (blue) or the blood (red) samples shown as boxplots with each dot 17 

representing individual patient data averaged for all timepoints  (C) Heatmap displaying 18 

expression of markers within phenograph-generated, hierarchical monocyte/macrophage clusters. 19 

The 20 phenograph clusters were collapsed into 6 cellular subsets based on common myeloid 20 

nomenclature – classical, intermediate and non-classical, and whether they were activated 21 

(“Act.”). Heatmap data are colored by row normalized value for each sample. (D) UMAP 22 

embedding of the different subsets colored as in C from airway and blood samples. (E) Boxplots 23 
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showing compiled frequency of each monocyte/macrophage subset displayed as an average of all 1 

time points collected on a per donor basis. Statistical significance was calculated using a paired 2 

T-test and indicated by ***, p ≤ 0.001; **, p ≤ 0.01; *, p ≤ 0.05. 3 

Figure 4. Airway contains tissue macrophages and monocytes with highly inflammatory 4 

profiles compared to blood (A) Monocyte/macrophage profiles in airway and blood were 5 

analyzed by scRNAseq. Gene expression analysis of scRNAseq of subset-defining genes, 6 

homing receptors and key inflammatory molecules for monocyte/macrophages in airway and 7 

blood from each patient sample (left). The heatmap shows genes that are not differentially 8 

expressed between airway and blood (CD14-FCGR3A) and genes are consistently differentially 9 

expressed (ITGAV-TREM2). UMAP embedding of total monocyte/macrophage cells obtained 10 

from airway (blue dots) and blood (red dots) compiled from four patient samples (right). (B) 11 

Expression levels of the IFN response genes between airway and blood (left). UMAP embedding 12 

displaying the expression levels of the IFN response genes in individual cells (right) displayed as 13 

log2(CPM+1). 14 

Figure 5. COVID-19 airways contained highly elevated levels of myeloid and T cell-derived 15 

cytokines compared to blood (A) Levels of indicated cytokines and chemokines in the airway 16 

(top) and plasma (bottom) compiled from 15 patients depicted in box plots showing log10 17 

normalized cytokine expression profiles for an early and late time point (see methods). Each dot 18 

represents an individual data point. (B) Heatmap showing log10(X+1) pg/mL cytokine levels 19 

averaged across both time points in airway (left) and blood plasma (right) samples for each 20 

donor. (C) Transcript levels for cytokine expression by major cell lineages identified in by 21 

scRNA-seq for each patient samples indicated by color. Heatmap shows log2(mean CPM+1) 22 

gene expression. 23 
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Figure 6. Defining COVID-19-associated immune responses relative to healthy blood and 1 

airway samples. Blood was obtained from healthy adults and airway samples from lungs of 2 

SARS-CoV-2-negative organ donors; immune cells were stained with the flow cytometry panel 3 

in Figure 1 and analyzed in conjunction with COVID-19 patient samples. (A) Comparison of 4 

major immune cell lineages in healthy (n=6 airway and 5 blood) and COVID-19 airway (n=54) 5 

and blood (n=54) samples. Left: UMAP embedding of samples colored by condition (healthy – 6 

purple; COVID-19 – orange). Middle: Box plots showing the frequency of indicated immune 7 

cells from total CD45
+
CD66B

-
 cells for each site. Each dot is the average of all time points per 8 

patient/donor. Right: Ratio of T: monocyte/macrophage for each site and condition. (B) PCA of 9 

mean marker expression (average of each time point for  COVID-19 samples) for  COVID-19 10 

airway (blue), healthy airway (yellow),  COVID-19 blood (black) and healthy blood (red). (C) T 11 

cell compartmentalization in airways and blood in health and COVID-19. Left: UMAP 12 

embedding of the T cell expression data for  COVID-19 and healthy controls across airway and 13 

blood (upper two panels). Right: Correlation heatmaps calculated using Minkowski distance 14 

(MD) measures (shown in heat maps as 1-MD) with higher values indicating greater similarity 15 

between two samples. HA – healthy airway, HB – healthy blood, CA – COVID-19 airway, CB – 16 

COVID-19 blood. (D) Expression of T cell residency and activation markers in airway and blood 17 

of healthy and COVID-19 samples. Left: Contour plots showing mean expression of indicated 18 

markers within the airway (blue contours) and blood (red contours) by condition (healthy or 19 

COVID-19). Right: Boxplots show frequency of cells expressing indicated markers, for each 20 

sample. (E) Monocyte/macrophage compartmentalization in airways and blood in health and 21 

COVID-19. Left: UMAP embedding of the monocyte/macrophage compartment of COVID-19 22 

and healthy controls across airway and blood (upper two panels). Lower panels indicate 23 
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correlation heatmap as an average by condition and site (lower right panel). Minkowski distance 1 

metric calculated as in D but for myeloid cells. HA – healthy airway, HB – healthy blood, CA –  2 

COVID-19 airway, CB –  COVID-19 blood. (F) Expression of monocyte/macrophage markers in 3 

airway and blood. Left: Contour plots showing indicate mean expression of indicated markers by 4 

monocyte/macrophages in airway (blue contours) and blood (red contours) samples by condition 5 

(healthy or COVID). Right: Boxplots indicate percentage of cells within each condition and site 6 

that were positive for specific markers, given as an average over all time points for COVID-19 7 

samples. Statistical significance was calculated using a one-way ANOVA followed by a Tukey 8 

HSD and indicated by ***, p ≤ 0.001; **, p ≤ 0.01; *, p ≤ 0.05. 9 

Figure 7. Lung pathology in COVID-19 shows extensive accumulation of CD163
+
 cells 10 

associated with cellular recruitment.  (A) Lung sections obtained from non-diseased organ 11 

donors and autopsy specimens from COVID-19 patients with diffuse alveolar damage were 12 

stained with indicated antibodies and analyzed using Vectra. Representative images show T cell 13 

(CD4, CD8), and monocyte/macrophages (CD163) staining in the lungs of uninfected controls 14 

(left) and COVID-19 patients (right). (B) Quantitation of T cell and monocyte/macrophage 15 

content in control (n=2) and COVID-19 (n=5) lungs as a frequency of total lung cells or density 16 

(cells per mm
2
 cellular area) using InForm software. Statistical significance indicated by ***, p ≤ 17 

0.001; **, p ≤ 0.01; *, p ≤ 0.05. (C) Expression of genes associated with proliferation by scRNA-18 

seq in monocyte/macrophages derived from airway and blood as in Figure 4.   19 

  20 
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Supplemental Figure Titles and Legends 1 

Figure S1. Gating strategy for flow cytometry analysis (A) FACS plots denoting the gating 2 

strategy used for analysis of myeloid and lymphocyte populations using the Aurora flow 3 

cytometry from complex populations in airway samples, with complementary gating for blood 4 

cells.  Total cells were initially gated on CD45
+
 cells versus time to eliminate non-hematopoietic 5 

cells and debris; doublets were excluded followed by exclusion of neutrophils (FSC-A
hi

 6 

CD66b
+
). Finally, dead cells were excluded by gating on CD45 and LIVE/DEAD blue. The 7 

resulting populations contained the full complement of mononuclear immune cells used for 8 

downstream analysis.  9 

Figure S2. Expression of lineage defining markers determined by flow cytometry and 10 

scRNA-seq (A) UMAP embedding displaying expression of lineage-defining markers for the 11 

major immune cell subsets in combined airway and blood samples from 13 COVID-19 patients. 12 

(B) Heatmap of scRNA-seq data displaying gene expression of lineage defining markers for both 13 

the airway and blood across the four donors. Heatmap data are colored by log2(CPM+1)/max 14 

values for each sample.  15 

Figure S3. Major immune cell lineages over time in COVID-19 patients. (A) Individual 16 

patient data displaying the proportion of each major immune cell lineage over the time course of 17 

sample collection. D – deceased, S – survived. (B) Classification performance of longitudinal K-18 

means clustering for different combinations of immune cell trajectories. The percentage of donor 19 

outcomes that were successfully classified as deceased or survived is shown when all subsets, 20 

only myeloid and T cells, only myeloid, or only T cells were used for clustering. Colors denote 21 

whether airway, blood, or both airway and blood trajectories were included. (C) Association of 22 
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ILC, B cells, T:myeloid and CD4:CD8 content in airway (left) and blood (right) with outcome 1 

(deceased or survived) and correlation with age. Statistical significance was calculated using 2 

Mann-Whitney U-tests (box-plots) or Pearson correlations (scatter plots) and indicated by ***, p 3 

≤ 0.001; **, p ≤ 0.01; *, p ≤ 0.05. 4 

Figure S4. T cell marker expression in the airways and blood of COVID-19 patients. (A) 5 

UMAP embeddings indicate site of origin for total T cells in the airway and blood of COVID-19 6 

patients (top left) and expression of indicated T cell markers. (B) Boxplots showing mean of 7 

scaled expression of T cell markers on total T cells for each patient averaged across all 8 

timepoints, Statistical significance was calculated using a paired T-test and indicated by ***, p ≤ 9 

0.001; **, p ≤ 0.01; *, p ≤ 0.05. 10 

Figure S5. B cell subsets in airway and blood (A) UMAP embedding of the expression of key 11 

B cell markers in airway and blood samples. (B) Boxplots showing mean of scaled expression of 12 

B cell markers on total B cells for each patient averaged across all timepoints, (C) Heatmap 13 

displaying expression of markers within phenograph-generated clusters for B cell subsets. The 14 

12 phenograph clusters were collapsed into 9 subsets designated on the bottom row. Heatmaps 15 

are colored by row normalized expression values. (D) UMAP embedding of 9 B cell subsets in 16 

the airway and blood. (E) Boxplots showing frequency of each B cell subset among total B cells 17 

for each patient averaged across all timepoints, Statistical significance was calculated using a 18 

paired T-test and indicated by ***, p ≤ 0.001; **, p ≤ 0.01; *, p ≤ 0.05.  19 

Figure S6 related to Figure 4. IFN and IFN-related gene signature in COVID-19 airways. 20 

Heatmap showing log2(CPM+1) expression of IFN and IFN-related genes by the indicated 21 

airway cell types as determined by scRNA-seq for each patient sample, indicated by color.  22 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 19, 2020. ; https://doi.org/10.1101/2020.10.15.20208041doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.15.20208041


 

32 
 

 1 

Figure S7. Airway is the major site for production of inflammatory cytokines and 2 

chemokines in COVID-19 patients. (A) Box plots showing log10(X+1) normalized cytokine 3 

expression profiles in the airway wash (left) and blood plasma (right) samples for an early and 4 

late time point collected from 15 donors. Each dot represents an individual data point. (B) 5 

Pairwise comparison of cytokine levels averaged across both timepoints in airway wash and 6 

blood plasma samples collected from 15 donors. A p-value of < 0.05 was considered significant. 7 

For figures, p-value < 0.05 = *, p-value < 0.01 = ** and p-value < 0.001 = **. 8 

 9 

 10 

  11 
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Methods 1 

LEAD CONTACT AND MATERIALS AVAILABILITY 2 

Further information and requests for reagents should be directed to and will be fulfilled by lead 3 

author Donna L. Farber (df2396@cumc.columbia.edu) 4 

 5 

Materials Availability Statement 6 

This study did not generate new unique reagents. 7 

 8 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 9 

 10 

Human samples  11 

We recruited patients from and CUIMC/NYP and Morgan Stanley Children’s Hospital of NY 12 

with severe COVID-19 and ARDS (n=15) who tested positive for SARS-CoV-2 by polymerase 13 

chain reaction (PCR) from nasopharyngeal swabs (Table S1, S2). Blood and airway sampling 14 

began within 24-36 hours for all patients. ARDS was defined by clinical consensus criteria; 15 

including infiltrates on chest radiograph and a PaO2/FiO2 ratio of less than 300, or pediatric 16 

criteria equivalent (Khemani et al., 2015; Ranieri et al., 2012).  Sequential Organ Failure 17 

Assessment (SOFA) scores were calculated on all hospitalized patients using previously 18 

validated adult and pediatric score tools to provide additional clinical insight into patient disease 19 

severity (Matics and Sanchez-Pinto, 2017; Singer et al., 2016; Vasilevskis et al., 2016). All 20 

patients and samples in this study were enrolled on protocols approved by the Institutional 21 

Review Board at CUIMC. Due to the limitations placed on direct contact with infected patients 22 

and a need to conserve personal protective equipment, verbal informed consent was obtained 23 
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from surrogates of critically ill COVID-19-ARDS patients. Healthy blood was obtained from 5 1 

adult volunteers 31-57 years.  2 

 Control, non-diseased lung tissues were obtained from deceased organ donors as part of 3 

organ acquisition for clinical transplantation through an approved protocol and material transfer 4 

agreement with LiveOnNY as described previously (Carpenter et al., 2018; Dogra et al., 2020). 5 

Donors were free of cancer, chronic diseases, seronegative for hepatitis B, C, and HIV, and 6 

negative for SARS-CoV-2 by PCR (Table S7). Use of organ donor tissues does not qualify as 7 

“human subjects” research, as confirmed by the Columbia University IRB as tissue samples were 8 

obtained from brain-dead (deceased) individuals. 9 

 10 

Processing of blood samples and isolation of PBMCs from COVID-19 patients  11 

Whole blood collected in heparinized vacutainers was centrifuged at 400 x g for 10 min at room 12 

temperature (RT) to isolate plasma, which was then stored at −80 °C for subsequent analysis. 13 

PBMCs were isolated using Ficoll-Paque PLUS (GE) density gradient centrifugation in a 14 

Biosafety Level 2+ facility. To remove neutrophils, blood was incubated with RosetteSep 15 

Granulocyte Depletion Cocktail (Stemcell Technologies), diluted 1:3 in room temperature 16 

DPBS, layered over Ficoll-Paque PLUS in 50mL conical tubes, and centrifuged for 20 min at 17 

1,200 x g. The PBMC layer was isolated according to the manufacturer’s instructions. Cells were 18 

washed twice with DPBS before counting with the automated NucleoCounter NC-3000 cell 19 

counter (ChemoMetec). 20 

 21 

Processing of airway samples and isolation of airway MNCs from COVID-19 patients 22 
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To collect airway supernatants, DPBS was added 1:1 directly to airway samples and centrifuged 1 

at 400 x g for 10 min at RT. The resulting supernatants were stored at −80 °C for subsequent 2 

analysis. To isolate airway MNCs, samples were treated with Benzonase (Millipore Sigma), 3 

purified through 100 µm filters, and centrifuged on a density gradient using Ficoll-Paque PLUS. 4 

The MNC layer was isolated according to the manufacturer’s instructions. Cells were washed 5 

twice with DPBS before counting with the automated NucleoCounter NC-3000 cell counter 6 

(ChemoMetec). 7 

 8 

Cell preparation for scRNA-seq, library generation and sequencing 9 

Airway and blood MNC populations were isolated as above, and the remaining neutrophils and 10 

red blood cells were removed by incubating samples with biotinylated anti-CD66b and anti-11 

CD235ab antibodies, and depleting antibody-bound cells with streptavidin-coated magnetic 12 

beads (Bangs Labs). Dead cells were subsequently removed using the Dead Cell Removal kit 13 

(Miltenyi Biotec). The Next GEM Chromium Controller (10x Genomics) and Chromium Next 14 

GEM Single Cell 3’ Reagent kit v3.1 (10x Genomics) was used for co-encapsulation and 15 

scRNA-seq library construction as per manufacturer’s suggested protocols. Libraries were 16 

sequenced on an Illumina NovaSeq 6000, targeting ~300M raw reads per sample (~60,000 raw 17 

reads per cell). Sample details and number of cells sequenced in each are shown in Table S3. 18 

 19 

Isolation of airway washes from non-diseased lungs 20 

Non-diseased lungs were obtained from deceased organ donors as described above. Airway 21 

washes were obtained by flushing out the major airway with 60 mL saline as described (Snyder 22 
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et al., 2019). Cells were pelleted by centrifugation, resuspended in D-PBS and stained with 1 

antibodies for flow cytometry.   2 

 3 

High Dimensional Flow cytometry 4 

For high parameter analysis using the Cytek Aurora panel, 5X10
6
 cells from each site were 5 

stained in 5 mL U-bottom tubes in the dark using the following antibody panel; Anti-Human 6 

HLA-DR-BUV395, Anti-Human CD16-BUV496, Anti-Human CD163-BUV563, Anti-Human 7 

CD33-BUV615, Anti-Human PD-1-BUV661, Anti-Human CD56-BUV737, Anti-Human CD64-8 

BUV805, Anti-Human CCR7-BV421, Anti-Human CD86-SB436, Anti-Human CD28-eFluor 9 

450, Anti-Human CD8-BV480, Anti-Human CD20-Pacific Orange, Anti-Human CD3-BV510, 10 

Anti-Human CD45RA-BV570, Anti-Human CD25-BV605, Anti-Human CD27-BV650, Anti-11 

Human CD69-BV711, Anti-Human CXCR5-BV750, Anti-Human CD335-BV785, Anti-Human 12 

CD103-BB515, Anti-Human CD66b-FITC, Anti-Human CD14-Spark Blue 550, Anti-Human 13 

CD45-PerCP, Anti-Human CD57-PerCP-Cy5.5, Anti-Human TCR gamma/delta-PerCP-eFluor 14 

710, Anti-Human CD1338-PE, Anti-Human CD4-eFlour 568, Anti-Human CD123-PE-CF594, 15 

Anti-Human CD95-PE-Cy5, Anti-Human CD11c-PE-Cy7, Anti-Human CD19-Spark NIR, Anti-16 

Human CD127-APC-R700, Anti-Human KLRG1-APC/Fire 750, Anti-Human FoxP3-Alexa 17 

Fluor 647. Briefly, cells were washed with DPBS, re-suspended in 1 mL of viability dye and 18 

incubated at RT in the dark for 10 min. Following incubation, cells were washed once with cold 19 

FACS-buffer (DPBS + 2% FBS + 0.1 mM EDTA) and re-suspended in 200 µl FASC-buffer + 10 20 

µl human TrueStain FcX + 10 ul of True-Stain Monocyte Blocker and incubated in dark for 15 21 

minutes. Following incubation, cells were washed once with cold FACS-buffer and stained in a 22 

two-step process. First, the cells were resuspended in a cell-surface marker staining cocktail and 23 
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incubated on ice for 20 min. For intracellular staining, surface stained cells were fixed for 25min 1 

at RT in fixing buffer (Invitrogen cat# 00-5123-43), followed by staining in permeabilization 2 

buffer (Invitrogen cat# 00-8333-56) at RT for 30 min. Cells were washed and data was collected 3 

on 5-lazer Cytek
®
 Aurora machine (Cytek Bio). 4 

 5 

Highly-multiplexed CodePlex chip secretome proteomics 6 

Cryopreserved tracheal washes and plasma were thawed at room temperature for 30-60 minutes 7 

and mixed well by pipetting up and down prior to loading. An aliquot of 5.5 µL of each sample 8 

was pipetted into each macrochambers of a CodePlex chip pre-patterned with a complete copy of 9 

a 23-plex antibody array. 2% BSA/PBS was used as background control. The chip was then 10 

loaded into an IsoLight automation system and various proteins were measured by fluorescence 11 

ELISA and analyzed by the IsoSpeak software using the IsoPlexis Human Adaptive Immune 12 

Panel: GM-CSF, Granzyme B, IFN-γ, IL-10, IL-13, IL-15, IL-17A, IL-2, IL-4, IL-5, IL-6, IL-7, 13 

IL-8, IL-9, IP-10, MCP-1, MIP-1α, MIP-1β, Perforin, sCD137, TGF-β1, TNF-α, TNF-β.  14 

 15 

Multispectral staining and imaging of lung tissue 16 

Representative samples of lung tissue 0.5–1.0 cm in thickness were recovered from organ donors 17 

and autopsy cases of individuals diagnosed with COVID-19 and found on post-mortem exam to 18 

have pathological findings consistent with diffuse alveolar damage (Table S7). Samples were 19 

fixed in 10% formalin (Anatech Ltd.) for 48 hours prior to dehydration and embedding in 20 

paraffin. These Lung samples were sectioned at 5-mm thickness and stained using 7-color 21 

multispectral Opal reagents (Anti-human CD19-Opal 540, Anti-human CD8-Opal 690, Anti-22 

human CD163-Opal 650, Anti-human CD4-Opal 520, Anti-human GzmB-Opal 570, Anti-human 23 
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CD3-Opal 620) (Akoya Biosciences, Cat# NEL811001KT) as previously described (Gartrell et 1 

al., 2018; Weisberg et al., 2019). The multiplex panel included DAPI (BioLegend cat# 422801) 2 

for nuclear counterstaining, CD4 (1:150 dilution), CD8 (1:600 dilution), CD163 (1:200 dilution), 3 

granzyme B (GzmB) (1:200 dilution), CD19 (1:50 dilution), CD3 (1:500 dilution). Single 4 

controls and an unstained slide were stained with each group of slides. After staining, the 5 

sections were mounted in Vectashield Hard Set mounting media (Vector Labs, Cat#H1600) and 6 

stored at 4
0
C for up to 48 hours prior to image acquisition. Multispectral imaging and acquisition 7 

at 20x magnification (numerical aperture 0.75) was performed using the integrated Vectra 8 

3automated quantitative pathology imaging system (PerkinElmer) as previously 9 

described(Weisberg et al., 2019). Images were analyzed using inForm software (PerkinElmer). 10 

Representative areas (10-30) from each donor were chosen for quantitative analysis. 11 

 12 

Data Analysis 13 

Flow cytometry analysis 14 

Flow cytometry data was pre-gated to exclude any doublets, dead cells and CD66b
+
 granulocytes 15 

using FlowJo v 10.7 (Tree Star) (Figure S1). Cleaned data was exported as .fcs files with 16 

compensated parameters and analyzed further and visualized using a Python (v3.7) (Python 17 

Software Foundation. Python Language Reference, version 2.7.) computational pipeline. In brief, 18 

first the data was filtered to remove any noise using quantile gates; events that fell below 0.01% 19 

of marker expression intensity were removed from the sample. Following initial filtering, data 20 

from COVID-19 and healthy samples was merged after subsetting 70,000 events from each 21 

sample. Any sample with fewer than 1000 events was removed from further analysis. The 22 

merged dataset as was transformed using arcsinh function from Python numpy library(van der 23 
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Walt et al., 2011) after manually adjusting the cofactor for each marker. Following 1 

normalization, the dataset was normalized on a 0-1 feature scale for each marker using 2 

MinMaxScaler function from Python scikit-learn library (Pedregosa et al., 2011). The cleaned, 3 

transformed and scaled dataset was used to run the first round of Uniform Manifold 4 

Approximation and Projection (UMAP) (McInnes et al., 2018) dimensionality reduction to 5 

remove any residual granulocyte contamination identified as clusters of CD45
lo

CD66b
+
 cells. 6 

The resulting “no neutrophil dataset” dataset was split into COVID-19 and healthy samples and 7 

used for downstream analysis. 8 

For further analysis we downsampled the “no neutrophil COVID-19 dataset” to include 9 

20,000 events from each of 141 longitudinal samples and was used to run PCA analysis at 10 

sample level using mean expression of markers in each sample, PCA loadings provided in Table 11 

S3.  We ran UMAP dimensionality reduction (k = 60) on this dataset using 14 lineage-defining 12 

markers (CD11c, CD14, CD16, CD19, CD27, CD3, CD4, CD8, CD64, CD56, CD33, CD335, 13 

CXCR5, HLA-DR). The data were projected in 2-dimensions using UMAP embeddings and 14 

clusters of major immune cell types (CD4 and CD8 T cells, B cells, NK/ILC and 15 

Monocytes/Macrophages) were identified based on expression of lineage defining markers 16 

(Figure S2B). The frequency of each lineage was averaged for individual donor-site group across 17 

all time points and used for hierarchical clustering of samples using “ward” method and 18 

“jensenshannon” metric.  19 

For lineage specific analysis, we ran UMAP dimensionality reduction and subsequent 20 

Phenograph clustering (Levine et al., 2015) on each lineage specific dataset using cell subset 21 

defining markers selected based on literature review. Markers used for T cell UMAP are shown 22 

in Figure S4A. B cell markers used are shown in Figure S5A and monocyte/macrophages shown 23 
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in Figure 3A. Major cell subset clusters were identified and functionally similar subsets were 1 

coalesced and manually annotated. Heatmaps were generated for average marker expression in 2 

each cluster. Data are presented as row normalized expression of marker across all clusters. 3 

 For analysis of COVID-19 and healthy samples, paired blood and airway samples across 4 

all timepoints from COVID-19 donors were downsampled to 5,000 events, and each healthy 5 

airway and blood sample was downsampled to 30,000 events and merged to create a reduced “no 6 

neutrophil Healthy + COVID-19 dataset”. UMAP dimensionality reduction and identification of 7 

major cell lineages was done as described above for the COVID-19 dataset. To evaluate 8 

similarity of samples by condition-site i.e. healthy-blood, healthy-airway, COVID-19-blood and 9 

COVID-19-airway we calculated Minkowski distance metric (MD) (Li et al., 2011) for the 10 

samples on scaled marker expression values for individual lineages using Python scipy library 11 

(Jones et al., 2001). Data are presented as 1-MD (Minkowski similarity) on the heatmap; higher 12 

numbers indicate increased similarity and lower numbers indicate reduced similarity between 13 

samples. All graphs were generated using the Python matplotlib and seaborn libraries (Hunter, 14 

2007). 15 

 16 

Classifying donor outcomes using longitudinal K-means clustering 17 

Donors were partitioned into two groups using a longitudinal K-means algorithm applied to the 18 

trajectories of the frequencies of myeloid, B cell, CD4 and CD8 T cell and ILC frequencies in 19 

blood and/or airways. The proximity of two donors’ trajectories was defined using the sum of the 20 

squared Euclidean distances between their subset frequencies at each location at each timepoint, 21 

after normalizing each subset frequency across all donors and timepoints. The clustering 22 

outcome was robust to this definition of distance, giving identical results when performed using 23 
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log- or logit-transformed frequencies.  Classification performance was defined as the percentage 1 

of donors that were assigned to the correct outcome cluster (i.e. deceased or survived). We 2 

compared the abilities of different immune cell subsets to distinguish donor outcome by 3 

repeating the clustering analysis on different combinations of trajectories. Greater classification 4 

performance indicated increased power to identify donor outcomes.  Clustering analyses were 5 

conducted in R version 3.5.3 using the kml3d package, version 2.4.2, and the results were 6 

visualized using the ggplot2 package. 7 

 8 

Processing of scRNA-seq Data 9 

We used kallisto v0.46.2 in “BUS” mode to pseudo-align the raw reads for each sample to a 10 

merged human GRCh38 (Ensembl 93)/SARS-CoV-2 transcriptome (Bray et al., 2016; Kim et al., 11 

2020; Melsted et al., 2019a; Melsted et al., 2019b). To correct for index swapping, which can 12 

occur on the Illumina NovaSeq 6000, we applied the algorithm of Griffiths et al (Griffiths et al., 13 

2018) to the equivalence classes obtained from kallisto pseudo-alignment. We generated a raw 14 

count matrix from the swap-corrected BUS file using bustools v0.40.0(Melsted et al., 2019b), 15 

filtered using the EmptyDrops algorithm (Lun et al., 2019), and removed all cells with 16 

mitochondrial pseudo-alignment rates >20% or counts per gene greater than two standard 17 

deviations above the mean for each sample. 18 

 19 

 scRNA-seq Cell Annotation 20 

We merged the scRNA-seq data from all of the airway samples and identified likely markers of 21 

specific subpopulations using the previously described drop-out score method for finding genes 22 

that are detected in fewer cells than expected given their expression level (Levitin et al., 2019; 23 
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Szabo et al., 2019). Next, we computed a cell-by-cell Spearman’s rank correlation matrix using 1 

these putative marker genes. Using this matrix, we constructed a k-nearest neighbor’s graph 2 

(k=20) as input for Louvain community detection as implemented in Phenograph (Levine et al., 3 

2015). To associate the resulting clusters with major cell populations in the airway, we examined 4 

the statistical enrichment of the following marker genes in each cluster using the binomial test as 5 

described in Shekhar et al (Shekhar et al., 2016): T cells (CD3D, TRAC, TRBC1, TRBC2, TRDC, 6 

TRGC1, TRGC2), NK cells (NCAM1), myeloid cells (CD14, FCGR3A, CD163), 7 

epithelial/club/goblet cells (EPCAM, SCGB1A1, MUC5B, KRT78), ionocytes (CFTR), 8 

neutrophils (CD16B), plasma cells (CD19, JCHAIN), B cells (CD19, MS4A1), platelets 9 

(ITGA2B, PF4), mast cells (KIT), dendritic cells (FCER1A, CD1C) and red blood cells (HBA1, 10 

HBA2, HBB). We identified clusters as likely multiplets based on co-expression of multiple 11 

marker sets (e.g. clusters enriched in both CD14 and CD3D were marked as likely T cell / 12 

myeloid cell multiplets). All of the cells in these clusters were marked as multiplets. 13 

In the main text, we present focused analyses on myeloid cells, T cells, and 14 

epithelial/club/goblet cells from the airway. To further refine our annotation, we re-clustered the 15 

cells annotated as each of these three cell types separately using the methods described above. 16 

We then re-analyzed the enrichment of cell type-specific markers in the resulting new clusters. 17 

As expected, this focused re-analysis of each of these three major populations identified 18 

additional putative multiplet clusters and cells that we likely mis-clustered in the initial merged 19 

analysis. We conducted two rounds of re-clustering for each of these three major cell types to 20 

produce a refined annotation. The top of Figure S2B shows a gene expression heatmap for key 21 

markers genes in the merged airway data set colored by patient and cell type annotation. We 22 

repeated the above procedure for the merged blood scRNA-seq profiles including a focused re-23 
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clustering analysis of the cells that we originally annotated as myeloid and T cells for refinement. 1 

The bottom of Figure S2B shows a gene expression heatmap for key markers genes in the 2 

merged blood data set colored by patient and cell type annotation. 3 

 4 

scRNA-seq Visualization and Differential Expression Analysis 5 

We generated merged UMAP embeddings for the blood and airway T cells (Figure 2E, F) and 6 

the blood and airway myeloid cells (Figure 4). In each case, we first identified genes that were 7 

likely to contaminate either the myeloid or T cell profiles in either the blood or airway to avoid 8 

including them in any of our downstream clustering, visualization, or differential expression 9 

analysis. We conducted pairwise differential expression analysis between all of the cells 10 

annotated as a cell type-of-interest (e.g. myeloid) and each group of cells with a different 11 

annotation for the blood and airway from each patient separately. For each pairwise comparison, 12 

we randomly subsampled the two groups of cells to the same cell number. Next, we randomly 13 

subsampled the molecular counts for cells in the two groups such that they have the same 14 

average number of counts per cell. We then generated a merged count matrix for the two groups 15 

and applied the pooled normalization technique from the scran package of Lun et al using the 16 

computeSumFactors function (Lun et al., 2016). Finally, we conducted a gene-by-gene, non-17 

parametric differential expression analysis using the Mann-Whitney U-test as implemented with 18 

the function mannwhitneyu from the Python package scipy. We corrected the resulting p-values 19 

for false discovery using the Benjamini-Hochberg Procedure with the function multipletests from 20 

the Python package statsmodels. Using the results of pairwise differential expression analysis, 21 

we generated a blacklist of genes for a given cell type by taking any gene with at least 10-fold 22 

enrichment in a different cell type with FDR<0.001 in at least two patients. We removed all 23 
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genes with any enrichment in the cell type-of-interest with FDR<0.001 in any patient to avoid 1 

eliminating patient-specific markers of the cell type-of-interest. The final blacklists for blood and 2 

airway myeloid and T cells appear in Table S8. 3 

For both myeloid and T cells, we took all of the cells in the data set that we had annotated 4 

as each of these two cell types and used the drop-out score method described above to generate a 5 

list of putative, highly variable marker genes for each patient.  Next, we generated a merged 6 

count matrix across all patients for a given cell type, which we normalized using the pooling 7 

method of Lun et al as described above (Lun et al., 2016). We then generated a log-normalized 8 

submatrix (log2(counts per million +1)) containing the union of the marker gene sets identified 9 

for each patient after removing genes on the airway and blood blacklists for the cell type-of-10 

interest. Using the PCA function in the Python package scikit-learn, we decomposed this 11 

submatrix into its principal components. We used the 10 principal components with the largest 12 

eigenvalues as input to the scRNA-seq batch correction algorithm Harmony (Korsunsky et al., 13 

2019). We made the function HarmonyMatrix aware of only the first 10 principal components 14 

and the patient identifiers for each cell. Finally, we computed a two-dimensional embedding 15 

using the Python implementation of the Uniform Manifold Approximation and Projection 16 

(UMAP) algorithm (McInnes and Healy, 2018) and the Pearson correlation matrix of the 17 

Harmony-corrected principal components. These embeddings appear in Figures 2 and 4. 18 

For the differential expression analysis between blood and airway myeloid cells and 19 

between blood and airway T cells, we used the Mann-Whitney U-test approach described above. 20 

We removed genes on the blacklists described above for each cell type prior to subsampling, 21 

normalization, and statistical testing. We also restricted this analysis to protein-coding genes and 22 

removed all T cell receptor and immunoglobulin variable regions. We performed differential 23 
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expression separately on each pair of matched airway and blood samples (there are 12 patient 1 

time points for which we have matched samples). Stringent criteria were used to select the 2 

differentially expressed genes displayed in the heatmaps in Figures 2 and 4. For the myeloid cell 3 

heatmap in Figure 4, a gene had to be differentially expressed with a fold-change of at least 4 in 4 

either direction and FDR<0.001 in at least 9 of the 12 matched sample pairs. For the T cell 5 

heatmap in Figure 2, we applied the first two criteria, but required them in only 6 of the 12 6 

matched sample pairs. Results for all of the pairwise differential expression analyses comparing 7 

airway and blood T and myeloid cells can be found in Table S5 and Table S6, respectively. 8 

 9 

Analysis and visualization of Cytokine data 10 

Cytokine expression data from early and late time points was log10 normalized and visualized as 11 

box plots overlaid with individual data points. The log10 normalized data was averaged across 12 

both the time points and used to generate heatmaps for cytokine expression across individual 13 

donor samples. Non-log transformed cytokine expression data from both time points was 14 

averaged for airway and plasma from each donor and used for paired-site analysis. Graphs were 15 

generated using the Python matplotlib and seaborn libraries (Hunter, 2007). All code for analysis 16 

of data and generation of figures will be hosted on GitHub. 17 

 18 

Lung tissue imaging analysis 19 

Tissue segmentation was performed using inForm software on 10-30 representative fields 20 

(Version 2.3, PerkinElmer). Immune cell constituents within each tissue segment were defined 21 

by the DAPI nuclear counterstain to define the nucleus of each cell, with each associated 22 

membrane detected via presence of a specific stain (CD3, CD19, CD4, GzmB and/or CD163). 23 
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Cell segmentation was adjusted as previously described to accurately locate all cells and 1 

minimize nuclear hypersegmentation and hyposegmentation (Weisberg et al., 2019). Cells were 2 

then phenotyped by training the phenotyping algorithm of inForm software, identifying: 3 

macrophage (CD163+ magenta cells), T cells (CD4
+
 cyan cells and CD8

+
 orange cells), B cells 4 

(CD19
+
 yellow cells). The cell segmentation data summary provided densities and numbers of 5 

each cell type in the lung tissue segments and the full cell segmentation data file provided the X 6 

and Y coordinates of each phenotyped cell. 7 

 8 

Statistical Analysis 9 

Differences in mean between two sample groups were compared using Mann-Whitney U test, 10 

multiple group comparisons were done using ANOVA followed by Tukey's HSD post-test and 11 

paired t-test for any paired data custom scripts based on Python sciPy library (Jones et al., 2001). 12 

P-values below 0.05 were considered as statistically significant. For all figures *** = p-value < 13 

0.001, ** = p-value < 0.01, and * = p-value < 0.05. 14 

 15 

DATA AND CODE AVAILABILITY 16 

The scRNA-seq data for each sample including count matrices, normalized counts, metadata, cell 17 

annotations, and UMAP embeddings are available on the COVID-19 Cell Atlas along with 18 

interactive visualizations (https://www.covid19cellatlas.org/index.patient.html). The scRNA-seq 19 

data analysis code is available at www.github.com/simslab/cluster_diffex2018. 20 

 21 

 22 

 23 

  24 
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Supplementary Tables 1 

Table S1. Clinical information for COVID-19 patients in this study. 2 

Table S2. Assays performed on the samples from individual COVID-19 patients.  3 

Table S3. Summary of sample details for scRNA-seq analysis.  4 

Table S4. PCA loadings of markers for PC1 and PC2. 5 

Table S5. Differential gene expression by T cells in airway versus blood for each sample by 6 

scRNA-seq.  7 

Table S6. Differential gene expression by myeloid cells in airway versus blood for each sample 8 

by scRNA-seq.  9 

Table S7. Deceased donors for control airway and COVID-19 lung autopsy samples 10 

Table S8. Blacklisted genes for a given cell type for the scRNAseq analysis. 11 

  12 
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