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 2 

Abstract 21 

 22 

Background: The pandemic of coronavirus disease 2019 (COVID-19), caused by 23 

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has rapidly emerged 24 

to seriously threaten public health. We aimed to investigate whether white blood cell 25 

traits have potential causal effects on severe COVID-19 using Mendelian randomization 26 

(MR). 27 

 28 

Methods: To evaluate the causal associations between various white blood cell traits 29 

and severe COVID-19, we conducted a two-sample MR analysis with summary 30 

statistics from recent large genome-wide association studies. 31 

 32 

Results: Our MR results indicated potential causal associations of white blood cell 33 

count, myeloid white blood cell count, and granulocyte count with severe COVID-19, 34 

with odds ratios (OR) of 0.84 (95% CI: 0.72-0.98), 0.81 (95% CI: 0.70-0.94), and 0.84 35 

(95% CI: 0.71-0.99), respectively. Increasing eosinophil percentage of white blood 36 

cells was associated with a higher risk of severe COVID-19 (OR: 1.22, 95% CI: 1.03-37 

1.45). 38 

 39 

Conclusions: Our results suggest the potential causal effects of lower white blood cell 40 

count, lower myeloid white blood cell count, lower granulocyte count, and higher 41 

eosinophil percentage of white blood cells on an increased risk of severe COVID-19. 42 

 43 
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 45 

Background 46 

Coronavirus disease 2019 (COVID-19) is caused by infection of a novel virus called 47 

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS�CoV�2) [1]. SARS�CoV�2 48 

has rapidly spread, causing damage or even death [2-4]. Besides age and gender, 49 

some pre-existing conditions are also well-known to be associated with an increased 50 

risk of severe COVID-19, such as cardiovascular disease, diabetes, chronic respiratory 51 

disease, hypertension, and cancers [4-7]. Recently, genetic studies, including two 52 

genome-wide association studies (GWAS), have identified multiple genetic loci to be 53 

associated with the susceptibility and severity of COVID-19 [8-10]. However, causal risk 54 

factors for severe COVID-19 remain unclear. Identifying host factors predisposing 55 

individuals to severe COVID-19 is urgently needed to improve primary prevention and to 56 

develop treatment strategies. 57 

 58 

Elevated white blood cell and neutrophil counts, and depleted lymphocyte count have 59 

been repeatedly observed in COVID-19 patients with severe outcomes, and neutrophil-60 

to-lymphocyte ratio have been proposed as a prognostic biomarker [1, 11-14]. However, 61 

findings from recent observational studies are inconsistent and the exact roles of white 62 

blood cells and its various subtypes in severe COVID-19 remain elusive [15-17]. Most 63 

existing studies measured blood cell counts in patients with confirmed infection of 64 

SARS-CoV-2 and as a result, the hematological indices could have been modified by 65 

immune responses [18]. It is unknown if blood cell counts before infection are 66 
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associated with the risk of developing severe COVID-19. Even if white blood cells are 67 

measured before infection, they are influenced by many exogenous and endogenous 68 

factors (e.g., age, gender, disease status, and medications), which will confound the 69 

observational associations [19, 20]. No previous research has been able to interrogate 70 

the causal role of white blood cells in severe COVID-19. 71 

 72 

While traditional observational associations often suffer from confounding, reverse 73 

causality, and various biases, a complementary approach, Mendelian randomization 74 

(MR), utilizes genetic variants as instrumental variables to approximate the lifetime 75 

status of exposure and enable causal inference in observational data. The random 76 

allocation of the allele at conception and the natural directional effects of genetic 77 

variants empower MR estimates to be less plagued by confounding and reverse 78 

causality [21, 22]. In this study, we aimed to test the causal effects of 19 white blood cell 79 

traits on severe COVID-19 by performing a two-sample MR analysis.  80 
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Methods 81 

Study design and data source 82 

A two-sample MR study was conducted to examine the causal effects of 19 white blood 83 

cell traits on severe COVID-19. These blood cell traits were chosen based on a GWAS 84 

meta-analysis in 173,480 European ancestry individuals across three cohorts, and their 85 

summary statistics were available in the IEU OpenGWAS database [23, 24]. Genetic 86 

instruments for each white blood cell trait were chosen based on the following criteria: 1) 87 

p < 8.31×10-9 for association with the exposure; and 2) linkage disequilibrium (LD) 88 

clumping based on r2 > 0.001. The data source and details for 19 white blood cell traits 89 

are available in Supplementary Table 1. The instrument-outcome effects were retrieved 90 

from the largest GWAS meta-analysis of COVID-19 to date, by the COVID-19 Host 91 

Genetics Initiative (HGI, release 3, accessed on July 2, 2020) [10]. We used the 92 

summary statistics based on the comparison of hospitalized COVID-19 patients (N = 93 

3,199) with the general population (N = 897,488). 94 

 95 

Statistical analysis 96 

The causal effect of a white blood cell trait on severe COVID-19 was evaluated using 97 

the inverse variance-weighted (IVW) method with a multiplicative random-effects model 98 

[22, 25, 26]. Horizontal pleiotropy occurs when SNPs exert a direct effect on the severe 99 

COVD-19 through pathways other than the hypothesized exposure. To evaluate the 100 

possible presence of horizontal pleiotropy, we calculated Cochran’s Q statistic for 101 

heterogeneity and conducted the intercept test associated with the MR-Egger method. 102 

Additional sensitivity analyses were performed with  MR-Egger [22, 26],  weighted 103 
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median (WM) [27], and Mendelian randomization pleiotropy residual sum and outlier 104 

(MR-PRESSO) test [28]. The MR-Egger estimates allowed directional or unbalanced 105 

horizontal pleiotropic effects. The weighted median method provides robust causal 106 

estimates even when up to 50 % SNPs are invalid genetic instruments [27]. The MR-107 

PRESSO test was utilized to correct for the presence of specific horizontal pleiotropic 108 

outlier variants via detected outlier removal [28]. All MR analyses were conducted in R 109 

with the TwoSampleMR package [23]. 110 

 111 

Resources  112 

The COVID-19 Host Genetics Initiative: https://www.covid19hg.org/ 113 

The IEU OpenGWAS database: https://gwas.mrcieu.ac.uk/  114 
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Results 115 

The counts of white blood cell, myeloid white blood cell, and granulocyte are 116 

negatively associated with severe COVID-19 117 

By applying a two-sample MR approach, we first investigated the causal associations of 118 

the counts of white blood cell and its subpopulations with severe COVID-19. A relatively 119 

large number of independent SNPs, ranging from 79 for basophil count to 185 for 120 

monocyte count, were selected as genetic instruments for each blood cell count 121 

(Supplementary Tables 2-11). Based on the IVW MR estimates under a multiplicative 122 

random-effects model, we identified potentially causal, negative associations of white 123 

blood cell count (OR = 0.84, CI: 0.72-0.98, p = 0.031), basophil count (OR = 0.75, CI: 124 

0.58-0.96, p = 0.023), myeloid white blood cell count (OR = 0.81, CI: 0.70-0.94, p = 125 

0.0070), and granulocyte count (OR = 0.84, CI: 0.71-0.99, p = 0.040) with severe 126 

COVID-19 (Fig. 1, Table 1). A suggestive negative association was also found for sum 127 

neutrophil eosinophil counts (OR = 0.85, CI: 0.73-1.00, p = 0.051). No evidence of 128 

heterogeneity in causal estimates was found by the Cochran Q statistic, and no 129 

evidence of horizontal pleiotropy was reported by the MR-Egger intercept test, except 130 

for basophil count (p = 0.036). Causal estimates from MR-Egger and WM MR revealed 131 

broadly concordant effect directions, although they are mostly not statistically significant, 132 

probably due to the reduced power of these two approaches [26] (Supplementary Fig. 1, 133 

Supplementary Table 21). MR-PRESSO analysis did not identify any outlier SNPs and 134 

yielded significant causal estimates for white blood cell count (p = 0.033), myeloid white 135 

blood cell count (p = 0.0078), and granulocyte count (p = 0.041) (Supplementary Table 136 

21). Taken together, we demonstrated that white blood cell count, myeloid white blood 137 
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cell count, and granulocyte count had consistent, negative effects on the risk of severe 138 

COVID-19. 139 

 140 

The percentage of eosinophil in white blood cell is positively associated with 141 

severe COVID-19 142 

We further investigated the causal associations of the percentages of specific white 143 

blood cells with severe COVID-19. As genetic instruments, we used 158 SNPs for 144 

eosinophil percentage, 63 SNPs for basophil percentage, 135 SNPs for the neutrophil 145 

percentage, 191 SNPs for monocyte percentage, and 135 SNPs for lymphocyte 146 

percentage (Supplementary Tables 12-16). 147 

 148 

Genetically predicted higher eosinophil percentage of white blood cells (OR = 1.22, CI: 149 

1.03-1.45, p = 0.023) was associated with increased risk of severe COVID-19 using 150 

IVW with the random-effect model (Figure 1). The WM MR method and the MR-151 

PRESSO analysis both revealed a consistent, positive effect (OR = 1.41, CI: 1.07-1.87, 152 

p = 0.015; and OR = 1.22, CI: 1.03-1.45, p = 0.024; respectively. Supplementary Table 153 

21). No pleiotropy or outlier SNPs were identified in the MR-Egger test and MR-154 

PRESSO analysis. Cochran Q statistics indicated no heterogeneity among the genetic 155 

instruments (Supplementary Table 21). 156 

 157 

The percentage of eosinophil in granulocyte is positively associated with severe 158 

COVID-19 159 
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We further focused on the granulocyte and evaluated if it specific compositions are 160 

associated with severe COVID-19. As genetic instruments, there were 168 SNPs for 161 

granulocyte percentage of myeloid white blood cells, 150 SNPs for eosinophil 162 

percentage of granulocytes, 59 SNPs for basophil percentage of granulocytes, and 141 163 

SNPs for the neutrophil percentage of granulocytes (Supplementary Tables 17-20). Our 164 

results found suggestive evidence for a risk-increasing effect of eosinophil percentage 165 

of granulocytes on severe COVID-19 (OR = 1.18, CI: 1.00-1.39, p = 0.053). The WM 166 

MR method and the MR-PRESSO analysis both revealed a consistent positive effect 167 

(OR = 1.35, CI: 1.03-1.75, p = 0.029; and OR = 1.18, CI: 1.00-1.39, p = 0.055; 168 

respectively). No evidence of heterogeneity and pleiotropy was found. No statistically 169 

significant causal associations were identified for other specific granulocyte percentages 170 

(Figure 1 and Supplementary Table 21).  171 
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Discussion 172 

To our knowledge, this is the first MR study evaluating the causal roles of white blood 173 

cell traits in severe COVID-19 risk. Overall, our results suggest potential causal 174 

protective effects of increasing white blood cell count, myeloid white blood cell count, 175 

and granulocyte count on severe COVID-19. Our novel findings also include that 176 

genetically predicted higher eosinophil percentage in white blood cells or in 177 

granulocytes was associated with a higher risk of severe COVID-19. 178 

 179 

Previous observational studies have frequently pointed out increased white blood cell 180 

count in the severe COVID-19 patients, when compared to healthy controls or mild 181 

COVID-19 patients [1, 11, 12, 29]. However, there are also reports that normal or 182 

decreased white blood cell count is more common in COVID-19 patients when 183 

compared to the reference range or healty controls [10, 15-17, 30-32]. Our MR analysis 184 

showed that lower white blood cell count, myeloid white blood cell count, and 185 

granulocyte count may play a causal role in increasing the risk of severe COVID-19. 186 

The mechanism by which they contribute to severe COVID-19 remains unclear. Immune 187 

system disorders have been suspected of playing roles in severe COVID-19 risk [33, 188 

34]. The complete elucidation of the potential mechanism warrants further investigation. 189 

 190 

Persistent eosinopenia after admission was associated with COVID-19 risk in previous 191 

retrospective and prospective observational studies [12, 15, 31, 32, 35-37]. There are 192 

also reports that eosinophil remains stable in severe COVID-19 patients [13, 29, 38, 39]. 193 

A multiparametric flow cytometry analysis found that high eosinophil count was 194 
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associated with an increased risk of severe COVID-19 [13]. Another observational study 195 

suggested that increasing eosinophil count might be an indicator of COVID-19 196 

improvement [40]. Our MR analysis supported that high eosinophil percentage of white 197 

blood cells may be  causal in increasing the risk of severe COVID-19 [40, 41], calling for 198 

future mechanistic studies. 199 

 200 

Lymphopenia, as a response to viral infection, has been frequently associated with 201 

severe COVID-19 risk [1, 2, 13, 29, 41-51]. However, we did not detect a causal effect 202 

of lymphocyte count on severe COVID-19. This discrepancy may reflect reverse 203 

causality in retrospective and prospective observational studies, with depleted 204 

lymphocyte count as a result of immune response to SARS�CoV�2 infection [52]. Due 205 

to the limited number of SNPs associated with severe COVID-19, performing reverse 206 

MR analyses between severe COVID-19 and white blood cell traits is challenging. Using 207 

linkage disequilibrium (LD) assessment, only one SNP at locus 3p21.31 was retained in 208 

the previously published genome-wide significant SNPs [10]. We recently showed that 209 

SNPs at this locus are associated with multiple blood cell traits, suggesting they may 210 

have pleiotropic effects and are not suitable to be used as genetic instruments [53]. As 211 

more COVID-19-associated SNPs are identified in the future, reverse MR analysis will 212 

be valuable to understand the effect of COVID-19 on blood cell traits. 213 

 214 

One assumption of MR is that the instrumental variable influences severe COVID-19 215 

risk only through its effect on a specific white blood cell trait. The Cochran Q statistic did 216 

not reveal heterogeneity among our genetic instruments, and the MR-Egger intercept 217 
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test also indicated no presence of pleiotropic effects except those for basophil count. 218 

Our MR study was performed with strong instrumental variables and adequate statistical 219 

power, and we have conducted extensive sensitivity analyses. Still, we emphasize that 220 

our results should be interpreted with caution and future studies are needed to elucidate 221 

the  mechanistic roles of white blood cell traits in severe COVID-19.  222 
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Conclusions 223 

Our results suggest that lower white blood cell count, lower myeloid white blood cell 224 

count, lower granulocyte count, and higher eosinophil percentage of white blood cells 225 

are causally associated with an increased risk of severe COVID-19.  226 
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List of abbreviations 227 

COVID-19: coronavirus disease 2019 228 

SARS-CoV-2: severe acute respiratory syndrome coronavirus 2 229 

MR: Mendelian randomization 230 

GWAS: genome-wide association studies 231 

SNPs: single nucleotide polymorphisms 232 

LD: linkage disequilibrium 233 

HGI: Host Genetics Initiative 234 

IEU: Integrative Epidemiology Unit 235 

IVW: inverse variance-weighted 236 

WM: weighted median 237 

MR-PRESSO: Mendelian randomization pleiotropy residual sum and outlier 238 
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Tables 437 

Table 1. Causal associations between white blood cell traits and severe COVID-19 438 

based on random-effects IVW MR estimation. 439 

 440 

Figure legends 441 

Figure 1. Odds ratios for associations between genetically predicted risk factors and 442 

severe COVID-19. Analyses were done with the inverse variance-weighted (IVW) 443 

method with a multiplicative random-effects model. Effect estimates express the change 444 

in odds ratio (OR) per standard deviation (SD) increment in white blood cell traits, error 445 

bars indicate 95% confidence intervals. WBC#: White blood cell count; EO#: Eosinophil 446 

count; BASO#: Basophil count; NEUT#: Neutrophil count; MONO#: Monocyte count; 447 

LYMPH#: Lymphocyte count; MYELOID#: Myeloid white blood cell count; GRAN#: 448 

Granulocyte count; (NEUT+EO)#: Sum neutrophil eosinophil counts; (BASO+NEUT)#: 449 

Sum basophil neutrophil counts; EO%: Eosinophil percentage of white blood cells; 450 

BASO%: Basophil percentage of white blood cells; NEUT%: Neutrophil percentage of 451 

white blood cells; MONO%: Monocyte percentage of white blood cells; LYMPH%: 452 

Lymphocyte percentage of white blood cells; GRAN%MYELOID: Granulocyte 453 

percentage of myeloid white blood cells; EO%GRAN: Eosinophil percentage of 454 

granulocytes; BASO%GRAN: Basophil percentage of granulocytes; NEUT%GRAN: 455 

Neutrophil percentage of granulocytes.  456 
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Supplementary Table 12. 158 SNPs used IVs in MR analyses testing effect of 480 

eosinophil percentage of white blood cells on severe COVID-19 risk. 481 

Supplementary Table 13. 63 SNPs used IVs in MR analyses testing effect of basophil 482 

percentage of white blood cells on severe COVID-19 risk. 483 

Supplementary Table 14. 135 SNPs used IVs in MR analyses testing effect of neutrophil 484 

percentage of white blood cells on severe COVID-19 risk. 485 

Supplementary Table 15. 191 SNPs used IVs in MR analyses testing effect of monocyte 486 
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Supplementary Table 16. 135 SNPs used IVs in MR analyses testing effect of 488 

lymphocyte percentage of white blood cells on severe COVID-19 risk. 489 
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Supplementary Table 19. 59 SNPs used IVs in MR analyses testing effect of basophil 494 
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Supplementary Table 20. 141 SNPs used IVs in MR analyses testing effect of neutrophil 496 

percentage of granulocytes on severe COVID-19 risk. 497 

Supplementary Table 21. MR estimates from each method of assessing the causal 498 

effects of white blood cells on severe COVID-19 risk. 499 

Supplementary Figure 1. Scatter plots of the genetic associations of white blood cell 500 

count (A), or myeloid white blood cell count (B), or granulocyte count (C), or basophil 501 

count (D) or eosinophil percentage in white blood cells (E) associated SNPs against the 502 
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genetic associations of severe COVID-19. The slopes of each line represent the causal 503 

association using different MR methods. The light blue line represents the random-504 

effects inverse variance-weighted estimate, the dark blue line represents the MR-Egger 505 

estimate, and the green line represents the weighted median estimate. 506 
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Tables 

Table 1. Causal associations between white blood cell traits and severe COVID-19 based on random-effects IVW MR 

estimation. 

Exposure Number 

of SNPs 

Odds ratio 95% CI P-value Heterogenity 

P-value 

MR-Egger intercept 

test P-value 

WBC# 167 0.84 0.72, 0.98 0.031 0.847 0.406 

EO# 169 1.15 0.98, 1.36 0.086 0.188 0.485 

BASO# 79 0.75 0.58, 0.96 0.023 0.570 0.037 

NEUT# 140 0.87 0.74, 1.04 0.119 0.804 0.631 

MONO# 185 0.93 0.83, 1.06 0.285 0.592 0.714 

LYMPH# 160 0.94 0.79, 1.12 0.486 0.145 0.875 

MYELOID# 146 0.81 0.70, 0.94 0.0070 0.974 0.901 

GRAN# 144 0.84 0.71, 0.99 0.040 0.868 0.378 

(NEUT+EO)# 139 0.85 0.73, 1.00 0.051 0.941 0.470 

(BASO+NEUT)# 142 0.87 0.74, 1.03 0.098 0.873 0.408 

EO% 158 1.22 1.03, 1.45 0.023 0.209 0.808 

BASO% 63 0.82 0.64, 1.05 0.122 0.821 0.063 
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NEUT% 135 1.15 0.94, 1.40 0.169 0.550 0.105 

MONO% 191 0.95 0.84, 1.08 0.457 0.656 0.388 

LYMPH% 135 1.06 0.87, 1.30 0.548 0.380 0.859 

GRAN%MYELOID 168 1.07 0.94, 1.22 0.325 0.894 0.746 

EO%GRAN 150 1.18 1.00, 1.39 0.053 0.647 0.866 

BASO%GRAN 59 0.84 0.65, 1.09 0.182 0.768 0.117 

NEUT%GRAN 141 0.85 0.71, 1.02 0.083 0.327 0.861 

WBC#: White blood cell count; EO#: Eosinophil count; BASO#: Basophil count; NEUT#: Neutrophil count; MONO#: 

Monocyte count; LYMPH#: Lymphocyte count; MYELOID#: Myeloid white blood cell count; GRAN#: Granulocyte count; 

(NEUT+EO)#: Sum neutrophil eosinophil counts; (BASO+NEUT)#: Sum basophil neutrophil counts; EO%: Eosinophil 

percentage of white blood cells; BASO%: Basophil percentage of white blood cells; NEUT%: Neutrophil percentage of 

white blood cells; MONO%: Monocyte percentage of white blood cells; LYMPH%: Lymphocyte percentage of white blood 

cells; GRAN%MYELOID: Granulocyte percentage of myeloid white blood cells; EO%GRAN: Eosinophil percentage of 

granulocytes; BASO%GRAN: Basophil percentage of granulocytes; NEUT%GRAN: Neutrophil percentage of 

granulocytes. 
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