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ABSTRACT 

While the current pandemic remains a thread to human health, the polyclonal nature of the antibody 
response against SARS-CoV-2 is not fully understood. Other than SARS-CoV-2, humans are susceptible to 
six different coronaviruses, and previous exposure to antigenically related and divergent seasonal 
coronaviruses is frequent.  We longitudinally profiled the early humoral immune response against SARS-
CoV-2 on hospitalized COVID-19 patients, and quantify levels of pre-existing immunity to OC43, HKU1 
and 223E seasonal coronaviruses. A strong back-boosting effect to conserved, but not variable regions of 
OC43 and HKU1 betacoronaviruses spike protein was observed. All patients developed antibodies 
against SARS-CoV-2 spike and nucleoprotein, with peak induction at day 7 post hospitalization. However 
a negative correlation was found between antibody memory boost to human coronaviruses and 
induction of IgG and IgM against SARS-CoV-2 spike. Our findings provide evidence of immunological 
imprinting that determine the antibody profile to COVID-19 patients in an original antigenic sin fashion. 
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Since January 20202, the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus has been 
spreading globally causing the first documented pandemic of coronavirus in history (1, 2). SARS-CoV-2 is 
a betacoronavirus that belongs to a large family of viruses capable to infect both mammals and birds. 
Humans are susceptible to six other six viruses from the genus alpha- and beta- coronavirus (3). All of 
them typically cause respiratory illness but to a different extent. While Severe Acute Respiratory 
Syndrome Coronavirus 1 (SARS-CoV-1) and Middle East Respiratory Syndrome Coronavirus (MERS-CoV), 
are highly pathogenic betacoronaviruses that caused zoonotic outbreaks in humans in the last 20 years 
(4, 5), the alphacoronaviruses 223E and NL63, and the betacoronaviruses OC43 and HKU1, frequently 
cause mild upper respiratory disease and have been circulating in humans for at least 100 years (3, 6). 
The ongoing pandemic of COVID-19, the disease caused by SARS-CoV-2, is still challenging healthcare 
systems and the research community. SARS-CoV-2 can cause a different range of clinical manifestations, 
from asymptomatic to severe respiratory syndrome. However a high percentage of severe cases have 
also been reported and estimated numbers of patients that succumbed to COVID-19 disease are more 
than a million according to WHO as October 2020 (2, 7) (https://covid19.who.int/). While no vaccine is 
available yet, at least three candidates are already on phase 3 clinical trials in the US (8-10).  Previous 
studies have shown that a main target of antibody responses to coronaviruses is the spike, the surface 
glycoprotein that mediates attachment to the host receptor, ACE2, and membrane fusion (11, 12).  
Moreover, antibodies directed against the receptor binding domain (RBD) of the spike, are known to 
neutralize the virus (13, 14).  RBD antibodies are highly specific and in general do not cross-react among 
the seasonal human coronavirus (15-18). In addition, the more cross-reactive viral nucleoprotein (NP) 
has also shown to be immunogenic and induce antibodies in COVID-19 patients (11, 18, 19). However, in 
contrast to RBD antibodies, NP antibodies are not able to neutralize the virus in tissue culture. 

While some cell-mediated and serum cross-reactivity between epitopes from SARS-CoV-2 and seasonal 
human coronaviruses has been demonstrated (18, 20, 21), whether previous exposure to other human 
coronaviruses can influence the immunological outcome while encounter a novel but closely related 
antigen is not clear. This phenomenon termed immune imprinting or original antigenic sin, refers to the 
preference of the immune system to recall existing memory responses, rather than stimulating de novo 
responses (22). This has been well studied for viruses like influenza (23, 24), and is a fundamental piece 
to inform vaccine development (25, 26). In here, we profiled the antibody responses of a longitudinal 
cohort of hospitalized patients with COVID-19 disease. We characterized antibody responses against 
both SARS-CoV-2 and selected seasonal coronavirus proteins being targeted by the humoral immune 
system and explore the role of immunological imprinting on COVID-19 patients’ immune response.  

RESULTS 

THE BACO COHORT 

Thirty-seven COVID-19 patients were recruited at the University Hospital of Bellvitge during the first 
wave of SARS-CoV2 in Barcelona (Spain) from March 26th to May 28th, 2020. Mean age was 65 years and 
67% were male. Chronic comorbidities were frequent among COVID-19 patients (25, 67.7%). In 
particular, In particular, 16 (43.2%) of patients were obese (body mass index, BMI>30) at time of 
hospitalization. A high percentage of patients had respiratory symptoms such as coughing (26, 70.3%) 
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and dyspnea (14, 37.8%), whereas diarrhea was also present in 7 (18.9%) of thevpatients. While no 
remdesivir was available, lopinavir/ritonavir was used for 17 (45.9%) patients. All patients, except one 
(36, 97.3%), developed SARS-CoV-2 viral pneumonia and 4 (10.8%) required intensive care unit (ICU) 
admission. Five (13.5%) patients died. Demographics, clinical characteristics, interventions such as drug 
therapy and outcomes are detailed in Table 1.  

Acute blood samples were collected longitudinally in the BACO cohort at the recruitment upon hospital 
admission, and at day 3 and 7 in 33 (89.1%) and 22 (59.4%) patients, respectively. Whereas more than 
half of the patients (25, 67.5%) were recruited within the first week of symptom onset, 12 (32.4%) 
patients had longer periods until hospitalization. COVID-19 survivors were followed up in the 
convalescence period and 28 out of 32 survivors (87.5%) had a another blood draw after hospital 
discharge with a mean time of 46 days post-recruitment (range, 30-56 days).  

COVID-19 PATIENTS DEVELOPED ANTI SARS-CoV-2 ANTIBODIES LINKED TO BACK-BOOSTING OF 
ANTIBODIES AGAINST S2 DOMAIN OF BETA CORONAVIRUSES 

To profile the early antibody response on COVID-19 patients we investigated levels of neutralizing 
antibodies against authentic SARS-CoV-2 virus and IgG/IgM enzyme-linked immunosorbent assays 
(ELISAs) against multiple antigens including the full length spike (S), the spike receptor binding domain 
(RBD S) and the nucleoprotein (NP) of SARS-CoV-2 (Fig. 1A). All patients developed detectable levels of 
neutralizing antibodies at day 7 post-recruitment while levels remained stable during the convalescence 
phase, except for two survivors. Similar responses were found by ELISA assays, although higher levels of 
antibodies against IgG S compared to IgG RBD were present. While comparing to the induction of anti- 
IgM, IgG isotype reached higher titers than IgM anti- spike; whereas anti-NP protein IgG overlapped with 
the induction of the anti-S IgG. Although the S gene of SARS-CoV-2 is highly divergent to other human 
coronaviruses (from now hCoV) (6), infection of hCoV among humans is frequent (3, 27), causing mild 
respiratory disease. Given the high probability of previous exposure to seasonal coronaviruses, we 
screened levels of antibodies against selected human alpha- (223E) and beta- coronaviruses (HKU1, 
OC43). Antigens tested included full length S protein for all three hCoVs together with the HKU1 RBD S 
(Fig. 1B). COVID-19 patients exhibited an outstanding back-boosting of antibodies to the beta-hCoV 
spikes, with similar increase that the one observed for SARS-CoV-2 spike and neutralizing titers. 
Although IgG levels against 223E were already high at baseline, no increase was detected at any time 
point during the follow up on patients with COVID-19. Interesting, no back-boosting was found when we 
tested antibody titers against the more divergent S1 domain of HKU1, pointing to an increase of immune 
responses towards conserved epitopes of the S2 domain of the spike protein of beta- hCoV. Similar as 
influenza viruses, HKU1 and OC43 use sialic acids as canonical receptor to infect human cells (28). This is 
mediated by an additional surface protein in these viruses with hemagglutination activity (HE protein) 
No increase in OC43 hemagglutination inhibitory antibodies was found in COVID-19 patients, consistent 
with the lack of HE in SARS-CoV-2. We next tested the correlation between neutralization activity and 
levels of anti- SARS-CoV-2 antibodies. Scatterplot matrices shown in Fig. 2A indicates that the antibodies 
detected against SARS-CoV-2 antigens correlated well with neutralizing activity, with Pearson R2 ranging 
from 69% to 81%, in the particular case of IgG against the RBD S of SARS-CoV-2.  
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IMMUNOLOGICAL IMPRINTING RESULTS IN A BIAS IN THE INDUCTION OF ANTIBODIES TO CONSERVED 
VERSUS VARIABLE REGIONS OF THE SARS-COV-2 SPIKE 

Given the strong back-boosting observed for the conserved epitopes of the S domains of human 
betacoronaviruses in patients with COVID-19, we next investigated whether a strong back-boosting 
might reduce the induction of de novo humoral immune responses against specific epitopes of the spike 
of SARS-CoV-2. To test this hypothesis we defined de novo antibody responses and determined the 
average fold-induction at day 3, 7 and convalescence (in the survivors group) over baseline levels at the 
recruitment in the study. Overall, all patients had high induction of SARS-CoV-2 S and RBD antibodies at 
day 7 post recruitment. IgG titers against the S and RBD of SARS-CoV-2 remained stable at the 
convalescence time point with similar levels compared to day 7. By contrast, IgM against the S, IgG 
against NP and neutralizing titers against the authentic SARS-CoV-2 virus decreased to levels resembling 
those at day 3 (Fig. 3A). Median fold-induction and pairwise comparisons including adjusted p values 
between each time points and their association over time are shown in Fig.3A. Comparable results were 
found for induction of antibodies against the spike of seasonal betacoronaviruses (Supplemental Fig. 1).  

We next examined the relationship between pre-exposure to HKU1 and OC43 viruses and induction of 
SARS-CoV-2 S and RBD antibodies in our cohort. Pearson correlation matrices were used to test whether 
pre-existing immunity against cross-reactive betacoronaviruses can influence subsequent immune 
response to SARS-CoV2 S and NP antigens. We leveraged on the IgG levels at baseline against seasonal 
human coronaviruses and split the analysis by virus subtype (Fig. 4). Striking differences were found 
according to viruses lineages. While pre-existing IgG levels against HKU1 and OC43 spike protein 
negatively impacted the induction of de novo IgG and IgM against SARS-CoV-2 antigens (Fig. 4A-B), no 
influence was found when tested the relationship between pre-existing anti- 223E IgG levels (Fig. 4D). 
Moreover, correlations became stronger over time, and while this correlation was lower at day 3, a 
stronger correlation was found at day 7, and convalescence time points in the survivor patients. Besides, 
comparable performance was observed when testing the subsequent induction of the IgG antibodies 
against the variable RBD domain of SARS-CoV-2 spike suggesting that pre-existing immunity against 
seasonal beta coronavirus bias the humoral response towards beta-coronaviruses cross-reactive 
antibodies in detriment of antibodies against the more divergent antigenically unique domains of the S 
of SARS-CoV-2, such as those of the RBD domain (Fig. 4A-B). This was also evidence by the lack of impact 
of pre-existing IgG levels of HKU1 S1, which RBD is antigenically different from to the RBD of SARS-CoV-
2, on specific SARS-CoV-2 antibodies induction (Fig. 4C). Thus, only the levels of antibodies against cross-
reactive epitopes of human betacoronaviruses had an effect on the subsequent antibody response to 
SARS-CoV2 unique spike antigens. Because neutralization activity has been linked to in vivo protection 
after challenge with SARS-CoV-2 (29), we also tested if immune imprinting could hinder the induction of 
neutralizing antibodies against SARS-CoV-2. Although not statistically significant, linear regression 
analysis determined a standardized beta coefficient of -0.32 (95% CI -0.35 to 0.05, p=0.13) and -0.31 
(95% CI -0.28 to 0.02, p=0.1) at day 7 and convalescence time points, respectively, for HKU1 spike pre-
existing levels approximating a negative impact of HKU1 pre-existing immunity in induction of 
neutralizing antibodies against SARS-CoV-2 in COVID-19 patients (Fig. 5A). A similar trend was found for 
the levels of pre-existing antibodies against OC43 spike (Fig. 5B). Scatterplots and the predicted 
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regression lines for the relationship of induction of antibodies with neutralizing activity and pre-
exposure to betacoronaviruses are shown in Fig. 5A-D according to time points.   

Since levels of cross-reactive antibodies and back-boosting may differ across patients, we normalized 
levels of IgG against seasonal human coronavirus antigens by the levels of anti- spike IgG from SARS-
CoV-2 virus at the same time points; and tested whether those patients with higher hCoV/SARS-CoV-2 
IgG ratio had lower induction of neutralizing antibodies. After linear regression analysis some disparities 
were found (Supplemental Fig. 2). In general, the higher hCoV/SARS-CoV-2 IgG ratio for HKU1 and OC43 
IgG S at baseline and day 3, the lower was the induction of antibodies with neutralizing activity to SARS-
CoV-2, suggesting some limitations for the ability to elicit robust protective antibody responses against 
novel antigenic epitopes of SARS-CoV-2 in patients with high levels of cross-reactive antibodies against 
circulating beta-coronaviruses.  

DISCUSSION 

Our findings provide a dynamic characterization of the antibody response against SARS-CoV-2 in COVID-
19 patients and provide evidence of immune imprinting in these patients. Our results demonstrate back-
boosting in the BACO cohort against the conserved epitopes of the spike protein of OC43 and HKU1 
betacoronaviruses, as no induction was detected for the variable regions of these viruses, such as the S1 
domain, or to more divergent seasonal alpha-coronaviruses such as 223E. Although antibody cross-
reactivity has been reported in cross-sectional studies (17, 18, 20, 21), our cohort has allowed for 
quantification and detailed representation of the longitudinal outcome of the immune response by 
taking into consideration past exposure to related antigens.  

Neutralization activity of antibodies might be used as a proxy for protection against SARS-CoV-2 
infection (30, 31). IgG RBD and spike SARS-CoV-2 responses showed persistence over the time period of 
our study with slight changes in antibody levels in convalescent sera as compared to the peak of 
antibody induction at day 7. Importantly, other betacoronavirus spikes, like HKU1 and OC43, while not 
bearing neutralizing of authentic SARS-CoV-2 activity in vitro, limited the induction of de novo responses 
for all the SARS-CoV-2 antigens tested. All patients also developed detectable levels of spike IgG/IgM 
and NP IgG. Although not significant correlation was found between pre-exposure to seasonal 
coronaviruses and induction of protective antibodies with neutralization activity, simple linear 
regression estimated a negative relationship, and the predicted line approximated a negative influence 
on development of de novo neutralizing antibodies over time. Equivalent, baseline levels of HKU1 or 
OC43 spike after SARS-CoV-2 IgG levels normalization conditioned day 3 induction of neutralizing 
antibody levels.  

Our observation has important implications on the development of COVID-19 vaccines and the potential 
interactions with pre-existing immunity should be taken into consideration in the path to an effective 
vaccine, to ultimately control the ongoing pandemic. Most of the COVID-19 vaccines are based on full 
length S protein of SARS-CoV-2 (32), which is known to contain cross-reactive non-neutralizing epitopes 
common with seasonal human betacoronaviruses.  Importantly, we still do not know if such non-
neutralizing antibodies in vitro contribute to protection or disease in vivo by beneficial activities such as 
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antibody-mediated cytotoxicity, or by detrimental activities, such as antibody dependent enhancement 
disease.  In any case, our results demonstrate that the antibody response against SARS-CoV-2 infection 
and, potentially vaccination, is influenced by imprinting of the B cell compartment due to previous 
exposure to seasonal human betacoronaviruses.  It will be important to investigate the potential 
functional consequences of this imprinting in the induction of protective immune responses after SARS-
CoV-2 infection and vaccination on the long term.  
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Table 1. Demographics and clinical characteristics of the BACO Cohort.  

 Total (n=37) 
Demographics and Comorbidities 
Age (mean, IQR)  67 (25) 
Men (n, %) 25 (67.6) 
Co-morbidities (n, %) 25 (67.7) 
   Lung Disease (n, %) 7 (18.9) 
   Diabetes mellitus 7 (18.9) 
   Heart disease (n, %) 5 (13.5) 
   Kidney disease (n, %) 3 (8.1) 
   Obesity (n, %) 16 (43.2) 
   SOTR (n, %) 1 (2.7) 
Signs and Symptoms  
   Days from symptom onset to enrollment (mean, range) 7.19 (2-14) 
   Days of fever (mean, range) 4.68 (0-12) 
   Throat ache (n, %) 4 (10.8) 
   Cough (n, %) 26 (70.3) 
   Dyspnea (n, %) 14 (37.8) 
   Diarrhea (n, %) 7 (18.9) 
   Sp02<94% (n, %) 14 (37.8) 
Drug Therapy 
   Hydroxychloroquine (n, %) 36 (97.3) 
   Lopinavir/Ritonavir (n, %) 17 (45.9) 
   Tocilizumab (n, %) 10 (27) 
   Antibiotics (n, %) 19 (51.4) 
   Corticosteroids (n, %) 18 (48.6) 
Outcomes  
   Pneumonia (n, %) 36 (97.3) 
   ICU (n, %) 4 (10.8) 
   Days from hospitalization to ICU (mean, range) 9.5 (5-12) 
   Days in ICU (mean, range) 15 (15-22) 
   Non-mechanical Ventilation (n, %) 11 (29.7) 
   Mechanical Ventilation (n, %) 2 (5.4) 
   Nosocomial Co-Infection (n, %) 2 (5.4) 
   Mortality (n, %) 5 (13.5) 
   Days of hospitalization (mean, range) 11.2 (2-47) 
SOTR: Solid Organ Transplant Recipient; Sp02<94%: pulse oximetry below 94%; ICU: intensive care unit 
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FIGURE LEGENDS 

Fig. 1. Longitudinal profile of antibody responses to SARS-CoV-2 antigens and selected seasonal human 
coronaviruses. Serum from hospitalized COVID-19 patients was analyzed at baseline, at hospital 
recruitment and day 3 and 7. A subsequent sample was collected in the convalescence period in the 
COVID-19 survivors with mean time of 46 days. A) ELISA AUC titers against different antigens of SARS-
CoV-2 at each time point: IgG spike, IgG RBD, IgM spike and IgG NP. Neutralizing titers were also 
assessed and IC50% at each time point is shown. B) ELISA AUC titers against antigens from seasonal 
coronaviruses: IgG HKU1 spike, IgG HKU1 S1, IgG OC43 spike and IgG 223E. Hemagglutination inhibition 
assay were performed for OC43 and end point titers are shown at each time point. 

Fig. 2. Scatterplot matrix of the relationship between measured SARS-CoV-2 antibody responses in the 
COVID-19 patients. Relationship of each antibody levels is tested for the correlations shown: ELISA AUC 
titers against SARS-CoV-2 (IgG spike, IgG RBD, IgM spike and IgG NP) and neutralizing titer (IC50%). 
Pearson coefficient of statistically significant correlations are indicated in red. Fitted linear regression 
lines for each interaction are shown in yellow. Matrix axis are log10 values scaled from 0 to 4. 

Fig 3. Fold induction of anti- SARS-CoV-2 antibodies over time. A) Boxplot diagram of fold induction 
values of ELISA AUC titers against SARS-CoV-2 at each time point: IgG spike, IgG RBD, IgM spike and IgG 
NP; and neutralizing titer (IC50%). Related-samples Friedman's two-way comparison was performed and 
significant adjusted p values for pairwise comparisons are shown for each antibody levels at each time 
point. Black bar indicated median values, box indicates IQR (Q1-Q3), and lines indicate minimum and 
maximum. Outliers from the observed distribution are shown when present in each case. 

Fig 4. Immunological imprinting on SARS-CoV-2 antibody response. A-B) Heat map of Pearson 
correlation matrices between pre-existing levels of seasonal hCoV (A IgG HKU1 S; and B IgG OC43 S) and 
fold induction of SARS-CoV-2 antibodies at each time point: neutralizing (nAb), IgG spike, IgG RBD, IgM 
spike and IgG NP.  Statistically significant correlations in the underlined intersections are indicated with 
asterisk (*); D3: day 3; D7: day 7; C: convalescence. C-D) Scatterplot of baseline IgG levels for HKU1 and 
OC43 S protein and fold induction of SARS-CoV-2 antibodies: neutralizing (nAb), IgG spike, IgG RBD. 
Overlay shows relationship with induction of de novo antibodies against SARS-CoV-2 at each time point. 
Fitted linear regression and standardized beta coefficient (95% Confidence Interval, CI) for significant 
linear regressions are shown. 

Fig 5. Cross-reactivity with conserved epitopes against selected betacoronavirus predicts negative 
influence on de novo anti SARS-CoV-2 antibody responses. A-D) Scatterplot of baseline IgG levels for 
HKU1, OC43 and 223E S protein; and HKU1 S1 and fold induction of SARS-CoV-2 antibodies: neutralizing 
(nAb), IgG spike, IgG RBD. Overlay shows relationship with induction of de novo antibodies against SARS-
CoV-2 at each time point. Fitted linear regression and standardized beta coefficient (95% Confidence 
Interval, CI) for significant linear regressions are shown. 
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EXPERIMENTAL MODEL AND SUBJECT DETAILS 

THE BACO COHORT 

An observational prospective human cohort study of subjects with COVID-19 disease was carried out 
during the first pandemic wave (March-May 2020) of SARS-CoV-2 in Barcelona (Spain): BACO Cohort. A 
positive case was defined according to international guidelines when nasopharyngeal (NP) swab tested 
positive for SARS-CoV2 by real-time polymerase chain reaction (RT-qPCR) upon hospital admission. All 
patients or their legally authorized representatives provided informed consent. Serum and samples 
were collected at the enrollment in the study (baseline), and at day 3 and 7 post-enrollment. A 
convalescence sample was collected on survivors after recovery and hospital discharge with a mean 
time of 46 days (range, 30-56 days). Data on demographics, including age and sex, co-morbidities, 
clinical signs and symptoms, interventions, and outcomes are described in Table 1. The study protocol 
was approved by the Institutional Review Board of University Hospital of Bellvitge, Barcelona, Spain; and 
by the Icahn School of Medicine at Mount Sinai, New York, US. 

CELL LINES 

Vero E6 cells were originally purchased from the American Type Culture Collection (ATCC, Cat# CRL-
1586). Cells were maintained in Dulbecco's modified Eagle's medium (DMEM) w/ L-glutamate, sodium 
pyruvate (Corning) supplemented with 10% fetal bovine serum (FBS), 100 U penicillin per ml, and 100 
mg streptomycin per ml. HCT-8 human cells line was obtained from the ATCC (Cat#CCL-24) and 
maintained in Roswell Park Memorial Institute (RPMI) 1640 medium (Gibco) supplemented with 10% 
fetal bovine serum (FBS), 100 U penicillin per ml, and 100 mg streptomycin per ml. Cell lines were 
supplemented with Normocyn (Invivogen, Cat. ant-nr-1) to prevent Mycoplasma contamination.  

VIRUS STRAINS 

SARS-CoV-2, Isolate USA-WA1/2020 was initially obtained from BEI Resources (Cat#NR-52281) and 
further propagated in Vero E6 cells as previously described (20). Human coronavirus OC43 was obtained 
from the ATCC (Cat#VR-1558) and propagated on HCT-8 cells following ATCC recommendations.  

METHODS DETAILS 

MICRONEUTRALIZATION ASSAYS 

Micro neutralization (MN) assay for antibody characterization was performed as described previously 
(20) with modifications. Briefly, Vero E6 cells were seeded in a 96-well cell culture plate with complete 
Dulbecco’s Modified Eagle Medium (cDMEM)(Corning) [(Penicillin-streptomycin (Corning), non-essential 
amino acids (Corning), 10% fetal bovine serum (FBS) (Peak)]. The following day, heat-inactivated serum 
samples were serially diluted three-fold in 1xminimum essential medium (MEM) with 2% FBS with a final 
volume of 200µl. 80µl of serum dilution was transferred to a new 96-well plate and 600 TCID50/well of 
SARS-CoV-2 (80µl/well) and mixed with serum dilution and incubated for 1hr at 37°C. Then, cDMEM was 
removed from Vero e6 cells and 120µl of virus-serum mixture was added to the cells. The cells were 
incubated at 37°C for 1 hour. Virus-serum mixture was removed from the cells and 100µl of serum 
dilutions and 100µl of 1xMEM with 2% FBS was added to the cells. The cells were incubated for 24hours 
and then fixed with 10% paraformaldehyde (Polysciences) for 24 hours at 4°C. Following fixation, the 
cells were washed with phosphate-buffered saline (Corning) with tween-20 (Fisher) (PBST) and 
permeabilized with 0.1% Triton X-100 (Fisher) for 15 min at room temperature. The cells were washed 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 20, 2020. ; https://doi.org/10.1101/2020.10.14.20212662doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.14.20212662
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

three times using PBST and blocked with 3% milk in PBST for 1 hour at room temperature. Then, the 
cells were incubated with mAB 1C7 (anti-SARS nucleoprotein antibody, kindly provided by Dr. Moran) at 
a dilution of 1:1000 in 1% milk in PBST and incubated for 1hr at room temperature. The cells were 
washed three times with PBST. Then, the cells were incubated with goat anti-mouse IgG-HRP (Abcam) at 
a dilution of 1:10000 in 1% milk in PBST and incubated for 1hr at room temperature. The cells were 
washed three times with PBST and TMBE Elisa peroxidase substrate (Rockland) was added. After 15 min 
incubation, sulfuric acid 4.0N (fisher) was added to stop the reaction and the readout was done using a 
Synergy H1 plate reader (BioTek) at an OD450. 

RECOMBINANT PROTEINS 

The recombinant spike protein and recombinant RBD of SARS-CoV-2 were generated and expressed as 
previously described in detail (21). In brief, the mammalian cell codon-optimized nucleotide sequence 
for the soluble version of the spike protein (amino acids 1-1,213) including a C-terminal thrombin 
cleavage site, signal peptide, hexahistidine tag and T4 foldon trimerization domain were cloned into 
pCAGGS mammalian expression vector. The sequence of the spike protein was additionally modified to 
remove the polybasic cleavage site and two proline residues introduced to increase protein stability. The 
nucleotide sequence for the RBD (amino acids 319-541) including a signal peptide was cloned into 
pCAGGS. The expression plasmids encoding for the spike of common human coronavirus 229E, OC43 
and HKU1, and the expression plasmid encoding for SARS-CoV-2 NP were obtained from the NIH 
(Kizzmekia Corbett and Barney Graham). The recombinant proteins were expressed in Expi293F cells 
(Thermo Fisher) using the ExpiFectamine 293 Transfection Kit (Thermo Fisher) according to 
manufacturer’s protocols. Cell supernatant was harvested and the proteins purified using Ni-NTA 
Agarose (Qiagen). The proteins were concentrated in Amicon centrifugal units (EMD Milipore) and 
correct size confirmed by reducing sodium dodecyl sulfate-polyacrylamide gel electrophoreses (SDS-
PAGE). The recombinant S1 subunit of HKU1 was purchased from Sino Biological (Cat. 40021-V08H).  

ENZYME-LINKED IMMUNOSORBENT ASSAY (ELISA) 

Ninety-six-well microtiter plates (Thermo Fisher) were coated with 50 μL recombinant protein (RBD, 
SARS-CoV-2 full-length spike, SARS-CoV-2 NP, OC43 spike, 229E spike or HKU1 spike respectively) at a 
concentration of 2 ug/mL overnight, 4°C. The next day, the plates were washed three times with PBS 
(phosphate-buffered saline; Gibco) containing 0.1% Tween-20 (T-PBS, Fisher Scientific) using an 
automatic plate washer (BioTek). After washing, the plates were blocked for 1h at room temperature 
with 200 ul blocking solution (PBS-T with 3% (w/v) milk powder (American Bio)) per well. The blocking 
solution was removed and serum samples diluted to a starting concentration of 1:80, serially diluted 1:3 
in PBS-T supplemented with 1% (w/v) milk powder and incubated at room temperature for 2 h. The 
plates were washed three times with PBS-T and 50 ul anti-human IgG (Fab-specific) horseradish 
peroxidase antibody (HRP, Sigma, #A0293) diluted 1:3,000 in PBS-T containing 1% milk powder was 
added to all wells and incubated for 1 h at room temperature. The plates were washed three times using 
the plate washer and 100 μL SigmaFast o-phenylenediamine dihydrochloride (OPD; Sigma) was added to 
all wells for 10 minutes. The enzymatic reaction was stopped with 50 μL 3M hydrochloric acid (Thermo 
Fisher) per well and the plates read at a wavelength of 490 nm with a plate reader (BioTek). The results 
were recorded in Microsoft Excel and the endpoint titer and area under the curve values calculated in 
GraphPad Prism. 

HEMAGGLUTINATION INHIBITION (HAI) ASSAY 
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Serum samples were incubated overnight with receptor-destroying enzyme (RDE; Denka Seiken) for 16-
18 h in a 37°C water bath. Three volumes (relative to serum) of 2.5% sodium citrate solution were added 
and RDE were heat inactivated at 56°C in a water bath (30 minutes). Final serum dilutions were adjusted 
to 1:10 in PBS. OC43 virus was diluted to a final concentration of 8 HA units/50 µL in Fluorescent 
Treponemal Antibody (FTA) hemagglutination (HA) buffer (BD Biosciences). Two-fold dilutions of RDE 
treated serum (25 µL) were incubated with equal amount of the virus at 8 HA units/50 µL (30 minutes, 
room temperature). Chicken red blood cells (RBCs) (Lampire Biological) at 0.5% in HA buffer (50 µL) 
were added and incubated 45 minutes at 4°C. The HAI titer was determined by taking the reciprocal 
dilution of the last well in which serum inhibited the hemagglutination of RBCs.  

QUANTIFICATION AND STATISTICAL ANALYSIS 
All immune assay values were log10-transformed to improve linearity. Statistical significance was 
established at p<0.05. All reported p values are based on two‐tailed tests. Correlation (Pearson), linear 
regression, local regression fit-line and related-sample comparison (Friedman's two-way analysis of 
variance by ranks and pairwise comparison adjusted by Bonferroni correction) were performed using 
IBM SPSS Statistics (version 26).  
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Fig. 1. Longitudinal pro�le of antibody responses to SARS-CoV-2 antigens and selected seasonal 
human coronaviruses. Serum from hospitalized COVID-19 patients was analyzed at baseline, at 
hospital recruitment and day 3 and 7. A subsequent sample was collected in the convalescence 
period in the COVID-19 survivors with mean time of 46 days. A) ELISA AUC titers against di�erent 
antigens of SARS-CoV-2 at each time point: IgG spike, IgG RBD, IgM spike and IgG NP. Neutraliz-
ing titers were also performed and IC50% at each time point is also shown. B) ELISA AUC titers 
against antigens from seasonal coronaviruses: IgG HKU1 spike, IgG HKU1 S1, IgG OC43 spike and 
IgG 223E. Hemagglutination inhibition assay were also performed for OC43 and end point titers 
are shown at each time point. Median and CI 95% is shown

Antibody Response SARS-CoV2 Antibody Response beta- (HKU1 and OC43) 
and alpha- (223E) coronavirus
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Fig. 2. Scatterplot matrix of the relationship between measured SARS-CoV-2 antibody responses 
in the COVID-19 patients. Relationship of each antibody levels is tested for the correlations 
shown: ELISA AUC titers against SARS-CoV-2 (IgG spike, IgG RBD, IgM spike and IgG NP) and neu-
tralizing titer (nAb, IC50%). Pearson coe�cient of statistically signi�cant correlations are indicated 
in red. Fitted linear regression lines for each interaction are shown in yellow. Matrix axis are log10 
values scaled from 0 to 4. 
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A. 

Fig 3. Fold induction of anti- SARS-CoV-2 antibodies over time. A) Boxplot diagram of fold induction 
values of ELISA AUC titers against SARS-CoV-2 at each time point: IgG spike, IgG RBD, IgM spike and 
IgG NP; and neutralizing titer (IC50%). Related-samples Friedman's two-way comparison was per-
formed and signi�cant adjusted p values for pairwise comparisons are shown for each antibody levels 
at each time point. Black bar indicated median values, box indicates IQR (Q1-Q3), lines indicate mini-
mun and maximun. Outliers from the observed distribution are shown when present in each case. 
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Fig 4. Immunological imprinting on SARS-CoV-2 humoral response. A-B) Heatmap of Pearson correla-
tion matrices between pre-existing levels of seasonal hCoV: IgG HKU1 S, IgG HKU1 S1, IgG OC43 S 
and IgG 223E; and fold induction of SARS-CoV-2 antibodies at each time point: neutralizing (nAb), IgG 
spike, IgG RBD, IgM spike and IgG NP.  Statistically signi�cant correlations in the underlined intersec-
tions are indicated with asterisk (*); D3: day 3; D7: day 7; C: convalescence. 
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Fig. 5. Cross-reactivity with conserved epitopes against selected betacoronavirus predicts negative 
in�uence on de novo anti SARS-CoV-2 antibody responses. A-D) Scatterplot of baseline IgG levels 
for HKU1, OC43 and 223E S protein; and HKU1 S1 and fold induction of SARS-CoV-2 antibodies: 
neutralizing (nAb), IgG spike, IgG RBD. Overlay shows relationship with induction of de novo anti-
bodies against SARS-CoV-2 at each time point. Fitted linear regression and standardized beta coef-
�cient (95% Con�dence Interval, CI) for signi�cant linear regressions are shown. 
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