1	Heterogeneity in transmissibility and shedding
2	SARS-CoV-2 via droplets and aerosols
3	Paul Z. Chen ¹ , Niklas Bobrovitz ²⁻⁴ , Zahra Premji ⁵ , Marion Koopmans ⁶ , David N. Fisman ^{7,8} ,
4	Frank X. Gu ^{1,9} *
5	Affiliations:
6	¹ Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto,
7	Canada
8	² Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
9	³ Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary,
10	Calgary, Canada
11	⁴ O'Brien Institute of Public Health, University of Calgary, Calgary, Canada
12	⁵ Libraries & Cultural Resources, University of Calgary, Calgary, Canada
13	⁶ Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
14	⁷ Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto,
15	Canada
16	⁸ Division of Infectious Diseases, Temerty Faculty of Medicine, University of Toronto, Toronto,
17	Canada
18	⁹ Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
19	*Correspondence to: f.gu@utoronto.ca

It is made available under a CC-BY-NC 4.0 International license .

20 Abstract

21	Understanding the factors that mediate overdispersion in SARS-CoV-2 transmissibility is crucial
22	towards mitigating the COVID-19 pandemic. Using a systematically developed dataset, we
23	meta-analyze respiratory viral loads (rVLs) of SARS-CoV-2, SARS-CoV-1 and influenza
24	A(H1N1)pdm09 from 15 countries and model infectiousness by shedding viable virus via
25	droplets and aerosols. Our results indicate heterogeneity in rVL as an intrinsic virological factor
26	facilitating greater overdispersion in the COVID-19 pandemic than in the 2009 H1N1 pandemic.
27	For COVID-19, case heterogeneity remains broad throughout the infectious period, including for
28	pediatric and asymptomatic infections. Many cases inherently present minimal transmission risk,
29	whereas highly infectious individuals shed tens to thousands of SARS-CoV-2 virions/min via
30	droplets and aerosols while breathing, talking and singing. Coughing increases the
31	contagiousness, especially in close contact, of symptomatic cases relative to asymptomatic ones.
32	Our findings show how individual case variations influence SARS-CoV-2 transmissibility and
33	present considerations for disease control.
34	
35	One Sentence Summary: Intrinsic case variation in respiratory viral load facilitates broad

One Sentence Summary: Intrinsic case variation in respiratory viral load facilitates broad
 overdispersion in SARS-CoV-2 transmissibility.

It is made available under a CC-BY-NC 4.0 International license .

37 Main Text

38	Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread globally, causing
39	the coronavirus disease 2019 (COVID-19) pandemic with more than 50.9 million infections and
40	1.2 million deaths (as of 10 November 2020) (1). For respiratory virus transmission, airway
41	epithelial cells shed virions to the extracellular fluid before atomization (from breathing, talking,
42	singing, coughing and aerosol-generating procedures) partitions them into a polydisperse mixture
43	of particles that are expelled to the ambient environment. Aerosols ($\leq 100 \ \mu m$) can be inhaled
44	nasally, whereas droplets (>100 μ m) tend to be excluded (2, 3). For direct transmission, droplets
45	must be sprayed ballistically onto susceptible tissue (4). Hence, droplets predominantly deposit
46	on nearby surfaces, potentiating indirect transmission. Aerosols can be further categorized based
47	on typical travel characteristics: short-range aerosols (50-100 μ m) tend to settle within 2 m; long-
48	range ones (10-50 μ m) often travel beyond 2 m based on emission force; and buoyant aerosols
49	($\leq 10 \ \mu m$) remain suspended and travel based on airflow profiles for minutes to many hours (4,
50	5). Although proximity has been associated with infection risk for COVID-19 (6), studies have
51	also suggested that long-range airborne transmission occurs conditionally (7-9).
52	While the basic reproductive number has been estimated to be 2.0-3.6 (10, 11),
53	transmissibility of SARS-CoV-2 is highly overdispersed (dispersion parameter k , 0.10-0.58),
54	with numerous instances of superspreading (7-9) and few cases (10-20%) causing many
55	secondary infections (80%) (12-14). Similarly, few cases drive the transmission of SARS-CoV-1
56	(k, 0.16-0.17) (15), whereas influenza A(H1N1)pdm09 transmits more homogeneously (k, 7.4-
57	14.4) (16, 17), despite both viruses spreading by contact, droplets and aerosols (18, 19).
58	Although understanding the determinants of overdispersion is crucial towards characterizing

59 transmissibility and developing effective strategies to limit infection (20), mechanistic

60	associations for k remain unclear. As an empirical estimate, k depends on myriad extrinsic
61	(behavioral, environmental and invention) and host factors. Nonetheless, k remains similar across
62	distinct outbreaks of a virus (15), suggesting that intrinsic virological factors mediate
63	overdispersion for emerging infections.
64	Here, we investigated how intrinsic case variation in rVL facilitates overdispersion in
65	SARS-CoV-2 transmissibility. By systematic review, we developed a comprehensive dataset of
66	rVLs from cases of COVID-19, SARS and A(H1N1)pdm09. Using comparative meta-analyses,
67	we found that heterogeneity in rVL was associated with overdispersion among these emerging
68	infections. To assess potential sources of case heterogeneity, we analyzed SARS-CoV-2 rVLs
69	across age and symptomatology subgroups as well as disease course. To interpret the influence
70	of heterogeneity in rVL on individual infectiousness, we modelled likelihoods of shedding viable
71	virus via respiratory droplets and aerosols.
72	
73	Systematic review
74	We conducted a systematic review on virus quantitation in respiratory specimens taken during
75	the infectious periods of SARS-CoV-2 (-3 to 10 days from symptom onset [DFSO]) (21-23),
76	SARS-CoV-1 (0-20 DFSO) (24) and A(H1N1)pdm09 (-2 to 9 DFSO) (25) (Methods). The
77	systematic search (Tables S1 to S5) identified 4,274 results. After screening and full-text review,
78	63 studies met the inclusion criteria and contributed to the systematic dataset (Fig. 1) ($N = 9,616$
79	total specimens), which included adult ($N = 5,030$) and pediatric ($N = 1,594$) cases from 15
80	countries and specimen measurements for asymptomatic ($N = 2,387$), presymptomatic ($N = 28$)
81	and symptomatic ($N = 7,146$) infections. According to a hybrid Joanna Briggs Institute critical
82	appraisal checklist, risk of bias was low for most contributing studies (Table S6).

It is made available under a CC-BY-NC 4.0 International license .

83

84	Association of overdispersion with heterogeneity in rVL
85	We hypothesized that individual case variation in rVL facilitates the distinctions in k among
86	COVID-19, SARS and A(H1N1)pdm09. For each study in the systematic dataset, we used
87	specimen measurements (viral RNA concentration in a respiratory specimen) to estimate rVLs
88	(viral RNA concentration in the respiratory tract) (Methods). To investigate the relationship
89	between k and heterogeneity in rVL, we performed a meta-regression using each contributing
90	study (fig. S1), which showed a weak, negative association between the two variables (meta-
91	regression slope <i>t</i> -test: $P = 0.040$, Pearson's $r = -0.26$).
02	
92	Using contributing studies with low risk of bias, meta-regression (Fig. 2) showed a
92 93	Using contributing studies with low risk of bias, meta-regression (Fig. 2) showed a strong, negative association between k and heterogeneity in rVL (meta-regression slope <i>t</i> -test: <i>P</i>
92 93 94	Using contributing studies with low risk of bias, meta-regression (Fig. 2) showed a strong, negative association between <i>k</i> and heterogeneity in rVL (meta-regression slope <i>t</i> -test: <i>P</i> $< 10^{-8}$, Pearson's <i>r</i> = -0.73). In this case, each unit increase (1 log ₁₀ copies/ml) in the SD of rVL
92 93 94 95	Using contributing studies with low risk of bias, meta-regression (Fig. 2) showed a strong, negative association between <i>k</i> and heterogeneity in rVL (meta-regression slope <i>t</i> -test: <i>P</i> < 10 ⁻⁸ , Pearson's $r = -0.73$). In this case, each unit increase (1 log ₁₀ copies/ml) in the SD of rVL decreased log(<i>k</i>) by a factor of -1.41 (95% confidence interval [CI]: -1.80 to -1.03), suggesting
92 93 94 95 96	Using contributing studies with low risk of bias, meta-regression (Fig. 2) showed a strong, negative association between <i>k</i> and heterogeneity in rVL (meta-regression slope <i>t</i> -test: <i>P</i> $< 10^{-8}$, Pearson's <i>r</i> = -0.73). In this case, each unit increase (1 log ₁₀ copies/ml) in the SD of rVL decreased log(<i>k</i>) by a factor of -1.41 (95% confidence interval [CI]: -1.80 to -1.03), suggesting that broader heterogeneity in rVL facilitates greater overdispersion in the transmissibility of
92 93 94 95 96 97	Using contributing studies with low risk of bias, meta-regression (Fig. 2) showed a strong, negative association between <i>k</i> and heterogeneity in rVL (meta-regression slope <i>t</i> -test: <i>P</i> < 10 ⁻⁸ , Pearson's $r = -0.73$). In this case, each unit increase (1 log ₁₀ copies/ml) in the SD of rVL decreased log(<i>k</i>) by a factor of -1.41 (95% confidence interval [CI]: -1.80 to -1.03), suggesting that broader heterogeneity in rVL facilitates greater overdispersion in the transmissibility of SARS-CoV-2 than of A(H1N1)pmd09. To investigate mechanistic aspects of this association, we
 92 93 94 95 96 97 98 	Using contributing studies with low risk of bias, meta-regression (Fig. 2) showed a strong, negative association between <i>k</i> and heterogeneity in rVL (meta-regression slope <i>t</i> -test: <i>P</i> $< 10^{-8}$, Pearson's <i>r</i> = -0.73). In this case, each unit increase (1 log ₁₀ copies/ml) in the SD of rVL decreased log(<i>k</i>) by a factor of -1.41 (95% confidence interval [CI]: -1.80 to -1.03), suggesting that broader heterogeneity in rVL facilitates greater overdispersion in the transmissibility of SARS-CoV-2 than of A(H1N1)pmd09. To investigate mechanistic aspects of this association, we conducted a series of analyses on rVL and then modelled the influence of heterogeneity in rVL

100

101 Meta-analysis and subgroup analyses of rVL

We first compared rVLs among the emerging infections. We performed a random-effects metaanalysis (fig. S2), which assessed the expected rVL when encountering a COVID-19, SARS or A(H1N1)pdm09 case during the infectious period. This showed that the expected rVL of SARS-CoV-2 was not different from that of SARS-CoV-1 (one-sided Welch's *t*-test: P = 0.102) but

It is made available under a CC-BY-NC 4.0 International license .

106	lesser than that of A(H1N1)pdm09 ($P = 0.044$). We also performed random-effects subgroup
107	analyses for COVID-19 (Fig. 3), which showed that expected SARS-CoV-2 rVLs were similar
108	between pediatric and adult cases ($P = 0.409$) and comparable between
109	symptomatic/presymptomatic and asymptomatic infections ($P = 0.107$). Since these meta-
110	analyses had significant between-study heterogeneity among the mean estimates (Cochran's Q
111	test: $P < 0.001$ for each meta-analysis), we conducted risk-of-bias sensitivity analyses; meta-
112	analyses of low-risk-of-bias studies continued to show significant heterogeneity (figs. S3 to S7).
113	
114	Distributions of rVL
115	We next analyzed rVL distributions. For all three viruses, rVLs best conformed to Weibull
116	distributions (fig. S8), and we fitted the entirety of individual sample data for each virus in the
117	systematic dataset (Fig. 4A and fig. S8N). While COVID-19 and SARS cases tended to shed
118	lesser virus than those with A(H1N1)pdm09 (fig. S2), broad heterogeneity in SARS-CoV-2 and
119	SARS-CoV-1 rVLs inverted this relationship for highly infectious individuals (Fig. 4A and fig.
120	S9, A to C). At the 90 th case percentile (cp) throughout the infectious period, the estimated rVL
121	was 8.91 (95% CI: 8.83-9.00) log ₁₀ copies/ml for SARS-CoV-2, whereas it was 8.62 (8.47-8.76)
122	log10 copies/ml for A(H1N1)pdm09 (Table S7). The standard deviation (SD) of the overall rVL
123	distribution for SARS-CoV-2 was 2.04 log ₁₀ copies/ml, while it was 1.45 log ₁₀ copies/ml for
124	A(H1N1)pdm09, showing that heterogeneity in rVL was indeed broader for SARS-CoV-2.
125	To assess potential sources of heterogeneity in SARS-CoV-2 rVL, we compared rVL
126	distributions among COVID-19 subgroups. In addition to comparable mean estimates (Fig. 3),
127	adult, pediatric, symptomatic/presymptomatic and asymptomatic COVID-19 cases showed
128	similar rVL distributions (Fig. 4, B and C), with SDs of 2.04, 2.06, 2.01 and 2.02 log_{10}

It is made available under a CC-BY-NC 4.0 International license .

- copies/ml, respectively. Thus, age and symptomatology minimally influenced case variation in
 SARS-CoV-2 rVL during the infectious period.
- 131

132 SARS-CoV-2 kinetics during respiratory infection

- 133 To analyze the influences of disease course, we delineated individual SARS-CoV-2 rVLs by
- 134 DFSO and fitted the mean estimates to a mechanistic model for viral kinetics (Fig. 4D,
- 135 Methods). The outputs indicated that, on average, each productively infected cell in the airway
- epithelium shed SARS-CoV-2 at 1.83 (95% CI: 0.69-2.97) copies/ml day⁻¹ and infected up to
- 137 9.48 susceptible cells (Table S8). The turnover rate for infected epithelial cells was 0.55 (0.30-
- 138 0.79) days⁻¹, while the half-life of SARS-CoV-2 in the respiratory tract was 2.65 (1.39-28.2)
- hours. By extrapolating the model to an initial rVL of 0 log₁₀ copies/ml, the estimated incubation
- 140 period was 5.09 days, which agrees with epidemiological findings (10). Conversely, the expected
- 141 duration of shedding was 30.4 DFSO. Thus, SARS-CoV-2 rVL increased exponentially after
- 142 infection, peaked around 1 DFSO along with the proportion of infected epithelial cells (fig. S10)
- and then diminished exponentially.

To evaluate case heterogeneity across the infectious period, we fitted distributions for each DFSO (Fig. 4E), which showed that high SARS-CoV-2 rVLs also increased from the presymptomatic period, peaked at 1 DFSO and then decreased towards the end of the first week of illness. For the 90th cp at 1 DFSO, the rVL was 9.83 (95% CI: 9.12-10.61) log₁₀ copies/ml, an order of magnitude greater than the overall 90th-cp estimate. High rVLs between 1-5 DFSO were elevated above the expected values from the overall rVL distribution (Table S7). At -1 DFSO, the 90th-cp rVL was 8.30 (6.88-10.02) log₁₀ copies/ml, while it was 7.96 (7.37-8.58) log₁₀

It is made available under a CC-BY-NC 4.0 International license .

- copies/ml at 10 DFSO. Moreover, heterogeneity in rVL remained broad across the infectious
 period, with SDs of 1.85-2.46 log₁₀ copies/ml between -1 to 10 DFSO (fig. S9, H to S).
- 153
- 154 Likelihood that droplets and aerosols contain virions 155 Towards analyzing the influence of heterogeneity in rVL on individual infectiousness, we first 156 modelled the likelihood of respiratory particles containing viable SARS-CoV-2. Since rVL is an 157 intensive quantity, the volume fraction of virions is low and viral partitioning coincides with 158 atomization, we used Poisson statistics to model likelihood profiles. To calculate an unbiased 159 estimator of partitioning (the expected number of viable copies per particle), our method 160 multiplied rVL estimates with particle volumes during atomization and an assumed viability 161 proportion of 0.1% in equilibrated particles (Methods). 162 When expelled by the mean COVID-19 case during the infectious period, respiratory 163 particles showed low likelihoods of carrying viable SARS-CoV-2 (fig. S11B). Aerosols 164 (equilibrium aerodynamic diameter $[d_a] \le 100 \ \mu\text{m}$) were $\le 0.69\%$ (95% CI: 0.43-0.95%) likely to 165 contain a virion. Droplets also had low likelihoods: at $d_a = 330 \,\mu\text{m}$, they were 19.4% (18.5-166 20.3%), 2.42% (2.15-2.69%) and 0.20% (0.16-0.24%) likely to contain one, two or three virions, 167 respectively.

168	COVID-19 cases with high rVLs, however, expelled particles with considerably greater
169	likelihoods of carrying viable copies (Fig. 5, A and B, and fig. S11, D and E). For the 80 th cp
170	during the infectious period, aerosols ($d_a \le 100 \ \mu m$) were $\le 36.6\%$ (95% CI: 35.3-38.0%) likely
171	to carry at least one SARS-CoV-2 virion. For the 90 th cp, this likelihood was \leq 96.7% (96.5-
172	96.9%), with larger aerosols tending to contain multiple virions (fig. S11E). At 1 DFSO, these
173	estimates were greatest, and $\leq 65.2\%$ (56.1-74.3%) of buoyant aerosols ($d_a \leq 10 \mu m$) contained at

It is made available under a CC-BY-NC 4.0 International license .

least one viable copy of SARS-CoV-2 for the 98th cp. When expelled by high cps, droplets ($d_a >$

175	100 μ m) tended to contain tens to thousands of SARS-CoV-2 virions (fig. S11E and Fig. 5B)
176	
177	Shedding SARS-CoV-2 via respiratory droplets and aerosols
178	Using the partitioning estimates in conjunction with published profiles of the particles expelled
179	by respiratory activities (fig. S12), we next modelled the rates at which talking, singing,
180	breathing and coughing shed viable SARS-CoV-2 across d_a (Fig. 5, C to F). Singing shed virions
181	more rapidly than talking based on the increased emission of aerosols. Voice amplitude,
182	however, had a significant effect on aerosol production, and talking loudly emitted aerosols at
183	similar rates to singing (fig. S12E). Based on the generation of larger aerosols and droplets,
184	talking and singing shed virions more rapidly than breathing (Fig. 5, C to E). Each cough shed
185	similar quantities of virions as in a minute of talking (Fig. 5, C and F).
186	Each of these respiratory activities expelled aerosols at greater rates than droplets, but
187	particle size correlated with the likelihood of containing virions. Talking, singing and coughing
188	expelled virions at greater proportions via droplets (80.6-86.0%) than aerosols (14.0-19.4%)
189	(Fig. 5G). Moreover, short-range aerosols predominantly mediated the virions (90.8-92.6%) shed
190	via aerosols while talking normally and coughing. In comparison, while singing, talking loudly
191	and breathing, buoyant (29.7-68.4%) and long-range (10.3-31.6%) aerosols carried a larger
192	proportion of the virions shed via aerosols (Fig. 5G).
193	
194	Influence of heterogeneity in rVL on individual infectiousness
195	To interpret how heterogeneity in rVL influences individual infectiousness, we modelled total
196	SARS-CoV-2 shedding rates (over all particle sizes) for each respiratory activity (Fig. 5H and

It is made available under a CC-BY-NC 4.0 International license .

197	fig. S13). Between the 1 st and the 99 th cps, the estimates for a respiratory activity spanned ≥ 8.55
198	orders of magnitude on each DFSO; cumulatively from -1 to 10 DFSO, they spanned 11.0 orders
199	of magnitude. Hence, many COVID-19 cases inherently presented minimal transmission risk,
200	whereas highly infectious individuals shed considerable quantities of SARS-CoV-2. For the 98 th
201	cp at 1 DFSO, singing expelled 350 (95% CI: 36.2-4,213) virions/min to the ambient
202	environment, talking emitted 328 (33.9-3,945) virions/min, breathing exhaled 1.73 (0.18-20.7)
203	virions/min and coughing discharged 279 (28.8-3,350) virions/cough; these estimates were
204	approximately two orders of magnitude greater than those for the 86th cp. For the 98th cp at -1
205	DFSO, singing shed 14.5 (0.15-4,515) virions/min and breathing exhaled 7.13×10^{-2} (7.20×10^{-4} -
206	22.2) virions/min. The estimates at 9-10 DFSO were similar to these presymptomatic ones (Fig.
207	5H and fig. S13B). As indicated by comparable mean rVLs (Fig. 3) and heterogeneities in rVL
208	(Fig. 4, B and C), adult, pediatric, symptomatic/presymptomatic and asymptomatic COVID-19
209	subgroups presented similar distributions for shedding virions through these activities.
210	We also compared the influence of case variation on individual infectiousness between
211	A(H1N1)pdm09 and COVID-19. Aerosol spread accounted for approximately half of
212	A(H1N1)pdm09 transmission events (19), and the 50% human infectious dose for aerosolized
213	influenza A virus is approximately 1-3 virions in the absence of neutralizing antibodies (26).
214	Based on the model, 62.9% of A(H1N1)pdm09 cases were infectious (shed \geq 1 virion) via
215	aerosols within 24 h of talking loudly or singing (fig. S14A). The estimate was 58.6% within 24
216	h of talking normally and 22.3% within 24 h of breathing. In comparison, 48.0% of COVID-19
217	cases shed ≥ 1 virion via aerosols in 24 h of talking loudly or singing (fig. S14C). Notably, only
218	61.4% of COVID-19 cases shed \geq 1 virion via either droplets or aerosols in 24 h of talking loudly
219	or singing (fig. S14D). While the human infectious dose of SARS-CoV-2 by any exposure route

It is made available under a CC-BY-NC 4.0 International license .

220	remains unelucidated, it must be at least one viable copy. Thus, at least 38.6% of COVID-19
221	cases were expected to present negligible risk to spread SARS-CoV-2 through either droplets or
222	aerosols in 24 h. The proportion of inherently infectious cases further decreased as the infectious
223	dose increased: 55.8, 42.5 and 25.0% of COVID-19 cases were expected to shed ≥ 2 , ≥ 10 and
224	\geq 100 virions, respectively, in 24 h of talking loudly or singing.
225	While these analyses indicated that a greater proportion of A(H1N1)pdm09 cases were
226	inherently infectious, 18.8% of COVID-19 cases shed virions more rapidly than those infected
227	with A(H1N1)pdm09 (Fig. 4A). At the 98 th cp for A(H1N1)pdm09, singing expelled 4.38 (2.85-
228	6.78) virions/min and breathing exhaled 2.15×10^{-2} (1.40×10^{-2} - 3.34×10^{-2}) virions/min. Highly
229	infectious COVID-19 cases expelled virions at rates that were up to 1-2 orders of magnitude
230	greater than their A(H1N1)pdm09 counterparts (Fig. 5H and fig. S15).
231	
232	Discussion
233	This study provided systematic analyses of several factors characterizing SARS-CoV-2
234	transmissibility. First, we found that broader heterogeneity in rVL facilitates greater
235	overdispersion for SARS-CoV-2 than A(H1N1)pdm09. Our results suggest that many COVID-
236	19 cases infect no one (12-14) because they inherently present minimal transmission risk via
237	droplets or aerosols, although behavioral and environmental factors can further abate risk.
238	Meanwhile, highly infectious cases can shed tens to thousands of SARS-CoV-2 virions/min. The
239	model estimates, when corrected to copies rather than virions, align with recent clinical findings
240	for exhalation rates of SARS-CoV-2 (27). In comparison, a greater proportion of
241	A(H1N1)pdm09 cases are infectious but shed virions at low rates, which concurs with more

243	(16, 17). Moreover, our analyses suggest that heterogeneity in rVL may be generally associated
244	with overdispersion for viral respiratory infections. In this case, rVL distribution can serve as an
245	early correlate for transmission patterns, including superspreading, during outbreaks of novel
246	respiratory viruses, providing insight for disease control before large-scale epidemiological
247	studies empirically characterize k . When transmission is highly overdispersed, targeted
248	interventions may disproportionately mitigate infection (20) , with models estimating that
249	focusing half of control efforts on the most infectious 20% of cases outperforms random control
250	policies threefold (15).
251	Second, we analyzed SARS-CoV-2 kinetics during respiratory infection. While
252	heterogeneity remains broad throughout the infectious period, rVL tends to peak at 1 DFSO and
253	be elevated for 1-5 DFSO, coinciding with the period of highest attack rates observed among
254	close contacts (28). These results indicate that transmission risk tends to be greatest soon after
255	illness rather than in the presymptomatic period, which concurs with large tracing studies (6.4-
256	12.6% of secondary infections from presymptomatic transmission) (29, 30) rather than early
257	temporal models (~44%) (23). Furthermore, our kinetic analysis suggests that, on average,
258	SARS-CoV-2 reaches diagnostic concentrations 1.58-3.03 days after respiratory infection (-3.51
259	to -2.06 DFSO), assuming assay detection limits of 1-3 log10 copies/ml, respectively, for
260	nasopharyngeal swabs immersed in 1 ml of transport media.
261	Third, we assessed the relative infectiousness of COVID-19 subgroups. As a common
262	symptom of COVID-19 (31), coughing sheds considerable numbers of virions via droplets and
263	short-range aerosols. Thus, symptomatic infections tend to be more contagious than
264	asymptomatic ones, providing one reason as to why asymptomatic cases transmit SARS-CoV-2
265	at lower relative rates (32), especially in close contact (33), despite similar rVLs and increased

It is made available under a CC-BY-NC 4.0 International license .

266	contact patterns. Accordingly, children (48-54% of symptomatic cases present with cough) (34,
267	35) tend to be less contagious than adults (68-80%) (31, 35) based on tendencies of
268	symptomatology rather than rVL. Conversely, coughing sheds few virions via smaller aerosols.
269	Our analyses suggest that asymptomatic and symptomatic infections present comparable risks for
270	airborne spread, as do adult and pediatric cases. While singing and talking loudly, highly
271	infectious individuals shed tens to hundreds of SARS-CoV-2 virions/min via long-range and
272	buoyant aerosols.

273 Our study has limitations. The systematic search found a limited number of studies 274 reporting quantitative specimen measurements from the presymptomatic period, meaning these 275 estimates may be sensitive to sampling bias. Although additional studies have reported 276 semiquantitative metrics (cycle thresholds), these data were excluded because they cannot be 277 compared on an absolute scale due to batch effects (36), limiting use in compound analyses. 278 Furthermore, this study considered population-level estimates of the infectious periods, viability 279 proportions and rate profiles for respiratory particles, which omit individual or environmental 280 variation. Distinctions in phonetic tendencies and, especially for young children, respiratory 281 capacity lead to variation in particle emission rates (37). Some patients shed SARS-CoV-2 with 282 diminishing viability soon after symptom onset (21), whereas others produce replication-283 competent virus for weeks (38). It remains unclear how case characteristics and environmental 284 factors affect the viability dynamics of SARS-CoV-2.

Taken together, our findings provide a potential path forward for disease control. They support aerosol spread as a transmission mode for SARS-CoV-2, including for conditional superspreading by highly infectious cases. However, with short durations of stay in wellventilated areas, the exposure risk for aerosols, including long-range and buoyant ones, remains

289	correlated with proximity to infectious cases $(2, 4)$. Strategies to abate infection should limit
290	crowd numbers and duration of stay while reinforcing distancing, low voice amplitudes and
291	widespread mask usage; well-ventilated settings can be recognized as lower risk venues.
292	Coughing can shed considerable quantities of virions, while rVL tends to peak at 1 DFSO and
293	can be high throughout the infectious period. Thus, immediate, sustained self-isolation upon
294	illness is crucial to curb transmission from symptomatic cases. Collectively, our analyses
295	highlight the role of infections with high rVLs in propelling the COVID-19 pandemic. While
296	diagnosing COVID-19, qRT-PCR can also triage contact tracing, prioritizing these patients: for
297	nasopharyngeal swabs immersed in 1 ml of transport media, \geq 7.14 (95% CI: 7.07-7.22) log ₁₀
298	copies/ml corresponds to the top 20% of COVID-19 cases. Doing so may identify asymptomatic
299	and presymptomatic infections more efficiently, a key step towards mitigation as the pandemic
300	continues.

It is made available under a CC-BY-NC 4.0 International license .

301 References and Notes:

- 3021.E. Dong, H. Du, L. Gardner, An interactive web-based dashboard to track COVID-19 in303real time. Lancet Infect. Dis. 20, 533-534 (2020).
- K. A. Prather, L. C. Marr, R. T. Schooley, M. A. McDiarmid, M. E. Wilson, D. K.
 Milton, Airborne transmission of SARS-CoV-2. *Science* 370, 303-304 (2020).
- 3063.C. J. Roy, D. K. Milton, Airborne transmission of communicable infection the elusive307pathway. N. Engl. J. Med. 350, 1710-1712 (2004).
- 3084.L. Liu, Y. Li, P. V. Nielsen, J. Wei, R. L. Jensen, Short-range airborne transmission of
expiratory droplets between two people. *Indoor Air* 27, 452-462 (2017).
- J. J. Wei, Y. G. Li, Enhanced spread of expiratory droplets by turbulence in a cough jet. *Build. Environ.* 93, 86-96 (2015).
- B. K. Chu, E. A. Akl, S. Duda, K. Solo, S. Yaacoub, H. J. Schunemann, C.-S. U. R. G. E.
 s. authors, Physical distancing, face masks, and eye protection to prevent person-toperson transmission of SARS-CoV-2 and COVID-19: a systematic review and metaanalysis. *Lancet* 395, 1973-1987 (2020).
- S. Y. Park, Y. M. Kim, S. Yi, S. Lee, B. J. Na, C. B. Kim, J. I. Kim, H. S. Kim, Y. B.
 Kim, Y. Park, I. S. Huh, H. K. Kim, H. J. Yoon, H. Jang, K. Kim, Y. Chang, I. Kim, H.
 Lee, J. Gwack, S. S. Kim, M. Kim, S. Kweon, Y. J. Choe, O. Park, Y. J. Park, E. K.
 Jeong, Coronavirus disease outbreak in call center, South Korea. *Emerg. Infect. Dis.* 26, 1666-1670 (2020).
- J. Y. Lu, J. N. Gu, K. B. Li, C. H. Xu, W. Z. Su, Z. S. Lai, D. Q. Zhou, C. Yu, B. Xu, Z.
 C. Yang, COVID-19 outbreak associated with air conditioning in restaurant, Guangzhou, China, 2020. *Emerg. Infect. Dis.* 26, 1628-1631 (2020).
- J. L. Hamner, P. Dubbel, I. Capron, A. Ross, A. Jordan, J. Lee, J. Lynn, A. Ball, S. Narwal,
 S. Russell, D. Patrick, H. Leibrand, High SARS-CoV-2 attack rate following exposure at
 a choir practice Skagit County, Washington, March 2020. *MMWR Morb. Mortal. Wkly. Rep.* 69, 606-610 (2020).
- Q. Li, X. Guan, P. Wu, X. Wang, L. Zhou, Y. Tong, R. Ren, K. S. M. Leung, E. H. Y.
 Lau, J. Y. Wong, X. Xing, N. Xiang, Y. Wu, C. Li, Q. Chen, D. Li, T. Liu, J. Zhao, M.
 Liu, W. Tu, C. Chen, L. Jin, R. Yang, Q. Wang, S. Zhou, R. Wang, H. Liu, Y. Luo, Y.
 Liu, G. Shao, H. Li, Z. Tao, Y. Yang, Z. Deng, B. Liu, Z. Ma, Y. Zhang, G. Shi, T. T. Y.
 Lam, J. T. Wu, G. F. Gao, B. J. Cowling, B. Yang, G. M. Leung, Z. Feng, Early
 transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. *N. Engl. J. Med.* 382, 1199-1207 (2020).
- X. Hao, S. Cheng, D. Wu, T. Wu, X. Lin, C. Wang, Reconstruction of the full
 transmission dynamics of COVID-19 in Wuhan. *Nature* 584, 420-424 (2020).
- R. Laxminarayan, B. Wahl, S. R. Dudala, K. Gopal, C. Mohan, S. Neelima, K. S.
 Jawahar Reddy, J. Radhakrishnan, J. A. Lewnard, Epidemiology and transmission dynamics of COVID-19 in two Indian states. *Science*, eabd7672 (2020).
- A. Endo, S. Abbott, A. J. Kucharski, S. Funk, Estimating the overdispersion in COVID19 transmission using outbreak sizes outside China. *Wellcome Open Research* 5, (2020).
- Q. Bi, Y. Wu, S. Mei, C. Ye, X. Zou, Z. Zhang, X. Liu, L. Wei, S. A. Truelove, T.
 Zhang, W. Gao, C. Cheng, X. Tang, X. Wu, Y. Wu, B. Sun, S. Huang, Y. Sun, J. Zhang,
 T. Ma, J. Lessler, T. Feng, Epidemiology and transmission of COVID-19 in 391 cases

345		and 1286 of their close contacts in Shenzhen, China: a retrospective cohort study. The
346		Lancet Infectious Diseases 20, 911-919 (2020).
347	15.	J. O. Lloyd-Smith, S. J. Schreiber, P. E. Kopp, W. M. Getz, Superspreading and the
348		effect of individual variation on disease emergence. Nature 438, 355-359 (2005).
349	16.	M. G. Roberts, H. Nishiura, Early estimation of the reproduction number in the presence
350		of imported cases: pandemic influenza H1N1-2009 in New Zealand. <i>PLoS One</i> 6, e17835
351		(2011).
352	17.	J. Brugger, C. L. Althaus, Transmission of and susceptibility to seasonal influenza in
353	17.	Switzerland from 2003 to 2015 <i>Enidemics</i> 30 100373 (2020)
354	18.	L.T. Yu, Y. Li, T. W. Wong, W. Tam, A. T. Chan, J. H. Lee, D. Y. Leung, T. Ho.
355	10.	Evidence of airborne transmission of the severe acute respiratory syndrome virus N
356		Evidence of uncome dumbinission of the severe dedic respiratory syndrome virus. T : Engl I Med 350 1731-1739 (2004)
357	19	B I Cowling D K M In V I Fang P Suntarattiwong S I Olsen I Levy T M
358	17.	Uveki G M Leung I S M Peiris T Chotnitavasunondh H Nishiura I M
359		Simmerman Aerosol transmission is an important mode of influenza A virus spread
360		Nature Communications 4 1935 (2013)
361	20	F C Lee N L Wada M K Grahowski F S Gurley L Lessler The engines of SARS-
362	20.	CoV_2 spread Science 370 406-407 (2020)
363	21	R Wolfel V M Corman W Guggemos M Seilmaier S Zange M A Muller D
364	21.	Niemever T C Jones P Vollmar C Rothe M Hoelscher T Bleicker S Brunink J
365		Schneider R Ehmann K Zwirglmaier C Drosten C Wendtner Virological assessment
366		of hospitalized nations with COVID-2019 Nature 581 465-469 (2020)
367	22	M M Arons K M Hatfield S C Reddy A Kimball A James I R Jacobs I Taylor
368	<i></i> .	K Spicer A C Bardossy I P Oakley S Tanwar I W Dval I Harney 7 Chisty I
360		M Bell M Methner P Paul C M Carlson H P McLaughlin N Thornburg S Tong
370		A Tamin V Tao A Llehara I Harcourt S Clark C Brostrom-Smith I C Page M
371		Kay I Lewis P Montgomery N D Stone T A Clark M A Honein I S Duchin I
372		A Jernigan H-S Public C King C C-I Team Presymptomatic SARS-CoV-?
373		infections and transmission in a skilled nursing facility N Engl I Med 382 2081-2090
374		(2020)
375	23	X He E H Y Lau P Wu X Deng I Wang X Hao Y C Lau I Y Wong Y Guan
376	23.	X Tan X Mo Y Chen B Liao W Chen F Hu O Zhang M Zhong Y Wu I Zhao
377		F Zhang B I Cowling F Li G M Leung Temporal dynamics in viral shedding and
378		transmissibility of COVID-19 Nat Med 26 672-675 (2020)
379	24	V E Pitzer G M Leung M Linsitch Estimating variability in the transmission of
380	27.	severe acute respiratory syndrome to household contacts in Hong Kong China Am I
381		Enidemial 166 355-363 (2007)
387	25	D K In I I I Jau N H Leung V I Fang K H Chan D K Chu G M Leung I S
383	23.	D. K. Ip, L. L. Lau, N. II. Leung, V. J. Pang, K. II. Chan, D. K. Chu, O. W. Leung, J. S. Peiris, T. M. Uveki, B. I. Cowling, Viral shedding and transmission potential of
38/		asymptomatic and paucisymptomatic influenza virus infections in the community <i>Clin</i>
385		Infact Dis 64, 736, 742 (2017)
385	26	D Fabian I I MaDavitt W H DaHaan P O Fung P I Cowling K H Chan G M
387	20.	Laung D K Milton Influenza virus in human avhalad breath, an absorvational study
301		$PL_{0} \le One_{3} = 2601 (2008)$
380	27	I LUS Olie 3, 52071 (2000). I Ma X Oi H Chan X Ii 7 7hang H Wang I Sun I 7hang I Gua I
307	<i>∠1</i> .	J. WIA, A. VI, H. UICH, A. LI, Z. ZHANG, H. WANG, L. SUII, L. ZHANG, J. UUU, L. Morowska S. A. Grinshnun D. Diswas, D. C. Elagon, M. Vao, COVID 10 patients in
370		worawoka, S. A. Ormonpun, F. Diswao, K. C. Flagan, W. Fao, COVID-17 patients m

391		earlier stages exhaled millions of SARS-CoV-2 per hour. Clin. Infect. Dis.
392		10.1093/cid/ciaa1283 (2020).
393	28.	H. Y. Cheng, S. W. Jian, D. P. Liu, T. C. Ng, W. T. Huang, H. H. Lin, CO. I. T.
394		Taiwan, Contact tracing assessment of COVID-19 transmission dynamics in Taiwan and
395		risk at different exposure periods before and after symptom onset. JAMA Intern Med 180,
396		1156-1163 (2020).
397	29.	W. E. Wei, Z. Li, C. J. Chiew, S. E. Yong, M. P. Toh, V. J. Lee, Presymptomatic
398		transmission of SARS-CoV-2 — Singapore, January 23-March 16, 2020. MMWR Morb.
399	20	Mortal. Wkly. Rep. 69, 411-415 (2020).
400	30.	Z. Du, X. Xu, Y. Wu, L. Wang, B. J. Cowling, L. A. Meyers, Serial interval of COVID-
401	21	19 among publicly reported confirmed cases. <i>Emerg. Infect. Dis.</i> 26 , 1341-1343 (2020).
402	31.	W. J. Guan, Z. Y. Ni, Y. Hu, W. H. Liang, C. Q. Ou, J. X. He, L. Liu, H. Shan, C. L. Lei,
403		D. S. C. Hui, B. Du, L. J. Li, G. Zeng, K. Y. Yuen, R. C. Chen, C. L. Tang, T. Wang, P.
404		Y. Chen, J. Xiang, S. Y. Li, J. L. Wang, Z. J. Liang, Y. X. Peng, L. Wei, Y. Liu, Y. H.
405		Hu, P. Peng, J. M. Wang, J. Y. Liu, Z. Chen, G. Li, Z. J. Zheng, S. Q. Qiu, J. Luo, C. J.
406		Ye, S. Y. Zhu, N. S. Zhong, C. China Medical Treatment Expert Group for, Clinical
407		characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 382, 1708-1720
408		(2020).
409	32.	R. Li, S. Pei, B. Chen, Y. Song, T. Zhang, W. Yang, J. Shaman, Substantial
410		undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-
411		CoV-2). <i>Science</i> 368 , 489-493 (2020).
412	33.	L. Luo, D. Liu, X. Liao, X. Wu, Q. Jing, J. Zheng, F. Liu, S. Yang, H. Bi, Z. Li, J. Liu,
413		W. Song, W. Zhu, Z. Wang, X. Zhang, Q. Huang, P. Chen, H. Liu, X. Cheng, M. Cai, P.
414		Yang, X. Yang, Z. Han, J. Tang, Y. Ma, C. Mao, Contact settings and risk for
415		transmission in 3410 close contacts of patients with COVID-19 in Guangzhou, China: a
416		prospective cohort study. Ann. Intern. Med. 10.7326/M20-2671 (2020).
417	34.	X. Lu, L. Zhang, H. Du, J. Zhang, Y. Y. Li, J. Qu, W. Zhang, Y. Wang, S. Bao, Y. Li, C.
418		Wu, H. Liu, D. Liu, J. Shao, X. Peng, Y. Yang, Z. Liu, Y. Xiang, F. Zhang, R. M. Silva,
419		K. E. Pinkerton, K. Shen, H. Xiao, S. Xu, G. W. K. Wong, T. Chinese Pediatric Novel
420		Coronavirus Study, SARS-CoV-2 infection in children. N. Engl. J. Med. 382, 1663-1665
421		(2020).
422	35.	C. CR. Team, Coronavirus disease 2019 in children - United States, February 12-April
423		2, 2020. MMWR Morb. Mortal. Wkly. Rep. 69, 422-426 (2020).
424	36.	M. S. Han, J. H. Byun, Y. Cho, J. H. Rim, RT-PCR for SARS-CoV-2: quantitative versus
425		qualitative. Lancet Infect. Dis. 10.1016/S1473-3099(20)30424-2 (2020).
426	37.	HL. Yen, S. Asadi, A. S. Wexler, C. D. Cappa, S. Barreda, N. M. Bouvier, W. D.
427		Ristenpart, Effect of voicing and articulation manner on aerosol particle emission during
428		human speech. PLoS One 15, e0227699 (2020).
429	38.	J. J. A. van Kampen, D. A. M. C. van de Vijver, P. L. A. Fraaij, B. L. Haagmans, M. M.
430		Lamers, N. Okba, J. P. C. van den Akker, H. Endeman, D. A. M. P. J. Gommers, J. J.
431		Cornelissen, R. A. S. Hoek, M. M. van der Eerden, D. A. Hesselink, H. J. Metselaar, A.
432		Verbon, J. E. M. de Steenwinkel, G. I. Aron, E. C. M. van Gorp, S. van Boheemen, J. C.
433		Voermans, C. A. B. Boucher, R. Molenkamp, M. P. G. Koopmans, C. Geurtsvankessel,
434		A. A. van der Eijk, Shedding of infectious virus in hospitalized patients with coronavirus
435		disease-2019 (COVID-19): duration and key determinants. medRxiv [preprint]
436		https://doi.org/10.1101/2020.06.08.20125310 (2020).

437	39.	D. Moher, A. Liberati, J. Tetzlaff, D. G. Altman, P. Group, Preferred reporting items for
438		systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6, e1000097
439		(2009).
440	40.	J. P. T. Higgins, J. Thomas, J. Chandler, M. Cumpston, T. Li, M. J. Page, V. A. Welch,
441		Cochrane handbook for systematic reviews of interventions (John Wiley & Sons.
442		Chichester, UK, 2019).
443	41.	Z. Munn, T. H. Barker, S. Moola, C. Tufanaru, C. Stern, A. McArthur, M. Stephenson, E.
444		Aromataris. Methodological quality of case series studies: an introduction to the JBI
445		critical appraisal tool. JBI Database System Rev Implement Rep 10,11124/JBISRIR-D-
446		19-00099 (2019).
447	42	S. Moola, Z. Munn, C. Tufanaru, E. Aromataris, K. Sears, R. Sfetcu, M. Currie, K. Lisy.
448		R Oureshi P Mattis P Mu "Chapter 7: systematic reviews of etiology and risk" in
449		Ioanna Briggs Institute Reviewer's Manual (The Joanna Briggs Institute 2020) nn
450		2019-05
450	43	Z Munn S Moola K Lisy D Rijtano C Tufanaru Methodological guidance for
452	чэ.	systematic reviews of observational enidemiological studies reporting prevalence and
453		cumulative incidence data Int I Evid Based Healthc 13 147-153 (2015)
454	44	K M Johnston P Jakzadeh B M K Donato S M Szabo Methods of sample size
455		calculation in descriptive retrospective burden of illness studies <i>BMC Med Res</i>
456		Methodol 19 9 (2019)
450	45	N Zhang V Gong F Meng V Shi I Wang P Mao X Chuai V Bi P Vang F
458	43.	Wang Comparative study on virus shedding natterns in pasonharyngeal and fecal
450		specimens of COVID-19 patients. Sci Ching Life Sci 10 1007/s11427-020-1783-9 (2020)
ч <i>5</i> 7 Л60	<i>1</i> 6	E Lavezzo E Franchin C Ciavarella G Cuomo-Dannenburg I Barzon C Del
400 //61	т0.	Vecchio I Rossi R Manganelli A Loregian N Navarin D Abate M Sciro S
-01 /62		Merigliano E De Canale M C Vanuzzo V Besutti E Saluzzo E Onelia M Pacenti
-102 163		S G Parici G Carretta D Donato I Elor S Cocchio G Masi A Sperduti I
403		Cattarino R. Salvador, M. Nicolatti, F. Caldart, G. Castalli, F. Nieddu, R. Labella, I.
404		Fava M Drigo K A M Couthorno C P T Imporial Collago A P Brazzalo S
405		Tonno M Travisan V Baldo C A Donnelly N M Ferguson I Dorigatti A Crisanti
400		Suppression of a SAPS CoV 2 outbrook in the Italian municipality of Vol Natura 584
407		309 300
400	17	42J-429 (2020). I Dong I Liu W Yu O Luo D Chon 7 Loi 7 Huong V Li K Dong P Lin 7
409	4/.	L. Felig, J. Liu, W. Au, Q. Luo, D. Chell, Z. Lei, Z. Hudilg, A. Li, K. Delig, D. Lill, Z.
470		chao, SARS-Cov-2 can be detected in unite, blood, and swabs, and bropharyngear swabs
4/1 472	10	specifiens. J. Med. Virol., (2020). K.K.T., O.T. Tsong, W.S. Loung, A. B. Tson, T.C. Wu, D.C. Lung, C.C. Vin, I.D.
4/2	40.	K. K. 10, O. I. Isang, W. S. Leung, A. K. Iam, I. C. Wu, D. C. Lung, C. C. Yip, J. P.
4/3		L D. J. A. C. M. D. W. D. M. C. T. Lee, V. C. Chang, L. E. Chan, K. H. Chan,
4/4		J. D. IP, A. C. Ng, K. W. Poon, C. T. Luo, V. C. Cheng, J. F. Chan, I. F. Hung, Z. Chen,
4/5		H. Chen, K. Y. Yuen, Temporal profiles of viral load in posterior oropharyngeal saliva
4/0		samples and serum antibody responses during infection by SARS-Cov-2: an
4//	40	observational conort study. Lancet Infect. Dis. 20, 565-574 (2020).
4/8	49.	L. Zou, F. Kuan, M. Huang, L. Liang, H. Huang, Z. Hong, J. Yu, M. Kang, Y. Song, J.
4/9		Aia, Q. Guo, I. Song, J. He, H. L. Yen, M. Peiris, J. Wu, SARS-CoV-2 viral load in
480	50	upper respiratory specimens of infected patients. N. Engl. J. Med. 382, 117/-1179 (2020).
481	50.	J. M. Fajnzylber, J. Regan, K. Coxen, H. Corry, C. Wong, A. Rosenthal, D. Worrall, F.
482		Giguel, A. Piechocka-Trocha, C. Atyeo, S. Fischinger, A. Chan, K. T. Flaherty, K. Hall,

483		M. Dougan, E. T. Ryan, E. Gillespie, R. Chishti, Y. Li, N. Jilg, D. Hanidziar, R. M.
484		Baron, L. Baden, A. M. Tsibris, K. A. Armstrong, D. R. Kuritzkes, G. Alter, B. D.
485		Walker, X. Yu, J. Li, SARS-CoV-2 viral load is associated with increased disease
486		severity and mortality. medRxiv [preprint] https://doi.org/10.1101/2020.07.15.20131789
487		(2020)
488	51.	S. Zheng, J. Fan, F. Yu, B. Feng, B. Lou, O. Zou, G. Xie, S. Lin, R. Wang, X. Yang, W.
489		Chen, O. Wang, D. Zhang, Y. Liu, R. Gong, Z. Ma, S. Lu, Y. Xiao, Y. Gu, J. Zhang, H.
490		Yao, K. Xu, X. Lu, G. Wei, J. Zhou, O. Fang, H. Cai, Y. Oiu, J. Sheng, Y. Chen, T.
491		Liang. Viral load dynamics and disease severity in patients infected with SARS-CoV-2 in
492		Zheijang province. China. January-March 2020: retrospective cohort study. <i>BMJ</i> 369 .
493		m1443 (2020).
494	52.	N. J. Lennon, R. P. Bhattacharyva, M. J. Mina, H. L. Rehm, D. T. Hung, S. Smole, A.
495	02.	Woolley E S Lander S B Gabriel Comparison of viral levels in individuals with or
496		without symptoms at time of COVID-19 testing among 32 480 residents and staff of
497		nursing homes and assisted living facilities in Massachusetts medRyiv [preprint]
498		https://doi.org/10.1101/2020.07.20.20157792 (2020)
499	53	N K Shrestha F Marco Canosa A S Nowacki G W Procon S Vogel T G Fraser
500	55.	S C Frzurum P Terpeluk S M Gordon Distribution of transmission potential during
500		nonsevere COVID-19 illness <i>Clin Infact</i> Dis 10 1093/cid/ciaa886 (2020)
502	54	F Shi T Wu X Zhu Y Ge X Zeng Y Chi X Du I Zhu F Zhu B Zhu I Cui B
502	54.	Wu Association of viral load with serum biomakers among COVID-19 cases Viralogy
503		546 (2020)
505	55	LE Hung K C Lung E V Tso P Liu T W Chung M V Chu V V Ng I Lo L
505	55.	Chan A B Tam H D Shum V Chan A K Wu K M Sin W S Leung W I Law
507		D C Lung S Sin D Veung C C Vin B B Zhang A V Eung E V Van K H
508		Leung L D In A W Chu W M Chan A C Ng P Lee K Fung A Veung T C
500		Wu I W Chen W W Ven W M Chen I E Chen A K Lie O T Teeng V C
510		Chang T L Oug C S Lau K H Chan K K To K V Vuon Trinle combination of
510 511		interferen hete 1h. Joningvir ritengvir, and rihevirin in the treatment of national admitted
512		to begnital with COVID 10: on onen label rendemized phase 2 trial Langet 305 , 1605
512 512		1704 (2020)
515 514	56	1704 (2020). S. Iwasaki S. Ewijsawa S. Nakakuba K. Kamada V. Vamashita T. Ewizymata K. Sata
515	50.	S. Iwasaki, S. Fujisawa, S. Nakakubo, K. Kalilaua, T. Talilasilita, T. Fukuliloto, K. Sato,
515 516		S. Oguri, K. Taki, H. Senjo, J. Sugita, K. Hayasaka, S. Konno, M. Nishida, T. Teshinia,
510		comparison of SARS-Cov-2 detection in hasopharyingear swab and sariva. J. Inject. 61,
J1/ 510	57	D Derene E Teo O T V Teore D N C Teore K Euro V W V Louro A W H
510 510	57.	Chin D K W Chy S M S Chang L L M Doon V W M Chyang M Doinig SADS
519		Chin, D. K. W. Chu, S. M. S. Cheng, L. L. M. Poon, V. W. M. Chuang, M. Peiris, SARS-
520		wild accompanying diagonal Energy Infact Dig 2 (2701,2704 (2020)
521	50	mild coronavirus disease. Emerg. Inject. Dis. 20, 2701-2704 (2020).
522	38.	A. L. Wylne, J. Fournier, A. Casanovas-Massana, M. Campbell, M. Tokuyama, P.
523		Vijayakumar, J. L. warren, B. Geng, M. C. Muenker, A. J. Moore, C. B. F. Vogels, M. E.
524		Petrone, I. M. Ott, P. Lu, A. Venkataraman, A. Lu-Culligan, J. Klein, R. Earnest, M.
525 526		Simonov, K. Datta, K. Handoko, N. Naushad, L. K. Sewanan, J. Valdez, E. B. White, S.
526		Lapidus, C. C. Kalinich, X. Jiang, D. J. Kim, E. Kudo, M. Linehan, T. Mao, M.
527		Moriyama, J. E. Oh, A. Park, J. Silva, E. Song, T. Takahashi, M. Taura, O. E. Weizman,
528		P. Wong, Y. Yang, S. Bermejo, C. D. Odio, S. B. Omer, C. S. Dela Cruz, S. Farhadian,

529		R. A. Martinello, A. Iwasaki, N. D. Grubaugh, A. I. Ko, Saliva or nasopharyngeal swab
530		specimens for detection of SARS-CoV-2. N. Engl. J. Med. 383, 1283-1286 (2020).
531	59.	S. Baggio, A. G. L'Huillier, S. Yerly, M. Bellon, N. Wagner, M. Rohr, A. Huttner, G.
532		Blanchard-Rohner, N. Loevy, L. Kaiser, F. Jacquerioz, I. Eckerle, SARS-CoV-2 viral
533		load in the upper respiratory tract of children and adults with early acute COVID-19.
534		Clin. Infect. Dis. 10.1093/cid/ciaa1157 (2020).
535	60.	C. Lucas, P. Wong, J. Klein, T. B. R. Castro, J. Silva, M. Sundaram, M. K. Ellingson, T.
536		Mao, J. E. Oh, B. Israelow, T. Takahashi, M. Tokuyama, P. Lu, A. Venkataraman, A.
537		Park, S. Mohanty, H. Wang, A. L. Wyllie, C. B. F. Vogels, R. Earnest, S. Lapidus, I. M.
538		Ott, A. J. Moore, M. C. Muenker, J. B. Fournier, M. Campbell, C. D. Odio, A.
539		Casanovas-Massana, I. T. Yale, R. Herbst, A. C. Shaw, R. Medzhitov, W. L. Schulz, N.
540		D. Grubaugh, C. Dela Cruz, S. Farhadian, A. I. Ko, S. B. Omer, A. Iwasaki, Longitudinal
541		analyses reveal immunological misfiring in severe COVID-19. <i>Nature</i> 584 , 463-469
542		(2020).
543	61.	K. V. Argyropoulos, A. Serrano, J. Hu, M. Black, X. Feng, G. Shen, M. Call, M. J. Kim
544	011	A. Lytle, B. Belovarac, T. Vougiouklakis, L. H. Lin, U. Moran, A. Heguy, A. Troxel, M.
545		Snuderl, L. Osman, P. Cotzia, G. Jour, Association of initial viral load in severe acute
546		respiratory syndrome coronavirus 2 (SARS-CoV-2) patients with outcome and
547		symptoms. Am J. Pathol 190, 1881-1887 (2020).
548	62.	O. Mitia, M. Corbacho-Monne, M. Ubals, C. Tebe, J. Penafiel, A. Tobias, E. Ballana, A.
549	020	Alemany, N. Riera-Marti, C. A. Perez, C. Suner, P. Laporte, P. Admella, J. Mitia, M.
550		Clua, L. Bertran, M. Sarquella, S. Gavilan, J. Ara, J. M. Argimon, J. Casabona, G.
551		Cuatrecasas, P. Canadas, A. Elizalde-Torrent, R. Fabregat, M. Farre, A. Forcada, G.
552		Flores-Mateo, F. Muntada, N. Nadal, S. Narejos, A. N. Gil-Ortega, N. Prat, J. Puig, C.
553		Ouinones, J. Reves-Urena, F. Ramirez-Viaplana, L. Ruiz, F. Riveira-Munoz, A. Sierra.
554		C. Velasco, R. M. Vivanco-Hidalgo, A. Sentis, G. B. C. B. Clotet, M. Vall-Mavans, B.
555		PCR. GROUP. Hydroxychloroguine for early treatment of adults with mild Covid-19:
556		a randomized-controlled trial. <i>Clin Infect Dis</i> 10,1093/cid/ciaa1009 (2020).
557	63.	P. Vetter, C. Eberhardt, B. Meyer, P. Martinez, G. Torriani, F. Pigny, S. Lemeille, S.
558	001	Cordev, F. Laubscher, DL. Vu, A. Calame, M. Schibler, F. Jacquerioz, G. Blanchard,
559		CA. Siegrist, L. Kaiser, A. Didierlaurent, i. eckerle, Daily viral kinetics and innate and
560		adaptive immune responses assessment in COVID-19: a case series, medRxiv [preprint]
561		https://doi.org/10.1101/2020.07.02.20143271 (2020).
562	64.	Y. Xu, X. Li, B. Zhu, H. Liang, C. Fang, Y. Gong, O. Guo, X. Sun, D. Zhao, J. Shen, H.
563	0.11	Zhang, H. Liu, H. Xia, J. Tang, K. Zhang, S. Gong, Characteristics of pediatric SARS-
564		CoV-2 infection and potential evidence for persistent fecal viral shedding. <i>Nat. Med.</i> 26 .
565		502-505 (2020).
566	65.	J. H. Hurst, S. M. Heston, H. N. Chambers, H. M. Cunningham, M. J. Price, L. Suarez, C.
567	001	Crew, S. Bose, J. N. Aquino, S. T. Carr, S. M. Griffin, S. H. Smith, K. Jenkins, T. S.
568		Pfeiffer, J. Rodriguez, C. T. Demarco, N. A. De Naever, T. C. Gurley, R. Louzao, C. K.
569		Cunningham, W. J. Steinbach, T. N. Denny, D. J. Lugo, M. A. Moody, S. R. Permar, A.
570		T. Rotta, N. A. Turner, E. B. Walter, C. W. Woods, M. S. Kelly, SARS-CoV-2 infections
571		among children in the biospecimens from respiratory virus-exposed kids (BRAVE Kids)
572		Study, medRxiv [preprint] https://doi.org/10.1101/2020.08.18.20166835 (2020)

573	66.	A. G. L'Huillier, G. Torriani, F. Pigny, L. Kaiser, I. Eckerle, Culture-competent SARS-
574		CoV-2 in nasopharynx of symptomatic neonates, children, and adolescents. <i>Emerg.</i>
575		Infect. Dis. 26, 2494-2497 (2020).
576	67.	M. S. Han, M. W. Seong, N. Kim, S. Shin, S. I. Cho, H. Park, T. S. Kim, S. S. Park, E. H.
577		Choi, Viral RNA load in mildly symptomatic and asymptomatic children with COVID-
578		19, Seoul, South Korea. Emerg. Infect. Dis. 26, 2497-2499 (2020).
579	68.	Y. Pan, D. Zhang, P. Yang, L. L. M. Poon, Q. Wang, Viral load of SARS-CoV-2 in
580		clinical samples. Lancet Infect. Dis. 20, 411-412 (2020).
581	69.	M. S. Han, M. W. Seong, E. Y. Heo, J. H. Park, N. Kim, S. Shin, S. I. Cho, S. S. Park, E.
582		H. Choi, Sequential analysis of viral load in a neonate and her mother infected with
583		SARS-CoV-2. Clin. Infect. Dis. 10.1093/cid/ciaa447 (2020).
584	70.	H. Kawasuji, Y. Takegoshi, M. Kaneda, A. Ueno, Y. Miyajima, K. Kawago, Y. Fukui, Y.
585		Yoshida, M. Kimura, H. Yamada, I. Sakamaki, H. Tani, Y. Morinaga, Y. Yamamoto,
586		Viral load dynamics in transmissible symptomatic patients with COVID-19. medRxiv
587		[preprint] https://doi.org/10.1101/2020.06.02.20120014 (2020).
588	71.	L. L. M. Poon, K. H. Chan, O. K. Wong, W. C. Yam, K. Y. Yuen, Y. Guan, Y. M. D. Lo,
589		J. S. M. Peiris, Early diagnosis of SARS Coronavirus infection by real time RT-PCR. J.
590		<i>Clin. Virol.</i> 28 , 233-238 (2003).
591	72.	W. J. Chen, J. Y. Yang, J. H. Lin, C. S. J. Fann, V. Osyetrov, C. C. King, Y. M. A. Chen,
592		H. L. Chang, H. W. Kuo, F. Liao, M. S. Ho, Nasopharyngeal shedding of severe acute
593		respiratory syndrome-associated coronavirus is associated with genetic polymorphisms.
594		<i>Clin. Infect. Dis.</i> 42 , 1561-1569 (2006).
595	73.	C. M. Chu, V. C. Cheng, I. F. Hung, M. M. Wong, K. H. Chan, K. S. Chan, R. Y. Kao, L.
596		L. Poon, C. L. Wong, Y. Guan, J. S. Peiris, K. Y. Yuen, H. U. S. S. Group, Role of
597		lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings.
598		Thorax 59 , 252-256 (2004).
599	74.	L. L. Poon, K. H. Chan, O. K. Wong, T. K. Cheung, I. Ng, B. Zheng, W. H. Seto, K. Y.
600		Yuen, Y. Guan, J. S. Peiris, Detection of SARS coronavirus in patients with severe acute
601		respiratory syndrome by conventional and real-time quantitative reverse transcription-
602	76	PCR assays. Clin. Chem. $50, 67-72$ (2004).
603	/5.	C. M. Chu, V. C. C. Cheng, I. F. N. Hung, K. S. Chan, B. S. F. Tang, T. H. F. Isang, K.
604		H. Chan, K. Y. Yuen, Viral load distribution in SARS outbreak. <i>Emerg. Infect. Dis.</i> 11,
605	7(1882-1886 (2005).
606 (07	/0.	I. F. Hung, V. C. Cheng, A. K. Wu, B. S. Tang, K. H. Chan, C. M. Chu, M. M. Wong, W. T. Hei, J. J. David D. M. Tar, K. S. Chan, D. C. Was, S. K. Lee, J. S. David, K. X. Yasar,
00/ 609		1. Hul, L. L. Poon, D. M. Ise, K. S. Chan, P. C. Woo, S. K. Lau, J. S. Peiris, K. Y. Yuen, Viral loads in aliniaal specimens and SADS manifestations. <i>Emang. Infect. Dig.</i> 10 , 1550
600		V frai loads in clinical specimens and SARS manifestations. <i>Emerg. Inject. Dis.</i> 10, 1550-
610	77	1557 (2004). V C Chang L E Hung P S Tang C M Chu M M Wang V H Chan A K Wu D
611	//.	M. Tso, K. S. Chan, P. I. Zhang, J. S. Dairis, I. I. Sung, K. V. Vuan, Viral randiantian in
612		the pasopharyny is associated with diarrhea in patients with severe acute respiratory
613		syndrome Clin Infact Dis 38 A67-A75 (2004)
61 <i>1</i>	78	IS Peiris C M Chu V C Cheng K S Chan I F Hung I I Poon K I Law B S
615	70.	Tang T Y Hon C S Chan K H Chan I S Ng R I 7heng W I Ng R W Loi V
616		Guan K V Vuen H II S S Group Clinical progression and viral load in a community
617		outhreak of coronavirus-associated SARS pneumonia: a prospective study <i>Lancet</i> 361
618		1767-1772 (2003)
010		1101 1112 (2003).

619	79.	M. Loeb, P. K. Singh, J. Fox, M. L. Russell, K. Pabbaraju, D. Zarra, S. Wong, B.
620		Neupane, P. Singh, R. Webby, K. Fonseca, Longitudinal study of influenza molecular
621		viral shedding in Hutterite communities. J. Infect. Dis. 206, 1078-1084 (2012).
622	80.	T. Suess, U. Buchholz, S. Dupke, R. Grunow, M. an der Heiden, A. Heider, B. Biere, B.
623		Schweiger, W. Haas, G. Krause, G. Robert Koch Institute Shedding Investigation,
624		Shedding and transmission of novel influenza virus A/H1N1 infection in households
625		Germany, 2009. Am. J. Epidemiol. 171, 1157-1164 (2010).
626	81.	C. C. Li, L. Wang, H. L. Eng, H. L. You, L. S. Chang, K. S. Tang, Y. J. Lin, H. C. Kuo,
627		I. K. Lee, J. W. Liu, E. Y. Huang, K. D. Yang, Correlation of pandemic (H1N1) 2009
628		viral load with disease severity and prolonged viral shedding in children. <i>Emerg. Infect.</i>
629		Dis. 16, 1265-1272 (2010).
630	82.	P. X. Lu, Y. Y. Deng, G. L. Yang, W. L. Liu, Y. X. Liu, H. Huang, Y. X. Wang,
631		Relationship between respiratory viral load and lung lesion severity: a study in 24 cases
632		of pandemic H1N1 2009 influenza A pneumonia. J. Thorac. Dis. 4, 377-383 (2012).
633	83.	D. K. M. In. L. H. Lau, K. H. Chan, V. J. Fang, G. M. Leung, M. J. S. Peiris, B. J.
634	001	Cowling. The dynamic relationship between clinical symptomatology and viral shedding
635		in naturally acquired seasonal and pandemic influenza virus infections. <i>Clin. Infect. Dis.</i>
636		62 , 431-437 (2016).
637	84.	B. Rath, M. von Kleist, F. Tief, K. Karsch, E. Tuerk, S. Muehlhans, F. Louis, H. Skopnik.
638	0.11	B. Schweiger, S. Duwe, Virus load kinetics and resistance development during
639		oseltamivir treatment in infants and children infected with Influenza A(H1N1) 2009 and
640		Influenza B viruses, <i>Pediatr. Infect. Dis. J.</i> 31 , 899-905 (2012).
641	85.	U. I. Wu, J. T. Wang, Y. C. Chen, S. C. Chang, Severity of pandemic H1N1 2009
642	001	influenza virus infection may not be directly correlated with initial viral load in upper
643		respiratory tract. Influenza Other Respir Viruses 6, 367-373 (2012).
644	86.	S. Meschi, M. Selleri, E. Lalle, L. Bordi, M. B. Valli, F. Ferraro, G. Ippolito, N.
645		Petrosillo, F. N. Lauria, M. R. Capobianchi, Duration of viral shedding in hospitalized
646		patients infected with pandemic H1N1. BMC Infect. Dis. 11, 140 (2011).
647	87.	J. R. Yang, J. Lo, Y. L. Ho, H. S. Wu, M. T. Liu, Pandemic H1N1 and seasonal H3N2
648		influenza infection in the human population show different distributions of viral loads.
649		which substantially affect the performance of rapid influenza tests. Virus Res. 155, 163-
650		167 (2011).
651	88.	C. Launes, J. J. Garcia-Garcia, I. Jordan, L. Selva, J. Rello, C. Munoz-Almagro, Viral
652		load at diagnosis and influenza A H1N1 (2009) disease severity in children. <i>Influenza</i>
653		Other Respi. Viruses 6, e89-e92 (2012).
654	89.	B. Killingley, J. Greatorex, S. Cauchemez, J. E. Enstone, M. Curran, R. C. Read, W. S.
655		Lim, A. Hayward, K. G. Nicholson, J. S. Nguyen-Van-Tam, Virus shedding and
656		environmental deposition of novel A (H1N1) pandemic influenza virus: interim findings.
657		Health Technol. Assess. 14, 237-354 (2010).
658	90.	N. Lee, P. K. Chan, C. K. Wong, K. T. Wong, K. W. Choi, G. M. Jovnt, P. Lam, M. C.
659		Chan, B. C. Wong, G. C. Lui, W. W. Sin, R. Y. Wong, W. Y. Lam, A. C. Yeung, T. F.
660		Leung, H. Y. So, A. W. Yu, J. J. Sung, D. S. Hui, Viral clearance and inflammatory
661		response patterns in adults hospitalized for pandemic 2009 influenza A(H1N1) virus
662		pneumonia. Antivir. Ther. 16, 237-247 (2011).
663	91	P. K. Chan, N. Lee, G. M. Joynt, K. W. Choi, I. L. Cheung, A. C. Yeung, P. Lam, R.
664	<i>, , , ,</i>	Wong, B. W. Leung, H. Y. So, W. Y. Lam, D. C. Hui, Clinical and virological course of

665		infection with haemagglutinin D222G mutant strain of 2009 pandemic influenza A
666		(H1N1) virus. J. Clin. Virol. 50, 320-324 (2011).
667	92.	I. F. Hung, K. K. To, C. K. Lee, C. K. Lin, J. F. Chan, H. Tse, V. C. Cheng, H. Chen, P.
668		L. Ho, C. W. Tse, T. K. Ng, T. L. Que, K. H. Chan, K. Y. Yuen, Effect of clinical and
669		virological parameters on the level of neutralizing antibody against pandemic influenza A
670		virus H1N1 2009. Clin. Infect. Dis. 51, 274-279 (2010).
671	93.	P. O. Thai, O. Mai le, M. R. Welkers, K. Hang Nle, T. Thanh le, V. T. Dung, N. T. Yen,
672		T. N. Duong, N. M. Hoa le, D. D. Thoang, H. T. Trang, M. D. de Jong, H. Wertheim, N.
673		T. Hien, P. Horby, A. Fox, Pandemic H1N1 virus transmission and shedding dynamics in
674		index case households of a prospective Vietnamese cohort. J. Infect. 68, 581-590 (2014).
675	94.	M. Ito, S. Nukuzuma, M. Sugie, M. Yoshioka, M. Kon-no, H. Yasutake, Y. Umegaki, Y.
676		Ishikawa, T. Yano, T. Ihara, Detection of pandemic influenza A (H1N1) 2009 virus RNA
677		by real-time reverse transcription polymerase chain reaction. <i>Pediatr. Int.</i> 54, 959-962
678		(2012).
679	95.	S. Esposito, C. Daleno, F. Baldanti, A. Scala, G. Campanini, F. Taroni, E. Fossali, C.
680		Pelucchi, N. Principi, Viral shedding in children infected by pandemic A/H1N1/2009
681		influenza virus. Virol J. 8, 349 (2011).
682	96.	C. K. Lee, H. K. Lee, T. P. Loh, F. Y. Lai, P. A. Tambyah, L. Chiu, E. S. Koay, J. W.
683		Tang, Comparison of pandemic (H1N1) 2009 and seasonal influenza viral loads,
684		Singapore. Emerg. Infect. Dis. 17, 287-291 (2011).
685	97.	I. W. Li, I. F. Hung, K. K. To, K. H. Chan, S. S. Wong, J. F. Chan, V. C. Cheng, O. T.
686		Tsang, S. T. Lai, Y. L. Lau, K. Y. Yuen, The natural viral load profile of patients with
687		pandemic 2009 influenza A(H1N1) and the effect of oseltamivir treatment. Chest 137,
688		759-768 (2010).
689	98.	B. J. Cowling, K. H. Chan, V. J. Fang, L. L. H. Lau, H. C. So, R. O. P. Fung, E. S. K.
690		Ma, A. S. K. Kwong, C. W. Chan, W. W. S. Tsui, H. Y. Ngai, D. W. S. Chu, P. W. Y.
691		Lee, M. C. Chiu, G. M. Leung, J. S. M. Peiris, Comparative epidemiology of pandemic
692		and seasonal influenza A in households. N. Engl. J. Med. 362, 2175-2184 (2010).
693	99.	K. K. To, K. H. Chan, I. W. Li, T. Y. Tsang, H. Tse, J. F. Chan, I. F. Hung, S. T. Lai, C.
694		W. Leung, Y. W. Kwan, Y. L. Lau, T. K. Ng, V. C. Cheng, J. S. Peiris, K. Y. Yuen, Viral
695		load in patients infected with pandemic H1N1 2009 influenza A virus. J. Med. Virol. 82,
696	100	1-7 (2010).
697	100.	V. R. G. Alves, A. H. Perosa, L. K. de Souza Luna, J. S. Cruz, D. D. Conte, N. Bellei,
698		Influenza A(HINI)pdm09 infection and viral load analysis in patients with different
699 700	101	Clinical presentations. <i>Mem. Inst. Oswaldo Cruz</i> 115, e200009 (2020).
/00 701	101.	P. K. Cheng, K. K. Wong, G. C. Mak, A. H. Wong, A. Y. Ng, S. Y. Chow, R. K. Lam, C.
/01		S. Lau, K. C. Ng, W. Lim, Performance of laboratory diagnostics for the detection of influence A (111N1), wirely as correlated with the time of an averation exact and wirel load
702		<i>L Clin Vinol</i> 47 192 185 (2010)
703	102	J. Cliff. Virol. 47, 162-165 (2010). N. Ngaosuwankul, P. Noisumdaang, P. Komolsiri, P. Pooruk, K. Chokanhaibulkit, T.
704	102.	Chotpitayasupondh C. Sangsajia, C. Chuchottaworn, I. Farrar, P. Puthayathana
706		Influenza A viral loads in respiratory samples collected from patients infected with
707		nandemic H1N1 seasonal H1N1 and H3N2 viruses Virol 1 7 75 (2010)
708	103	K K To I F Hung I W I K I Lee C K Koo W W Van R I in K V Ho K H
709	105.	Chu C L Watt W K Luk K Y Lai F L Chow T Mok T Ruckley I F Chan S S
710		Wong, B. Zheng, H. Chen, C. C. Lau, H. Tse, V. C. Cheng, K. H. Chan, K. Y. Yuen
, 10		

711		Delayed clearance of viral load and marked cytokine activation in severe cases of
712		pandemic H1N1 2009 influenza virus infection. Clin. Infect. Dis. 50, 850-859 (2010).
713	104.	M. B. Duchamp, J. S. Casalegno, Y. Gillet, E. Frobert, E. Bernard, V. Escuret, G.
714		Billaud, M. Valette, E. Javouhey, B. Lina, D. Floret, F. Morfin, Pandemic A(H1N1)2009
715		influenza virus detection by real time RT-PCR: is viral quantification useful? <i>Clin.</i>
716		<i>Microbiol. Infect.</i> 16. 317-321 (2010).
717	105.	M. Watanabe, S. Nukuzuma, M. Ito, T. Ihara, Viral load and rapid diagnostic test in
718		patients with pandemic H1N1 2009. <i>Pediatr. Int.</i> 53, 1097-1099 (2011).
719	106.	P. Warnke, L. Warning, A. Podbielski, Some are more equal - a comparative study on
720		swab uptake and release of bacterial suspensions. PLoS One 9, e102215 (2014).
721	107.	D. C. Adam, P. Wu, J. Y. Wong, E. H. Y. Lau, T. K. Tsang, S. Cauchemez, G. M. Leung,
722		B. J. Cowling, Clustering and superspreading potential of SARS-CoV-2 infections in
723		Hong Kong, Nat. Med. 10.1038/s41591-020-1092-0 (2020).
724	108.	J. Riou, C. L. Althaus, Pattern of early human-to-human transmission of Wuhan 2019
725		novel coronavirus (2019-nCoV). December 2019 to January 2020. Euro Surveill, 25.
726		(2020).
727	109.	Y. Zhang, Y. Li, L. Wang, M. Li, X. Zhou, Evaluating transmission heterogeneity and
728	1071	super-spreading event of COVID-19 in a metropolis of China. Int. J. Environ. Res. Public
72.9		<i>Health</i> 17, 3705 (2020).
730	110.	A. Tarig, Y. Lee, K. Roosa, S. Blumberg, P. Yan, S. Ma, G. Chowell, Real-time
731	110.	monitoring the transmission potential of COVID-19 in Singapore. March 2020, <i>BMC</i>
732		Med. 18, 166 (2020).
733	111.	X. Wan, W. Wang, J. Liu, T. Tong, Estimating the sample mean and standard deviation
734	111.	from the sample size median range and/or interquartile range <i>BMC Med Res</i>
735		Methodol 14 135 (2014)
736	112	P. Baccam, C. Beauchemin, C. A. Macken, F. G. Havden, A. S. Perelson, Kinetics of
737	1121	influenza A virus infection in humans. J Virol 80 , 7590-7599 (2006).
738	113	H Ikeda S Nakaoka R I de Boer S Morita N Misawa Y Koyanagi K Aihara K
739	1101	Sato S Iwami Quantifying the effect of Vnu on the promotion of HIV-1 replication in
740		the humanized mouse model. <i>Retrovirology</i> 13 , 23 (2016).
741	114	J. Yan, M. Grantham, J. Pantelic, P. J. Bueno de Mesquita, B. Albert, F. Liu, S. Ehrman,
742		D K Milton E Consortium Infectious virus in exhaled breath of symptomatic seasonal
743		influenza cases from a college community. Proc. Natl. Acad. Sci. U. S. A. 115, 1081-
744		1086 (2018).
745	115	L L Lau B I Cowling V I Fang K H Chan E H Lau M Linsitch C K Cheng P
746	110.	M. Houck, T. M. Uveki, J. S. Peiris, G. M. Leung, Viral shedding and clinical illness in
747		naturally acquired influenza virus infections <i>J. Infect. Dis</i> 201 1509-1516 (2010)
748	116	H W Jeong S M Kim H S Kim Y I Kim I H Kim I Y Cho S H Kim H Kang
749	110.	S G Kim S I Park E H Kim Y K Choi Viable SARS-CoV-2 in various specimens
750		from COVID-19 patients <i>Clin Microbiol Infect</i> 10 1016/j cmi 2020 07 020 (2020)
751	117	G R Johnson J. Morawska Z D Ristovski M Hargreaves K Mengersen C Y H
752	11/•	Chao M P Wan Y Li X Xie D Katoshevski S Corbett Modality of human evolved
753		aerosol size distributions I Aerosol Sci 47 839-851 (2011)
754	118	I Morawska G R Johnson 7 D Ristovski M Hargreaves K Mengersen S Corbett
755	110.	C V H Chao V Li D Katoshevski Size distribution and sites of origin of dronlats
155		C. 1. 11. Chao, 1. Li, D. Katoshevski, Size distribution and sites of origin of droplets

It is made available under a CC-BY-NC 4.0 International license .

756 757 758 759 760 761	119.	 expelled from the human respiratory tract during expiratory activities. <i>J. Aerosol Sci</i> 40, 256-269 (2009). S. Asadi, A. S. Wexler, C. D. Cappa, S. Barreda, N. M. Bouvier, W. D. Ristenpart, Aerosol emission and superemission during human speech increase with voice loudness. <i>Sci. Rep.</i> 9, 2348 (2019).
762	Ackno	owledgments: We thank T. Alba (Toronto) for discussion on statistical methods. We thank
763	J. Jime	enez (Colorado) for discussion on the characteristics of aerosols and droplets. We thank E.
764	Lavezz	zo and A. Chrisanti (Padova) and A. Wyllie and N. Grubaugh (Yale) for responses to data
765	inquiri	es.
766	Fundi	ng: This work was supported by the Natural Sciences and Engineering Research Council
767	of Can	ada (NSERC) and the Toronto COVID-19 Action Fund. P.Z.C. was supported by the
768	NSER	C Vanier Scholarship (608544). D.N.F. was supported by the Canadian Institutes of Health
769	Resear	rch (Canadian COVID-19 Rapid Research Fund, OV4-170360). F.X.G. was supported by
770	the NS	SERC Senior Industrial Research Chair.
771	Autho	r contributions: Conceptualization, P.Z.C.; Methodology, P.Z.C., N.B., and Z.P.; Formal
772	Analys	sis, P.Z.C.; Investigation, P.Z.C. and N.B.; Resources, Z.P.; Writing – Original Draft,
773	P.Z.C.	; Writing – Review & Editing, P.Z.C., N.B., Z.P., M.K., D.N.F., and F.X.G.;
774	Visual	ization, P.Z.C.; Supervision, M.K., D.N.F., and F.X.G; Funding Acquisition, F.X.G.
775	Data a	and materials availability: The systematic dataset and model outputs from this study are
776	upload	led to Zenodo (https://zenodo.org/record/4266560). The code generated during this study is
777	availal	ole at GitHub (https://github.com/paulzchen/sars2-heterogeneity). Search strategies for the
778	system	natic review are shown in Tables S1 to S5. The systematic review protocol was
779	prospe	ectively registered on PROSPERO (registration number, CRD42020204637).

780 **Competing interests:** The authors declare no competing interests.

It is made available under a CC-BY-NC 4.0 International license .

781

782 Fig. 1. Development of the systematic dataset.

784

Fig. 2. Association of overdispersion in SARS-CoV-2, SARS-CoV-1 and A(H1N1)pdm09 transmissibility with heterogeneity in rVL. Meta-regression of dispersion parameter (k) with the standard deviation (SD) of respiratory viral loads (rVLs) from contributing studies with low risk of bias (Pearson's r = -0.73). Pooled estimates of k were determined from the literature for each infection. Blue, red and yellow circles denote A(H1N1)pdm09 (N = 22), COVID-19 (N =23) and SARS (N = 7) studies, respectively. Circle sizes denote weighting in the meta-regression. The *P*-value was obtained using the meta-regression slope *t*-test.

It is made available under a CC-BY-NC 4.0 International license .

Subaroup	Cases		Specin	nens				P value for
study ref.	No.	Туре	No.	DFSO	Туре	Respiratory viral load, log ₁₀ copies/ml (95% CI)		difference
Adult COVID-19								
45	4	H, A, S	9	4 to 10	NPS, OPS	-	4.12 (3.18-5.05)	
46	100	H, C, A, S, Ps, As	106	-2 to 10	NPS, OPS		4.65 (4.35-4.95)	
47	6	H, A, S	6	3 to 8	OPS		5.13 (4.83-5.42)	
48	23	H, A, S	51	0 to 10	ETA, POS		5.29 (4.65-5.93)	
49 50	-	H, A, S, AS	31	2 to 10	NPS, UPS		5.30 (4.87-5.74)	
51	-	H, N, A, S	19	2 to 10	POS Spu		5.62 (5.22-6.03)	
52	2,182	C. A. As	2,182	0	NPS		6.01 (5.93-6.09)	
53	171	N, A, S	171	0 to 10	NPS	-	6.07 (5.79-6.34)	
54	103	H, N, A, S	103	0 to 8	NPS, OPS	+	6.10 (5.98-6.23)	
21	9	H, A, S, As	133	2 to 10	NPS, OPS, Spu		6.21 (5.90-6.52)	
55	41	H, A, S	310	2 to 10	NPS, OPS, POS		6.28 (6.05-6.50)	
56	5	H, A, S	5	7 to 9	NPS	_	6.38 (5.16-7.60)	
57	-	H, A, S, As	38	0 to 9	NPA, NPS, OPS, Spu		6.52 (5.77-7.27)	
58	39	H, A, S, As	41	0 to 10	NPS		6.71 (6.20-7.23)	
59	347	H, A, S	347	0 to 5	NPS	-#-	6.97 (6.77-7.18)	
60	24	H, A, S	33	0 to 10	NPS	_ 	7.51 (6.97-8.05)	
61	205	H, N, A, S	205	0 to 10	NPS	-#-	7.55 (7.30-7.81)	
38	-	H, A, S	154	0 to 10	NPS, Spu	-#-	7.83 (7.58-8.08)	
62	148	N, A, S	296	1 to 8	NPS NPS OPS		8.04 (7.81-8.28)	
0.0	5 D R < 0.001	H, A, S $l^2 = 07.7\%$	63	0 to 10	NPS, OPS	~ -	8.34 (7.95-8.73)	-
Pediatric COVID 10	J, F < 0.001	, 1 = 31.1%)				\sim	0.00 (0.90-0.70)	-
46	2	HCPS	3	8 to 9			3 77 (1 74-5 81)	
64	7	H, P, S, Ps, As	14	-1 to 10	NPS	-	5.69 (5.26-6.12)	
65	54	C. P. S. Ps. As	54	-3 to 10	NPS		5.82 (5.36-6.29)	
59	58	H, P, S	58	0 to 5	NPS		6.97 (6.45-7.49)	
66	23	H, P, S	23	0 to 4	NPS	_	7.20 (6.23-8.16)	
67	12	H, P, S, As	27	0 to 10	NPS		8.07 (7.47-8.67)	
Overall (Q ₅ = 52.1	, <i>P</i> = 0.001,	<i>I</i> ² = 90.4%)				\sim	6.45 (5.55-7.34)	0.409
Symptomatic/presyn	mptomatic C	OVID-19						
45	4	H, A, S	9	4 to 10	NPS, OPS	_	4.12 (3.18-5.05)	
46	53	H, C, A, P, S, Ps	60	-2 to 10	NPS, OPS		4.43 (4.03-4.84)	
47	6	H, A, S	6	3 to 8	OPS		5.13 (4.83-5.42)	
49	13	H, A, S	51	0 to 10	NPS, OPS		5.25 (4.79-5.71)	
68	22	H, S, PS	F1	-1 to 8	OPS, Spu		5.26 (4.63-5.90)	
50	-	H, A, S	31	2 to 10	NPS OPS Sou		5.29 (4.05-5.93)	
51		HAS	19	1 to 10	POS Spu	- 	5.62 (5.22-6.03)	
64	6	H, P. S. Ps	13	-1 to 10	NPS	_	5.77 (5.10-6.53)	
65	81	C, A, P, S, Ps	81	-3 to 10	NPS		5.78 (5.41-6.15)	
21	8	H, A, S	129	2 to 10	NPS, OPS, Spu		5.88 (5.60-6.17)	
53	171	N, A, S	171	0 to 10	NPS		6.07 (5.79-6.34)	
54	103	H, N, A, S	103	0 to 8	NPS, OPS	+	6.10 (5.98-6.23)	
55	41	H, A, S	310	2 to 10	NPS, OPS, POS	-#-	6.28 (6.05-6.50)	
56	5	H, A, S	5	7 to 9	NPS	_	6.38 (5.16-7.60)	
58	31	H, A, P, S	33	2 to 10	NPS	_ - _	6.95 (6.37-7.53)	
59	405	H, A, P, S	405	0 to 5	NPS	-	6.95 (6.78-7.17)	
66	23	H, P, S	23	0 to 4	NPS		7.20 (6.23-8.16)	
60	24	H, A, S	33	0 to 10	NPS		7.51 (6.97-8.05)	
38	205	п, N, A, S Ц A S	205	0 to 10	NPS Sou		7.55 (7.30-7.81)	
69	2	HAPS	104 8	4 to 10	NPS OPS Sou		7.03 (7.38-8.08)	
62	148	NAS	296	1 to 8	NPS		8 04 (7 81-8 28)	
67	9	H, P, S	20	0 to 10	NPS		8.10 (7.37-8.33)	
63	5	H, A, S	63	0 to 10	NPS, OPS		8.34 (7.95-8.73)	
Overall (Q ₂₄ > 100), <i>P</i> < 0.001	l ² = 97.0%)				\diamond	6.38 (5.98-6.77)	-
Asymptomatic COV	ID-19					~		
46	49	H, C, A, As	49	0	NPS, OPS	-8-	4.89 (4.46-5.33)	
65	52	C, A, P, As	52	0	NPS		5.31 (4.85-5.77)	
58	9	H, A, As	9	0	NPS		5.67 (4.92-6.43)	
52	2,200	C, A, P, As	2,200	0	NPS		6.01 (5.93-6.09)	
67	3	H, P, As	7	0 to 8	NPS		8.01 (6.91-9.11)	
Overall (Q ₄ = 47.1	, <i>P</i> < 0.001,	<i>I</i> [∠] = 91.5%)			-		5.84 (5.19-6.50)	0.107
					2	3 4 5 6 7 8 9		

It is made available under a CC-BY-NC 4.0 International license .

793 Fig. 3. Subgroup analyses of SARS-CoV-2 rVL during the infectious period. Random-

- effects meta-analyses comparing the expected respiratory viral loads (rVLs) of adult (≥18 years
- old) COVID-19 cases with pediatric (<18 years old) ones (top) and symptomatic/presymptomatic
- infections with asymptomatic ones (bottom) during the infectious period. Quantitative rVLs refer
- to virus concentrations in the respiratory tract. Case types: hospitalized (H), not admitted (N),
- community (C), adult (A), pediatric (P), symptomatic (S), presymptomatic (Ps) and
- asymptomatic (As). Specimen types: endotracheal aspirate (ETA), nasopharyngeal aspirate
- 800 (NPA), nasopharyngeal swab (NPS), oropharyngeal swab (OPS), posterior oropharyngeal saliva
- 801 (POS) and sputum (Spu). Dashes denote case numbers that were not obtained. Box sizes denote
- 802 weighting in the overall estimates. Between-study heterogeneity was assessed using the *P*-value
- from Cochran's Q test and the I^2 statistic. One-sided Welch's *t*-tests compared expected rVLs

between the COVID-19 subgroups (non-significance, P > 0.05).

It is made available under a CC-BY-NC 4.0 International license .

805

- 818 and C) or DFSO (E) in the systematic dataset. Arrows denote 90th case percentiles for SARS-
- 819 CoV-2 rVL distributions (A and E).

It is made available under a CC-BY-NC 4.0 International license .

820

Fig. 5. Heterogeneity in shedding SARS-CoV-2 via droplets and aerosols. (A and B)

Estimated likelihood of respiratory particles containing viable SARS-CoV-2 when expelled by the mean (top) or 98th case percentile (cp) (bottom) COVID-19 cases at -1 (A) or 1 (B) days from symptom onset (DFSO). For higher no. of virions, some likelihood curves were omitted to aid

It is made available under a CC-BY-NC 4.0 International license .

825	visualization. When the likelihood for 0 virions approaches 0%, particles are expected to contain
826	at least one viable copy. (C to F) Rate that the mean and 98^{th} -cp COVID-19 cases at 1 DFSO
827	shed viable SARS-CoV-2 by talking (C), singing (D), breathing (E) or coughing (F) over particle
828	size. (G) Relative contributions of droplets and aerosols to shedding virions for each respiratory
829	activity (left). Relative contribution of buoyant, long-range and short-range aerosols to shedding
830	virions via aerosols for each respiratory activity (right). (H) Case heterogeneity in the total
831	shedding rate (over all particle sizes) of virions via singing across the infectious period. Earlier
832	presymptomatic days were excluded based on limited data. Data range between the 1st and 99th
833	cps. Lines and bands represent estimates and 95% CIs, respectively, for estimated likelihoods or

834 Poisson means.