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Abstract 
Interrupted time series (ITS) studies are frequently used to evaluate the effects of population-
level interventions or exposures. To our knowledge, no studies have compared the 
performance of different statistical methods for this design. We simulated data to compare the 
performance of a set of statistical methods under a range of scenarios which included 
different level and slope changes, varying lengths of series and magnitudes of 
autocorrelation. We also examined the performance of the Durbin-Watson (DW) test for 
detecting autocorrelation. All methods yielded unbiased estimates of the level and slope 
changes over all scenarios. The magnitude of autocorrelation was underestimated by all 
methods, however, restricted maximum likelihood (REML) yielded the least biased 
estimates. Underestimation of autocorrelation led to standard errors that were too small and 
coverage less than the nominal 95%. All methods performed better with longer time series, 
except for ordinary least squares (OLS) in the presence of autocorrelation and Newey-West 
for high values of autocorrelation. The DW test for the presence of autocorrelation performed 
poorly except for long series and large autocorrelation. From the methods evaluated, OLS 
was the preferred method in series with fewer than 12 points, while in longer series, REML 
was preferred. The DW test should not be relied upon to detect autocorrelation, except when 
the series is long. Care is needed when interpreting results from all methods, given 
confidence intervals will generally be too narrow. Further research is required to develop 
better performing methods for ITS, especially for short series. 
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1 Introduction 
Interrupted time series (ITS) studies are frequently used to evaluate the impact of 
interventions or exposures that occur at a particular point in time1-4. Although randomised 
trials are the gold standard study design, randomisation may be infeasible or undesirable in 
the case of policy evaluation or interventions that are implemented at a population level. 
Randomization also is not an option for retrospective evaluation of interventions or exposures 
such as natural disasters or pandemics. The use of an ITS design may be considered in these 
situations, as they are one of the strongest non-randomised experimental designs2 5 6. 

In an ITS study, observations are collected at regular time points before and after an 
interruption, and often analysed in aggregate using a summary statistic (e.g. mean, 
proportion) within a time interval (e.g. weekly, monthly, or annually). A key feature of the 
design is that data from the pre-interruption interval can be used to estimate the underlying 
secular trend. When this trend is modelled correctly, it can be projected into the post-
interruption interval, providing a counterfactual for what would have occurred in the absence 
of the interruption. From this counterfactual, a range of effect measures can be constructed 
that characterise the impact of the interruption. Two commonly used measures include the 
‘change in level’ – which represents the change immediately after the interruption, and the 
‘change in slope’ – which represents the difference in trends before and after the interruption.  

A key feature of time series data is that there is the potential for non-independence of 
consecutive data points (serial autocorrelation)7. In the presence of positive autocorrelation, 
statistical methods that do not account for this correlation will give spuriously small standard 
errors (SEs)8. Several statistical methods are available to account for autocorrelation, such as 
Prais-Winsten generalised least squares or the Newey-West correction to SEs, or to directly 
model the error, such as autoregressive integrated moving averages (ARIMA). Further, 
several methods are available for testing for the presence of autocorrelation, with the Durbin-
Watson test being the most commonly used4 6. While the performance of some of these 
methods has been examined for time series data9 10, their performance in the context of ITS 
studies has received relatively little attention. 

In this study, we therefore aimed to examine the performance of a range of statistical methods 
for analysing uncontrolled ITS studies using segmented linear models. We restrict our 
evaluation to ITS designs where there is a single interruption, with an equal number of time 
points pre and post interruption, and with first order autoregressive errors. The structure of 
the paper is as follows: In Section 2, we begin by introducing a motivating example for this 
research. In Section 3, we describe the statistical model and estimation methods used in our 
simulation study. In Sections 4 and 5, we present the methods and results from the statistical 
simulation study. In Section 6, we return to our motivating example and demonstrate the 
impact of applying the methods outlined in Section 3. Finally, in Section 7 we present key 
findings and implications for practice. 
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2 Motivating example 
Healthcare-associated infections (HAIs) are a common complication affecting patients in 
hospitals. Clostridium difficile (C difficile) infection is an example of one such infection that 
can cause serious gastrointestinal disease. As such, many countries require mandatory 
surveillance of C difficile infection rates in hospitals. When outbreaks of C difficile occur, the 
cleaning and disinfection regimes in hospitals are often changed in an attempt to reduce the 
infection rate. The routine collection of data in this context has led to many retrospective 
investigations of the effects of different interventions (e.g. novel disinfectants) to reduce C 
difficile infection using ITS data11. Hacek et al12 provides an example of such a study, where 
they examined the effect of terminal room cleaning with dilute bleach (Figure 1) on the rate 
of patients (per 1000 patient days) with a positive test for C difficile. Data were aggregated at 
monthly intervals. The series was relatively short – a scenario which is not atypical of these 
studies – with 10 data points pre and 24 post the intervention11. In the context of HAIs, there 
is a tendency for consecutive data points to be more similar to each other, manifesting as 
‘clusters’ of data points in time (Figure 1). Fitting a segmented linear regression model to the 
data shows an apparent immediate decrease in the infection rate (level change), as well as a 
decrease in the trend (slope change). In the following section, we outline different statistical 
methods to estimate the model parameters and return to this example in Section 6, where we 
apply these methods and compare the results.  

 
Figure 1: Rate of Clostridium difficile infections (per 1000 patient-days) pre and post bleach disinfection intervention per 
month. 
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3 Interrupted time series (ITS): model and estimation methods 
We begin by describing the statistical model and parameters used in our simulation study 
followed by a brief description of some common statistical estimation methods and the 
Durbin-Watson test for autocorrelation. 

3.1 Statistical model 
We use a segmented linear regression model with a single interruption, which can be written 
using the parameterisation proposed by Huitema and McKean13 as: 

𝑌𝑌𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝑡𝑡 + 𝛽𝛽2𝐷𝐷𝑡𝑡 + 𝛽𝛽3[𝑡𝑡 − 𝑇𝑇𝐼𝐼]𝐷𝐷𝑡𝑡 + 𝜀𝜀𝑡𝑡 (1) 
where 𝑌𝑌𝑡𝑡 represents the outcome at time point 𝑡𝑡 of 𝑁𝑁 time points. 𝐷𝐷𝑡𝑡 is an indicator variable 
that represents the post-interruption interval (i.e. 𝐷𝐷𝑡𝑡 =  1 (𝑡𝑡 ≥ 𝑇𝑇𝐼𝐼) where 𝑇𝑇𝐼𝐼  represents the 
time of the interruption). The model parameters, 𝛽𝛽0, 𝛽𝛽1, 𝛽𝛽2 and 𝛽𝛽3 represent the intercept 
(e.g. baseline rate), slope in the pre-interruption interval, the change in level and the change 
in slope, respectively. The error term, εt, represents deviations from the fitted model, which 
are constructed as: 

𝜀𝜀𝑡𝑡 = 𝜌𝜌𝜀𝜀𝑡𝑡−1 + 𝑤𝑤𝑡𝑡 (2) 
where 𝑤𝑤𝑡𝑡 represents “white noise” that is normally distributed 𝑤𝑤𝑡𝑡~𝑁𝑁(0,𝜎𝜎2), and 𝜌𝜌 is the lag-
1 autocorrelation of the errors which can range from -1 to +1. A lag-1 error means that the 
influence of errors on the current error is restricted to the value immediately prior. Longer 
lags are possible but in this paper we confine attention to lag-1 only (AR(1) errors). 

3.2 Estimation methods 
A range of statistical estimation methods are available for estimating the model parameters. 
These methods account for autocorrelation in different ways and are briefly described below. 
We focus on statistical methods that have been more commonly used (Ordinary Least Square 
(OLS), Generalised Least Squares (GLS), Newey-West (NW), Autoregressive Integrated 
Moving Average (ARIMA))2-4 6. In addition, we have included Restricted Maximum 
Likelihood (REML) (with and without the Satterthwaite adjustment), which although is not a 
method in common use, is included because of its potential for reduced bias in the estimation 
of the autocorrelation parameter, as has been discussed for general (non-interrupted) time 
series14. Further details and equations can be found in Appendix 1. 

3.2.1 Ordinary Least Squares 
Estimates of the regression parameters and their variances from model (1) can be obtained 
from fitting a segmented linear regression model using OLS (Appendix 1.1). In the presence 
of autocorrelation, the OLS estimators for the regression parameters are unbiased; however, 
the SEs will be incorrect15. 

3.2.2 Newey-West 
The NW estimator of the variance of the regression parameters estimated using OLS  
accommodates autocorrelation and heteroskedasticity of the error terms in the regression 
model (1)16 (Appendix 1.2).  

  

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted October 14, 2020. ; https://doi.org/10.1101/2020.10.12.20211706doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.12.20211706


3.2.3 Generalised least squares 
Two common GLS methods for estimating the regression parameters and their variances are 
Cochrane-Orcutt (CO) and Prais-Winsten (PW). For both methods, a regression model is first 
fitted using OLS and an estimate of the autocorrelation is calculated from the residuals. This 
estimate is then used to transform the data and remove the autocorrelation from the errors, 
upon which the regression parameters are then estimated from the transformed data. If there 
is still some residual autocorrelation these steps are iterated until a criterion is met (e.g., the 
estimated value for autocorrelation has converged17). The CO method applies the 
transformation from the second observation onwards (t=2, 3, … n). The PW method is a 
modification to the CO method in which a transformed value is used for the first observation 
(Appendix 1.3). The PW method is therefore likely to be more efficient in small series since 
it does not discard the first observation. The sampling properties of the estimators of the 
regression parameters are likely to be adversely affected when the series length is small due 
to poor estimation of the autocorrelation. 

3.2.4 Restricted maximum likelihood 
It is well known that maximum likelihood estimators of variance components are biased in 
small samples due to not accounting for the degrees of freedom (d.f.) used when estimating 
the fixed effect regression parameters18. Restricted maximum likelihood is a variant of 
maximum likelihood estimation and attempts to address the bias by separating the log-
likelihood into two terms; one that involves the mean and variance parameters, and one 
which is only dependent on the variance parameters. By maximising the latter term first with 
the appropriate number of d.f., an estimate of the variance parameter can be obtained which 
can be used when maximising the former, thus correctly accounting for the d.f.14 19.  

For small samples, there is greater uncertainty in the estimation of the SE of the regression 
parameters. To account for this uncertainty in making inferences about the regression 
parameters, the Satterthwaite adjustment can be used to adjust the t-distribution d.f. used in 
hypothesis testing and calculation of confidence limits20.  

3.2.5 Autoregressive integrated moving average 
In an ARIMA model, information from past values, including lagged values of the dependent 
variable and errors, are explicitly modelled. This is achieved by including regression 
coefficients for these variables in the ARIMA model. The lagged values can be from a range 
of previous time points, extending beyond lag-1 models. By explicitly modelling the 
influence of data from previous time points, their impact at subsequent times is quantified 
and estimates of the magnitude of autocorrelation can be obtained along with regression 
parameter estimates. Here we consider ARIMA models with only a first order autoregressive 
term (an ARIMA(1,0,0) model) estimated via maximum likelihood. ARIMA models have 
been shown to not perform well with fewer than fifty points21.  Further details about the 
method can be found in Appendix 1.4, Nelson21 and Box et al22. 
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3.3 Durbin-Watson test for autocorrelation 
The Durbin-Watson (DW) test is commonly used for detecting autocorrelation in time series. 
Often, the test is used as part of a two-stage analysis strategy to determine whether to use a 
method that adjusts for autocorrelation or use OLS (which does not adjust for 
autocorrelation). The null hypothesis is that there is no autocorrelation (𝐻𝐻0: 𝜌𝜌 =  0) against 
the alternative that autocorrelation is present (𝐻𝐻1: 𝜌𝜌 ≠  0). The DW-statistic can range 
between zero and four, with values close to two indicating no autocorrelation. The DW-
statistic is compared to critical values to determine whether there is evidence of 
autocorrelation, no autocorrelation, or the test is inconclusive. The critical values differ by 
series length, significance level and the d.f. in the regression model. Further details are 
available in Appendix 1.5, Kutner et al15 and Durbin and Watson23. 

4 Simulation study methods 
We undertook a numerical simulation study, examining the performance of a set of statistical 
methods under a range of scenarios which included different level and slope changes, varying 
lengths of series and magnitudes of autocorrelation. Design parameter values were combined 
using a fully factorial design with 10,000 data sets generated per combination. A range of 
criteria were used to evaluate the performance of the statistical methods. We now describe 
the methods of the simulation study using the ADEMP (defining aims, data-generating 
mechanisms, estimands, methods and performance measures) structure24. 

4.1 Data Generating Mechanisms 
We simulated data from ITS studies by randomly sampling from a parametric model 
(equation 1), with a single interruption at the midpoint, and first order autoregressive errors 

(examples shown in Supplementary 1.1). We multiplied the first error term, 𝜀𝜀1, by � 1
1−𝜌𝜌2

 so 

that the variance of the error term was constant at all time points.  

We created a range of simulation scenarios including different values of the model 
parameters and different numbers of data points per series (Table 1). These values were 
informed by our review of ITS studies4, where we reanalysed available data sets to estimate 
level and slope changes (standardised by the residual standard deviation), and 
autocorrelation. We found a median standardised level change of 1.5 (inter-quartile range 
(IQR): 0.6 to 3.0), n=190), median standardised slope change of 0.13 (IQR: 0.06 to 0.27, 
n=190) and median autocorrelation 0.2 (IQR: 0 to 0.6, n=180). We therefore constructed 
models with level changes (𝛽𝛽2) of 0, 0.5, 1 and 2, and slope changes (𝛽𝛽3) of 0 and 0.1. We 
did not examine negative level or slope changes since we did not expect this to influence the 
performance metrics. Autocorrelation was varied between 0 and 0.8 in increments of 0.2 to 
cover the full range of autocorrelations observed in the ITS studies included in the review. 
The number of data points per series was varied from 6 to 100, equally divided before and 
after the interruption, informed by the number of data points observed in the ITS studies 
(median 48, IQR: 30 to 100, n=230). The increment size was varied; initially it was small (i.e. 
2) so as to detect changes in the performance metrics that were expected to arise with smaller 
sample sizes and was increased to 4 and then 20.  

All combinations of the factors in Table 1 were simulated, leading to 800 different simulation 
scenarios (Table 1, Figure 2). 
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Table 1: Simulation parameter 

Parameter Symbol Parameter Values 
Intercept 𝛽𝛽0 0 
Pre-interruption slope 𝛽𝛽1 0 
Level change 𝛽𝛽2 0, 0.5, 1, 2 
Change in slope post-interruption 𝛽𝛽3 0, 0.1 
Autocorrelation coefficient 𝜌𝜌 0, 0.2, 0.4, 0.6, 0.8 
Variance of white noise error 
component 

𝜎𝜎2 1 

Number of data points  6, 8, 10, 12, 14, 16, 18, 20 
24, 28, 32, 36, 40, 44, 48, 52, 56 
60, 80, 100 

 
Figure 2: Structure of the eight models constructed from different combinations of the model input parameters (Table 1). 

4.2 Estimands and other targets 
The primary estimands of the simulation study are the parameters of the model, 𝛽𝛽2 (level 
change) and 𝛽𝛽3 (slope change) (Equation 1). These were chosen as they are commonly 
reported effect measures4. We also examined the autocorrelation coefficient, 𝜌𝜌, and the value 
of the Durbin Watson statistic. 

4.3 Statistical Methods to analyse ITS studies 
Segmented linear regression models were fitted using the estimation methods described in 
Section 2.2. We evaluated estimation methods designed to estimate the model parameters 
under lag-1 autocorrelation (see Table 2 for details). For GLS, we restricted our investigation 
to the PW method, because it was expected to have better performance than the CO method 
(on which PW is based) given the PW method utilises all data points. For REML with the 
Satterthwaite adjustment, we substituted d.f. of 2 when the computed d.f. were less than 2, to 
avoid overly conservative confidence limits and hypothesis tests. We also investigated the 
commonly used Durbin-Watson method for detecting autocorrelation at a significance level 
of 0.0523. 
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Table 2 summarises the methods and model variations used to adjust for autocorrelation. 
Details of the Stata code used for generating the simulated data and the analysis code can be 
found in Data Files 1-7. 

Table 2: Statistical methods and adjustments for autocorrelation. 

Method Autocorrelation adjustment 
Ordinary Least Squares None 
 Newey-West SE adjustment (lag-1) 
Generalised least squares Prais-Winsten 
Restricted maximum likelihood Lag-1 autocorrelation 
 Lag-1 autocorrelation with small sample 

Satterthwaite approximation 
Autoregressive integrated moving 
average 

Lag-1 autocorrelation (i.e. ARIMA(1,0,0)) 

4.4 Performance Measures 
The performance of the methods was evaluated by examining bias, empirical SE, model-
based SE, 95% confidence interval coverage and power (see Appendix 2 for formulae). 
Confidence intervals were calculated using the simsum package25 with t-distribution critical 
values. For each simulation scenario, we used 10,000 repetitions in order to keep the Monte 
Carlo Standard Error (MCSE) below 0.5% for all potential values of coverage and type I 
error rate. Model non-convergence was recorded and tabulated. 

4.5 Coding and Execution 
The statistical software Stata version 1526 was used for the generation of the simulated data. 
A random seed was set at the beginning of the process and the individual random state was 
recorded for each repetition of the simulated data sets. Each dataset was independently 
simulated, using consecutive randomly generated numbers from the starting seed. We used a 
“burn in” period between each dataset of 300 random number generations so that any lag 
effects specific to the computer-generated series had time to dissipate8.  

Prior to running the simulations, we undertook initial checks to confirm that the data 
generation mechanism was working as expected. This involved fitting series of length 
100,000 to check the estimated 𝛽𝛽 parameters matched the input parameters. A larger sample 
of 1,000 datasets was then simulated and checked using summary statistics and graphs. When 
we were satisfied that the simulations were operating as expected, the full number of datasets 
were simulated. 

4.6 Analysis of the simulated datasets 
Analyses were performed using Stata version 1526. A range of visual displays were 
constructed to compare the performance of the statistical methods. Frequency distributions 
were plotted to visualise the level- and slope-change estimates, autocorrelation coefficient 
estimates, and the results of the Durbin-Watson test for autocorrelation. Scatter plots were 
used to display the mean values for empirical and model-based SEs, coverage, power and 
autocorrelation coefficient estimates. Line plots were used to show confidence intervals for 
the level and slope change estimates. Results and summaries of the analyses were 
summarised (using the simsum package25) and graphed using Stata version 1526. 
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5 Results of the simulation study 
5.1 Bias of level and slope change estimates 

All methods yielded approximately unbiased estimates of level change and slope change 
across all simulation scenarios. Figure 3 presents level change estimates specific to the 
scenario of a level change of 2 and a slope change of 0.1 (Supplementary Figure S2 shows 
slope change estimates), but the other 7 combinations of level and slope changes were 
virtually identical (Supplementary 1.3.1 for level change, Supplementary 1.3.2 for slope 
change). Note that the Satterthwaite and NW adjustments do not impact the parameter 
estimates of level or slope change, hence distributions of these parameter estimates are not 
shown in Figures 3 and S2.  

 
Figure 3: Distributions of level change estimates calculated from four statistical methods, from top to bottom: 
autoregressive integrated moving average (ARIMA) (purple), ordinary least squares regression (OLS) (blue), Prais-Winsten 
(PW) (green) and restricted maximum likelihood (REML) (orange). The vertical axis shows the length of the time series. The 
five vertical columns display the results for different values of autocorrelation. The vertical black line represents the true 
parameter value (β2). Each subset of four curves shows the distribution from a different analysis method for a given 
combination of time series length and autocorrelation. The simulation combination presented is for a level change of 2 and 
slope change of 0.1; however, other structures give similar results. The Satterthwaite adjustment to the REML method and 
the Newey-West adjustment to the OLS method do not impact the estimate of level or slope change, hence these parameter 
estimates are not shown. 

5.2 Standard errors of level and slope change estimates 
5.2.1 Empirical standard errors 

Figure 3 and Supplementary Figure S2 visually indicate the precision of the estimators in 
terms of the spread of the distributions therein. To enable a direct quantitative assessment, we 
plotted the empirical SE of the level and slope changes for each method against selected 
series lengths and autocorrelation parameter sizes for a level change of 2 and slope change of 
0.1 (Figure 4 and Figure 5). The size of the empirical SE of the level change was dependent 
on the underlying autocorrelation, length of the series and statistical method (Figure 4). Of 
note, the estimates obtained from the ARIMA and PW models yield almost identical 
empirical SEs. For each magnitude of autocorrelation, the empirical SE decreased as the 
length of the time series increased, as would be expected. An exception to this occurred for 
the OLS estimator (and to a lesser extent ARIMA) which exhibited unusual behaviour for an 
autocorrelation of 0.8, with the SE initially increasing with an increasing number of points in 
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the series, and then decreasing. Additional simulations were undertaken to examine the 
behaviour of the OLS estimator for surrounding correlations (0.7 and 0.9), which showed a 
similar pattern of increasing SEs with an increasing number of points (Supplementary 1.4). 
The relationship between autocorrelation and the empirical SE was modified by the length of 
series. For small series (< 10 data points), the empirical SE decreased with increasing 
autocorrelation, while for longer series (≥ 10 data points) this relationship was reversed, with 
SEs increasing with increasing autocorrelation.  

 
Figure 4: Empirical standard error (SE) of the level change. The horizontal axis shows the length of the time series, the 
vertical axis shows the empirical SE. The five vertical columns display the results for different values of autocorrelation. The 
simulation combination presented is for a level change of 2 and slope change of 0.1; however, other combinations give 
similar results. Abbreviations: ARIMA, autoregressive integrated moving average; OLS, ordinary least squares; PW, Prais-
Winsten; REML, restricted maximum likelihood. 

The size of the empirical SE for slope change was dependent on the underlying 
autocorrelation and length of the series (Supplementary Figure S2 and Figure 5). The 
empirical SE decreased with increasing series length, but increased with increasing 
autocorrelation, as would be expected. In contrast to the level change, there were no 
important differences in the empirical SEs across the statistical methods, even when the 
autocorrelation was large. The observed patterns did not differ for any of the eight level and 
slope change combinations (Supplementary 1.3.3 for level change, Supplementary 1.3.4 for 
slope change). 
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Figure 5: Empirical standard error (SE) of the slope change. The horizontal axis shows the length of the time series, the 
vertical axis shows the empirical SE. The five vertical columns display the results for different values of autocorrelation. The 
simulation combination presented is for a level change of 2 and slope change of 0.1; however, other combinations give 
similar results. Abbreviations: ARIMA, autoregressive integrated moving average; OLS, ordinary least squares; PW, Prais-
Winsten; REML, restricted maximum likelihood. 

5.2.2 Comparison between empirical and model-based standard errors 
To enable appropriate confidence interval coverage and size of significance tests, the model-
based SE needs to be similar to the empirical SE24. In this section we present the comparison 
between the empirical and model-based SEs; results for the model-based SEs alone can be 
found in Supplementary 1.5.  

For the level change parameter (𝛽𝛽2) estimated by OLS, the ratio of model-based to empirical 
SEs were close to one (indicating the empirical and model-based SEs were similar) for all 
series lengths when there was no underlying autocorrelation (Figure 6). However, as 
autocorrelation increased, as expected, the OLS model-based SEs became increasingly 
smaller relative to the empirical SEs, indicating the model-based SEs is are downwardly 
biased. The NW method performed only slightly better than the OLS (except when the 
autocorrelation was zero); however, the NW model-based SEs were still downwardly biased 
across all scenarios, were worse than OLS for small series lengths, and only marginally better 
than OLS for large series lengths. Although the empirical SEs of the ARIMA and PW 
methods were similar, they had quite different model-based SEs. The PW model-based SEs 
were smaller than the empirical SEs for all magnitudes of autocorrelation, though the model-
based SEs approached the empirical SEs with increasing series length. The ARIMA model-
based SEs were larger than the empirical SEs for small series (fewer than 24 points) at small 
underlying values of autocorrelation (𝜌𝜌 <  0.4) and also for larger series (more than 24 
points) at higher magnitudes of autocorrelation (𝜌𝜌 > 0.4). Aside from these scenarios, the 
ARIMA model-based SEs were approximately equal to the empirical SEs. The REML 
method behaved similarly to the PW method but, relatively, did not underestimate the SEs to 
the same extent. For small values of underlying autocorrelation (𝜌𝜌 < 0.4) and series greater 
than 30 points, the model-based SEs were similar to the empirical SEs. 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted October 14, 2020. ; https://doi.org/10.1101/2020.10.12.20211706doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.12.20211706


 
Figure 6: Scatter plots of the ratio of model-based standard error (SE) to the empirical SE for the level change parameter 
with different levels of autocorrelation and series length. The horizontal axis represents the number of points in the time 
series, the vertical axis shows the ratio of model-based to empirical SE. The five vertical columns display the results for 
different values of autocorrelation. The simulation combination presented is for a level change of 2 and slope change of 0.1; 
however, other combinations give similar results. The first two series lengths are not shown for the ARIMA method due to 
extreme values. The Satterthwaite adjustment to the REML does not impact the estimate of SE, hence details of this method 
are not shown. Abbreviations: ARIMA, autoregressive integrated moving average; OLS, ordinary least squares; NW, 
Newey-West; PW, Prais-Winsten; REML, restricted maximum likelihood. 

For the slope change parameter (𝛽𝛽3), the ratios of model-based to empirical SEs followed 
similar patterns as for the level change parameter (𝛽𝛽2). For any given series length, as the 
magnitude of autocorrelation increased, model-based SEs became increasingly smaller 
compared with the empirical SEs for most statistical methods (Supplementary 1.6). Model-
based and empirical SEs tended towards equivalence as series lengths increased, with the 
exception of OLS and NW at high values of autocorrelation (𝜌𝜌 > 0.6). For REML and 
ARIMA, the pattern of ratios of model-based to empirical SEs for 𝛽𝛽3 slightly differed 
compared with 𝛽𝛽2. Specifically, the REML model-based SEs were smaller than the empirical 
SEs for small series, and then increased to be slightly larger as the number of points 
increased. For ARIMA, the model-based SEs were smaller than the empirical SEs for large 
underlying values of autocorrelation (𝜌𝜌 ≥ 0.6 ) for small to moderate length series. The 
observed patterns did not differ for any of the eight level and slope change combinations 
(Supplementary 1.3.5 for level change, Supplementary 1.3.6 for slope change). 
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5.3 Confidence interval coverage 
For all combinations of level change, slope change, number of time points and 
autocorrelation, most methods had coverage (percentage of 95% confidence intervals 
including the true parameter) that was less than the nominal 95% level for both level and 
slope change  (Figure 7 for level change and Supplementary 1.7 for slope change, both with a 
level change of 2 and slope change of 0.1, Supplementary 1.3.7 for level change and 
Supplementary 1.3.8 for slope change for other parameter combinations). The exceptions 
were OLS when there was no underlying autocorrelation, and REML with the Satterthwaite 
adjustment for moderate to large length series. In general, mean values of coverage decreased 
with increasing autocorrelation and increased with increasing series length. However, 
coverage of the OLS method decreased with increasing autocorrelation as well as with 
increasing series length (with the exception of the zero autocorrelation scenario). The NW 
method exhibited a similar pattern to OLS, but generally had better coverage (except for 
small autocorrelations), although coverage was often poor (under 90% for all but the longest 
series with low autocorrelation, 𝜌𝜌 < 0.4). REML with the Satterthwaite small sample 
adjustment yielded coverage greater than the nominal 95% level when the number of data 
points was greater than 30 in the presence of autocorrelation. Confidence interval coverage 
patterns generally reflected those observed with the comparisons between the model-based 
and empirical SE. 

 
Figure 7: Coverage for the level change parameter. Each point is the proportion of the 10,000 simulations in which the 95% 
confidence interval included the true value of the parameter. The solid black line depicts the nominal 95% coverage level. 
The simulation combination presented is for a level change of 2 and slope change of 0.1; however, other combinations give 
similar results. Abbreviations: ARIMA, autoregressive integrated moving average; OLS, ordinary least squares; NW, 
Newey-West; PW, Prais-Winsten; REML, restricted maximum likelihood; Satt, Satterthwaite. 
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5.4 Power 
Coverage was less than the nominal 95% level in the majority of scenarios (except for the 
OLS model in the absence of autocorrelation and some scenarios involving the REML 
method with Satterthwaite adjustment). In scenarios where coverage is less than 95%, 
examining power is misleading. Due to there being only a very small number of 
configurations in Figure 7 and Supplementary 1.7 in which 95% coverage was achieved, we 
adopt a more liberal approach and consider configurations in which the coverage was at least 
90%. As such, the results presented below should be viewed as approximate power only and 
will generally be lower than the value observed if coverage was at least 95%. 

For scenarios with a level change of two, power was low for series with a small number of 
points, but predictably, increased as the number of points increased for all methods, except 
the REML method with Satterthwaite adjustment (Figure 8). As the magnitude of 
autocorrelation increased its power decreased, to a point where it became lower than for other 
methods. This was due to the REML method with Satterthwaite adjustment having greater 
than 95% coverage in these situations and hence substantially lower than 5% Type I error 
rates. For smaller values of the level change parameter, predictably, power decreased 
(Supplementary 1.8.1). Similar patterns were observed for slope change (Supplementary 
1.8.2). 

 
Figure 8: Power for level change. Each point is the mean number of times the 95% confidence interval of the estimate did 
not include zero from 10,000 simulations. The simulation combination presented is for a level change of 2 and slope change 
of 0.1. Power for other model combinations is available in Supplementary 1.8.1. Abbreviations: ARIMA, autoregressive 
integrated moving average; OLS, ordinary least squares; NW, Newey-West; PW, Prais-Winsten; REML, restricted maximum 
likelihood; Satt, Satterthwaite; NW, Newey-West. 
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5.5 Autocorrelation Coefficient 
Most of the statistical methods yield an estimate of the autocorrelation coefficient. All 
methods underestimated the autocorrelation for series with a small number of points (Figure 
9 and Figure 10 show parameter values of 2 for level change and 0.1 for slope change). 
However, underestimation was most pronounced for scenarios with small series and large 
underlying autocorrelation. The REML method always yielded estimated autocorrelations 
closer to the true underlying autocorrelation compared with the other methods. The empirical 
SEs for autocorrelation generally decreased as the series length increased for all methods 
(except for small series with fewer than 20 points) (Supplementary 1.9). The observed 
patterns did not differ for any of the eight level and slope change combinations 
(Supplementary 1.3.9). 

 
Figure 9: Autocorrelation coefficient estimates. The horizontal axis shows the estimate of autocorrelation coefficient. The 
vertical axis shows the length of the time series. The five vertical columns display the results for different values of 
autocorrelation ranging from 0 to 0.8 (the value of autocorrelation is shown by a vertical red line). Each coloured curve 
shows the distribution of autocorrelation coefficient estimates from 10,000 simulations. Each subset of four curves shows the 
results from a different analysis method for a given combination of time series length and autocorrelation. The simulation 
combination presented is for a level change of 2 and slope change of 0.1; however, other combinations give similar results. 
From top to bottom the methods are autoregressive integrated moving average (ARIMA) (purple), Prais-Winsten (PW) 
(green) and restricted maximum likelihood (REML) (orange). 
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Figure 10: Autocorrelation coefficient estimates. The horizontal axis shows the length of the time series. The vertical axis 
shows the mean estimate of the autocorrelation coefficient across 10,000 simulations. The five plots display the results for 
different values of autocorrelation ranging from 0 to 0.8 (the true value of autocorrelation is shown by a horizontal black 
line). Each coloured point shows the mean autocorrelation estimate for a given combination of true autocorrelation 
coefficient and number of points in the data series. The simulation combination presented is for a level change of 2 and 
slope change of 0.1; however, other combinations give similar results. Abbreviations: ARIMA, autoregressive integrated 
moving average; OLS, ordinary least squares; PW, Prais-Winsten; REML, restricted maximum likelihood. 

5.5.1 Durbin-Watson test for autocorrelation 
The DW test for detecting autocorrelation performed poorly except for long data series and 
large underlying values of autocorrelation (Figure 11). For series of moderate length (i.e. 48 
points), with an underlying autocorrelation of 0.2, the DW test gave an “inconclusive” result 
in 30% of the simulations, incorrectly gave a value of no autocorrelation in 63% of the 
simulations, and only correctly identified that there was autocorrelation in 7% of the 
simulations. For shorter length series the percentage of simulations in which autocorrelation 
was correctly identified decreased (for a series length of 24 even at extreme magnitudes of 
autocorrelation (i.e. 0.8) positive autocorrelation was reported in only 26% of the 
simulations). For very short length series (fewer than 12 data points) the DW test gave an 
“inconclusive” result in over 75% of the simulations for all values of autocorrelation and 
always failed to identify that autocorrelation was present. 
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Figure 11: Durbin-Watson tests for autocorrelation. For each combination of length of data series and true magnitude of 
autocorrelation the Durbin Watson test results from 10,000 simulated data sets are summarised. The horizontal axis is the 
length of the data series, the vertical axis is the proportion of results indicating: ρ > 0 (blue), ρ < 0, (orange) ρ = 0 (black) 
and an inconclusive test (grey). Each graph shows results for a different magnitude of autocorrelation. The simulation 
combination presented is for a level change of 2 and slope change of 0.1; however, other combinations give similar results. 

5.6 Convergence of estimation methods 
The number of the 10,000 simulations in which the estimation methods converged is 
presented in Supplementary 1.10. Most methods had no numerical convergence issues. The 
PW model failed to converge a small number of times (less than 7% of simulations) when 
there were only three data points pre- and post-interruption. The REML model regularly 
failed to converge (approximately 70% convergence) for short data series (fewer than 12 data 
points) at all values of autocorrelation, however convergence improved substantially as the 
number of points in the series increased. In addition, convergence issues for REML occurred 
more frequently for higher values of autocorrelation, unless the series length was large. 
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6 Analysis of motivating example 
We re-analysed the ITS study (introduced in Section 2) using each of the statistical methods 
evaluated in the simulation study to estimate the effect of terminal room cleaning with dilute 
bleach on C difficile rates. Estimates of level and slope change (along with their confidence 
intervals and p-values) and autocorrelation are presented in Table 4. The point estimates for 
level and slope change are similar across methods, but notably, the width of the confidence 
intervals vary considerably. The confidence intervals are narrower for OLS, NW and PW, but 
wider for REML (with and without the Satterthwaite adjustment) and ARIMA. For level 
change, this led to corresponding p-values that ranged from 0.002 to 0.095; and for the slope 
change, p-values ranging from 0.069 to 0.531. Estimates of autocorrelation also varied, with 
REML yielding an estimate of 0.23, while ARIMA and PW yielded much lower estimates of 
0.07. The DW statistic was 1.86, indicating no autocorrelation. Such differences in 
confidence interval width and p-values may impact on the interpretation of the results. 

Table 4: Level- and slope-change point estimates with 95% confidence intervals (CIs), p-values and estimate of magnitude 
of lag-1 autocorrelation (𝝆𝝆�𝒆𝒆𝒆𝒆𝒆𝒆) from C difficile infection data using a range of statistical methods. Abbreviations: ARIMA, 
autoregressive integrated moving average; OLS, ordinary least squares; NW, Newey-West; PW, Prais-Winsten; REML, 
restricted maximum likelihood; Satt, Satterthwaite. 

 
Level change 

 
Slope change 

 
𝝆𝝆�𝒆𝒆𝒔𝒔𝒔𝒔  

Estimate (CI) p-value Estimate (CI) p-value  
ARIMA -0.42 (-0.89,0.05) 0.079 -0.03 (-0.11,0.06) 0.531 0.07 
OLS -0.44 (-0.76,-0.13) 0.008 -0.03 (-0.07,0.02) 0.201 N/A 
NW -0.44 (-0.71,-0.17) 0.002 -0.03 (-0.06,0.00) 0.069 N/A 
PW -0.42 (-0.75,-0.09) 0.014 -0.03 (-0.08,0.02) 0.251 0.07 
REML -0.37 (-0.72,-0.01) 0.044 -0.02 (-0.08,0.03) 0.390 0.23 
REML-Satt -0.37 (-0.82,0.09) 0.095 -0.02 (-0.10,0.05) 0.437 N/A 

7 Discussion 
7.1 Summary and discussion of key findings 

Interrupted time series studies are commonly used to evaluate the effects of interventions or 
exposures. The results of our simulation study provide insight into how a set of statistical 
methods perform under a range of scenarios which included different level and slope 
changes, varying lengths of series and magnitudes of autocorrelation. We chose to examine 
statistical methods that are commonly used in practice for interrupted time series studies1-4 6, 
and those performing well in the general, non-interrupted, time series literature10 14.  
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Not surprisingly, we found that the statistical methods all yielded unbiased estimates of both 
level and slope change for all values of model shape, length of series and autocorrelation. 
Confidence interval coverage, however, was generally below the nominal 95% level, except 
in particular circumstances for specific methods. The REML method with and without the 
Satterthwaite adjustment had improved confidence interval coverage compared with the other 
statistical methods. An exception to this was for very small series (fewer than 12 points), 
where the OLS method had better coverage than the other methods, even in the presence of 
large underlying autocorrelation. Coverage improved for most methods with increasing series 
length (with the exception of OLS and NW in some circumstances). REML with the 
Satterthwaite adjustment to the d.f. was the only method that yielded at least the nominal 
level of confidence interval coverage, however it was overly conservative in some scenarios, 
with a resultant reduction in power compared with other methods. 

Autocorrelation was systematically underestimated by all statistical methods, with estimates 
of autocorrelation being particularly biased (and often negative) for small time series (fewer 
than 24 points). This underestimation of autocorrelation had a detrimental impact on the 
estimates of SE, which were too small, and in turn, this led to confidence interval coverage 
that was less than the nominal 95% level. This can be seen in Figure 12 (level change) and 
Supplementary 1.11 (slope change), where a relationship between the magnitude of bias in 
the estimates of autocorrelation and confidence interval coverage is clearly evident. Ideally 
the confidence interval coverage should be at the nominal 95% level with no bias in 
autocorrelation (the intersection of the dashed lines in Figure 12). For short time series, the 
severe underestimation of autocorrelation led to poorer confidence interval coverage than had 
autocorrelation been ignored, as is the case with OLS. 

  

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted October 14, 2020. ; https://doi.org/10.1101/2020.10.12.20211706doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.12.20211706


 
Figure 12: Bias in autocorrelation estimate versus coverage for level change. The horizontal axis shows the bias in the 
autocorrelation estimate. The vertical axis shows the percentage coverage. The horizontal dashed line indicates 95% 
coverage, the vertical dashed line indicates no bias in the estimate of autocorrelation. Each colour represents a different 
value of underlying autocorrelation, ranging from zero (purple) to 0.8 (red), with each value displayed in a circle at the 
smallest series length (six points). The arrows point from shortest to longest series length, with the small circles at the end of 
each line showing coverage at a series length of 100 data points. Each data point shows the mean value from 10,000 
simulations for a given combination of autocorrelation coefficient and number of points in the series. The simulation 
combination presented is for a level change of 2 and slope change of 0.1; however, other combinations give similar results. 
Abbreviations: ARIMA, autoregressive integrated moving average; OLS, ordinary least squares; NW, Newey-West; PW, 
Prais-Winsten; REML, restricted maximum likelihood; Satt, Satterthwaite. 

We included REML due to its potential to reduce bias in the variance parameters compared 
with maximum likelihood. Although the ARIMA model fitted in our simulations used 
maximum likelihood estimation, the model-based SEs were generally more similar to the 
empirical SEs for the ARIMA method compared with the REML method (where the model-
based SEs were generally smaller than the empirical SEs), confidence interval coverage was 
generally better with REML. Further, the REML method yielded less biased estimates of 
autocorrelation than the other methods, even for small series lengths. 

The only method to yield overly conservative confidence intervals was the REML with SW 
adjustment to the t-distribution d.f.. When deciding whether to use the Satterthwaite 
adjustment, consideration therefore needs to be made between the trade-off in the risk of type 
I and type II errors. A further issue we identified with the Satterthwaite adjustment was that 
the adjusted d.f. were very small in some series, leading to nonsensible confidence intervals. 
To limit this issue we set a minimum value of 2 for the d.f., but other choices could be 
adopted. 

  

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted October 14, 2020. ; https://doi.org/10.1101/2020.10.12.20211706doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.12.20211706


The DW test is the most commonly used test to identify autocorrelation and is often used 
when series are short4 6. Some authors use the test as part of a two-stage analysis strategy 
where they first test for autocorrelation, and depending on the result of the test, either use a 
method that attempts to adjust for autocorrelation or not. This type of two-stage approach is 
used in other contexts, such as testing for carryover in crossover trials. The findings of our 
simulation study underscore why such two stage approaches fail and are discouraged; 
namely, due to their failure to detect the presence of a statistic when it exists (i.e., their high 
type II error rate). In our case, we found that for short series (fewer than 12 data points), the 
DW test failed to identify autocorrelation when it was present, and for moderate length series 
(i.e. 48 points), with an underlying autocorrelation of 0.2, autocorrelation was only detected 
in 7% of the simulations. 

7.2 Comparisons with other studies 
We are not aware of other simulation studies that have examined the performance of 
statistical methods for interrupted time series studies. However, other simulation studies have 
investigated the performance of methods for general time series, and our findings align with 
these. Alpargu and Dutilleul10 concluded from their simulation study examining the 
performance of REML, PW and OLS for lag(1) time series data over a range of series lengths 
(from 10 to 200), that REML is to be preferred over OLS and PW in estimating slope 
parameters. Cheang and Reinsel14 examined the performance of ML and REML for 
estimating linear trends in lag(1) time series data of length 60 and 120 (both with and without 
seasonal components) and concluded that the REML estimator yielded better confidence 
interval coverage for the slope parameter, and less biased estimates of autocorrelation. Smith 
and McAleer9 examined the performance of the NW estimator for time series of length 100 
with lags of 1, 3 and 10, and found that it underestimated the SEs of the slope parameter.  

7.3 Strengths and Limitations 
The strengths of our study include that we have used many combinations of parameter 
estimates and statistical methods. Our parameter values were informed by characteristics of 
real world ITS studies4. We planned and reported our study using the structured approach of 
Morris et al24 for simulation studies, and we generated a large number of data sets per 
combination to minimise MCSE.  

As with all simulation studies, there are limitations to the applicability of findings. All data 
series were based on a random number generator and results may change given a different set 
of series, however, this is unlikely to be problematic given our MCSE was < 0.5% for all 
potential values of coverage and type I error rate. Our findings are only applicable to the 
scenarios in which they were generated, and so may not apply to ITS studies with different 
characteristics, such as unequal numbers of time points in the pre- and post-interruption 
segments, non-constant variance or different lags of autocorrelation.  
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7.4 Implications for practice 
We found that all methods yielded unbiased estimates of the level and slope change, 
however, the methods differed in their performance in terms of confidence interval coverage 
and estimation of the autocorrelation parameter. Confidence interval coverage was primarily 
determined by the length of the time series and the underlying magnitude of autocorrelation. 
In practice, however, most analysts will only have knowledge of the length of the time series 
to guide in the choice of method. In rare cases, knowledge of the likely size of the underlying 
autocorrelation may be available from a previous long time series study in a similar context, 
which could help inform their choice. In our review of ITS studies investigating public health 
interruptions or exposures, the magnitude of autocorrelation was almost never explicitly 
specified (1%, 3/230 time series)4. Analysis of data extracted from the ITS studies included in 
this review using the REML method yielded a median autocorrelation 0.2 (IQR: 0 to 0.6, 
n=180); however,  as shown from the simulation study, the estimates of autocorrelation (on 
which these summary statistics are based) are likely to be underestimated. 

From the statistical methods and scenarios we examined, we found that for small time series 
(approximately 12 points or under), in the absence of a method that performs well adjusting 
for autocorrelation in such short series, OLS is the recommended method. For longer time 
series, REML is recommended. If the analyst has knowledge that the underlying 
autocorrelation is likely to be large, then using REML with the Satterthwaite adjustment may 
be advantageous. However, when the Satterthwaite adjustment yields d.f. lower than 2, we 
recommend replacing these with 2 to mitigate nonsensible confidence intervals. When REML 
doesn’t converge, ARIMA provides a reasonable alternative. Given most methods will yield 
confidence intervals that are too small, with type I error rates greater than 5%, borderline 
findings of statistical significance for the regression parameters should be cautiously 
interpreted; these may be due to chance rather than as a result of the interruption. 

Estimates of autocorrelation from long series can be useful to inform sample size calculations 
and analytical decisions in future studies. We recommend reporting the REML estimates of 
the autocorrelation coefficient when possible. We only recommend using the DW test for 
detecting underlying autocorrelation in long time series (longer than 100 data points) and 
recommend against its use as part of a two-stage or stepwise approach to determine whether 
to use a statistical method that adjusts for autocorrelation.  

In terms of study design, we recommend using at very minimum 24 points data points. With 
this number of points, confidence interval coverage close to the nominal 95% level can be 
achieved using REML with the Satterthwaite adjustment (when underlying autocorrelation is 
between 0 and 0.6). With fewer data points, poor confidence interval coverage is likely, 
irrespective of method. 
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7.5 Implications for future research 
Although we investigated the statistical methods most commonly observed in reviews of ITS 
studies1-4 6, there is scope for further research examining other statistical methods, such as 
robust methods27 or Bayesian approaches where the uncertainty in the estimate of 
autocorrelation could be incorporated. We investigated one small-sample adjustment 
(Satterthwaite) though others, such as Kenward-Roger28, which adds a correction to the SE of 
regression parameter estimates, could also be examined. Further investigation of how the 
methods perform for scenarios other than those we investigated would be valuable. For 
example, when there are unequal numbers of points pre- and post-interruption, lags greater 
than 1, and where the autocorrelation and error variance differ between the pre and post 
interruption periods. 

7.6 Conclusion 
We undertook a simulation study to examine the performance of a set of statistical methods 
to analyse ITS data under a range of scenarios that included different level and slope changes, 
varying lengths of series and magnitudes of autocorrelation. We found that all methods 
yielded unbiased estimates of the level and slope change, however, the magnitude of 
autocorrelation was underestimated by all methods. This generally led to SEs that were too 
small and confidence interval coverage that was less than the nominal level. The DW test for 
the presence of autocorrelation performed poorly except for long series and large underlying 
autocorrelation. Care is needed when interpreting results from all methods, given the 
confidence intervals will generally be too narrow. Further research is required to determine 
and develop methods that perform well in the presence of autocorrelation, especially for short 
series. 
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Appendix 1 Statistical method details 
Appendix 1.1 Ordinary Least Squares 
Model (1) can be written in a matrix form as: 

Y = Xβ + ε (3) 
 

where Y and ε are n × 1 vectors whose tth element is yt and εt respectively, X is the n × 4 
design matrix with 𝑡𝑡′𝑡𝑡ℎ  𝑟𝑟𝑟𝑟𝑟𝑟  �1, 𝑡𝑡,𝐷𝐷𝑡𝑡 ,𝐷𝐷𝑡𝑡𝐼𝐼(𝑡𝑡 − 𝑇𝑇1)�, and 𝜖𝜖𝑡𝑡 ∼ 𝑁𝑁(0,𝜎𝜎2). The OLS estimator 
of 𝛽𝛽 is 𝛽̂𝛽𝑂𝑂𝑂𝑂𝑂𝑂 = (𝑋𝑋′𝑋𝑋)−1𝑋𝑋′𝑌𝑌, and 𝑉𝑉𝑉𝑉𝑉𝑉(𝛽̂𝛽𝑂𝑂𝑂𝑂𝑂𝑂) = 𝜎𝜎2(𝑋𝑋′𝑋𝑋)−1. 

Appendix 1.2 Newey West 
The NW estimator (lag-1) of 𝛽𝛽 is just the OLS estimator, 𝛽̂𝛽𝑁𝑁𝑁𝑁 = 𝛽̂𝛽𝑂𝑂𝑂𝑂𝑂𝑂, but with a sandwich 
variance estimator of the form   

 (5) 
𝑉𝑉𝑉𝑉𝑉𝑉� �𝛽̂𝛽𝑁𝑁𝑁𝑁� = (𝑋𝑋′𝑋𝑋)−1𝑋𝑋′𝛺𝛺�𝑋𝑋(𝑋𝑋′𝑋𝑋)−1  

where: 

𝑋𝑋′𝛺𝛺�𝑋𝑋 = 𝑋𝑋′𝛺𝛺�0𝑋𝑋 +
𝑛𝑛

𝑛𝑛 − 𝑘𝑘
1
2
�𝑒̂𝑒𝑡𝑡𝑒̂𝑒𝑡𝑡−1(𝑥𝑥𝑡𝑡′𝑥𝑥𝑡𝑡−1 + 𝑥𝑥𝑡𝑡−1′ 𝑥𝑥𝑡𝑡)
𝑛𝑛

𝑡𝑡=2

 
(6) 

𝑋𝑋′𝛺𝛺�0𝑋𝑋 =
𝑛𝑛

𝑛𝑛 − 𝑘𝑘
�𝑒̂𝑒𝑖𝑖2

𝑖𝑖

𝑥𝑥𝑖𝑖′𝑥𝑥𝑖𝑖 
(7) 

𝑒̂𝑒𝑖𝑖 = 𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖𝛽̂𝛽𝑂𝑂𝑂𝑂𝑂𝑂 (8) 
 where X is the same 𝑛𝑛 × 4 design matrix as specified for OLS above. The central term in the 
variance expression allows for empirical determination of autocorrelation and 
heteroskedasticity15.   

Appendix 1.3 Generalised Least Squares 
In the Cochrane-Orcutt and Prais-Winsten methods, from the equations (1) and (2), the 
dependent and independent variables are transformed to create a new model in which the 
error terms are uncorrelated: 

𝑌𝑌𝑡𝑡∗ = 𝑌𝑌𝑡𝑡 − 𝜌𝜌𝑌𝑌𝑡𝑡−1 (9a) 
𝑋𝑋𝑡𝑡∗ = 𝑋𝑋𝑡𝑡 − 𝜌𝜌𝑋𝑋𝑡𝑡−1 (9b) 

Then fit 𝑌𝑌𝑡𝑡∗ = 𝑋𝑋𝑡𝑡∗𝛽𝛽 + 𝑤𝑤𝑡𝑡 , where 

𝑤𝑤𝑡𝑡 = 𝜀𝜀𝑡𝑡 − 𝜌𝜌𝜀𝜀𝑡𝑡−1 ∼ 𝑁𝑁(0,𝜎𝜎2) (10) 
using OLS, and iterate until convergence. 

Generally, the correlation is unknown, and must first be estimated. An estimate of 
autocorrelation at each iteration can be obtained using the OLS residuals 𝑒𝑒𝑡𝑡  from fitting 
Equation (2) as above: 

𝜌𝜌� =
∑ 𝑒𝑒𝑡𝑡−1𝑒𝑒𝑡𝑡𝑛𝑛
𝑡𝑡=2

∑ 𝑒𝑒𝑡𝑡−12𝑛𝑛
𝑡𝑡=2

 
(11) 

 The CO method discards the first observation, while the PW method retains the first 
observation, but applies the following transformation15: 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted October 14, 2020. ; https://doi.org/10.1101/2020.10.12.20211706doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.12.20211706


𝑦𝑦1∗ = �1 − 𝜌𝜌2𝑦𝑦1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑋𝑋1∗ = �1 − 𝜌𝜌2𝑋𝑋1, where 𝑋𝑋1 is the first row of X. (12) 

Appendix 1.4 Autoregressive integrated moving average 
The ARIMA model includes parameters that model observations and error terms from 
previous time points. In an ARIMA model with first order autocorrelation only, i.e. 
ARIMA(1,0,0), equations (1) and (2) are fit simultaneously by maximum likelihood. 

Appendix 1.5 Durbin-Watson test for autocorrelation 
The Durbin-Watson test statistic is given by: 

𝐷𝐷 =
∑ (𝑒𝑒𝑡𝑡 − 𝑒𝑒𝑡𝑡−1)2𝑛𝑛
𝑡𝑡=2

∑ 𝑒𝑒𝑡𝑡2𝑛𝑛
𝑡𝑡=1

 
(13) 

For test statistic values under two, D is compared to lower (𝑑𝑑𝐿𝐿) and upper (𝑑𝑑𝑈𝑈) bounds, 
leading to either a conclusive or inconclusive result. For test statistic values over two, 4-D is 
compared to the lower and upper bounds and a conclusive 𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 indicates the presence 
of negative autocorrelation: 

 𝐼𝐼𝐼𝐼 𝐷𝐷 > 𝑑𝑑𝑈𝑈 , 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐻𝐻𝑜𝑜  
𝐼𝐼𝐼𝐼 𝐷𝐷 < 𝑑𝑑𝐿𝐿 , 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  
𝐼𝐼𝐼𝐼 𝑑𝑑𝐿𝐿 ≤ 𝐷𝐷 ≤ 𝑑𝑑𝑈𝑈, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  

Lower (𝑑𝑑𝐿𝐿) and upper (𝑑𝑑𝑈𝑈) bounds can be found in tables online or in textbooks, e.g. Kutner 
et al13. 

Appendix 2 Definitions of performance measures 
Table 3:Definitions of performance measures. Where 𝜃𝜃 represents the parameter under investigation, 𝜃𝜃� being the estimate 
of that parameter, 𝜃̅𝜃 being the mean value of the estimate, 𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠 being the number of simulations (in this study, 10,000), 𝑝𝑝𝑖𝑖  
being the p-value of estimate 𝑖𝑖 and 𝛼𝛼 being the significance level22. 

Performance measure Definition Estimate 
Bias 𝐸𝐸�𝜃𝜃�� − 𝜃𝜃 1

𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠
� 𝜃𝜃�𝑖𝑖 − 𝜃𝜃
𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠

𝑖𝑖=1

 

Empirical standard error 
�𝑉𝑉𝑉𝑉𝑉𝑉�𝜃𝜃�� 

�
1

𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠 − 1
��𝜃𝜃�𝑖𝑖 − 𝜃̅𝜃�2
𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠

𝑖𝑖=1

 

Mean square error 𝐸𝐸 ��𝜃𝜃�𝑖𝑖 − 𝜃𝜃�2� 1
𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠

��𝜃𝜃�𝑖𝑖 − 𝜃𝜃�2
𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠

𝑖𝑖=1

 

Coverage 𝑃𝑃𝑃𝑃�𝜃𝜃�𝑙𝑙𝑙𝑙𝑙𝑙 ≤ 𝜃𝜃 ≤ 𝜃𝜃�𝑢𝑢𝑢𝑢𝑢𝑢� 1
𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠

� 1�𝜃𝜃�𝑙𝑙𝑙𝑙𝑙𝑙,𝑖𝑖 ≤ 𝜃𝜃 ≤ 𝜃𝜃�𝑢𝑢𝑢𝑢𝑢𝑢,𝑖𝑖�
𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠

𝑖𝑖=1

 

Power 𝑃𝑃𝑃𝑃(𝑝𝑝𝑖𝑖 ≤ 𝛼𝛼) 1
𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠

� 1(𝑝𝑝𝑖𝑖 ≤ 𝛼𝛼)
𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠

𝑖𝑖=1
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