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Abstract: (1) Background: Network analysis allows investigators to explore the many facets1

of brain networks, particularly the proliferation of disease. One of the hypotheses behind the2

disruption in brain networks in Alzheimer’s disease is the abnormal accumulation of beta-amyloid3

plaques and tau protein tangles. In this study, the potential use of percolation centrality to4

study beta-amyloid movement was studied as a feature of given PET image-based networks; (2)5

Methods: The PET image-based network construction is possible using a public access database6

- Alzheimer’s Disease Neuroimaging Initiative, which provided 551 scans. For each image, the7

Julich atlas provides 121 regions of interest, which are the network nodes. Besides, using the8

collective influence algorithm, the influential nodes for each scan are calculated; (3) Analysis of9

variance (p<0.05) yields the region of interest Gray Matter Broca’s Area for PiB tracer type for five10

nodal metrics. In comparison, AV45: the Gray Matter Hippocampus region is significant for three11

of the nodal metrics. Pairwise variance analysis between the clinical groups yields five and twelve12

statistically significant ROIs for AV45 and PiB, capable of distinguishing between pairs of clinical13

conditions. Multivariate linear regression between the percolation centrality values for nodes and14

psychometric assessment scores reveals Mini-Mental State Examination is reliable(4) Conclusion:15

percolation centrality effectively (41% of ROIs) indicates that the regions of interest that are part16

of the memory, visual-spatial skills, and language are crucial to the percolation of beta-amyloids17

within the brain network to the other widely used nodal metrics. Ranking the regions of interest18

based on the collective influence algorithm indicates the anatomical areas strongly influencing the19

beta-amyloid network.20

Keywords: Brain Mapping; P.E.T.; Neurodegenerative Disorders; Alzheimer’s Disease; Graph21

Theory; Percolation Centrality; Collective Influence.22

1. Introduction23

Alzheimer’s disease predominantly stands out when it comes to neurodegenerative24

diseases affecting the middle-age (early-onset Alzheimer’s disease (A.D.)) and the old-25

age (Late-onset AD) human population. Current projections are estimated to cost about26

2 trillion U.S. Dollars by 2030[1] affecting 75 million individuals by the same year. The27

indirect costs are estimated to be about 244 billion U.S. Dollars[2]. With no sight of a28

cure for A.D. and with increasing cases, early diagnosis and active management are the29

keys to tackling this disease for now. The ability to predict the disease’s progression30

with high accuracy helps design a suitable treatment regime at an early stage, thereby31

bringing the disease’s management to an affordable cost range.32

The current methods of diagnosis of the disease include both non-invasive and33

invasive techniques of investigations ranging from Positron Emission Tomography (PET)34
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scans[3] or Cerebrospinal Fluid (CSF) analysis[4]. Positron Emission Tomography or PET35

imaging involves the use of radiopharmaceuticals such as 2-[18F], florbetapir-fluorine-1836

(AV45), or 11C-Pittsburgh compound B (PiB). AV45 and PiB[5] are comparatively newer37

and different in terms of the image construction mechanism. Both AV45 and PiB bind to38

beta-amyloid but vary in their half-life. AV45 has a half-life of 109.75 minutes and PiB,39

20 minutes[6]. A comparison between PiB and AV45 varies because AV45 shows uptake40

within the white matter regions[7].41

A combination of techniques or criteria is currently employed to detect and de-42

termine the extent of dementia due to AD. Methods which include family history,43

psychiatric history for cognitive and behavioral changes, which is then followed by44

psychometric assessments such as Mini-Mental State Examination (MMSE)[8], Frontal45

Assessment Battery[9] and the Neuropsychiatric Inventory Questionnaire (NPIQ)[10].46

The MMSE questionnaire provides assessment in five areas of cognitive function;47

Orientation, Attention, Memory, Language, and Visual-Spatial skills. Similarly, the NPI48

questionnaire provides assessment in twelve neuropsychiatric symptoms. These two49

questionnaires provide the classification of the patients into three clinical conditions;50

cognitively normal, mild cognitive impairment, and dementia due to A.D.51

The application of network analysis/graph theory to anatomical neural networks52

has proved useful in understanding the brain connectivity[11,12](deviations under vari-53

ous psychological and neurological disease states. Network analysis on neuroimaging54

data such as EEG, MEG, fMRI, and PET scans proves to be useful to show the variation55

between a cognitively normal population versus other diagnostic states using various56

graph-theoretic metrics[13,14].57

Graph metrics such as characteristic path length, clustering coefficient, modularity,58

and hubs have been studied and have provided insights into the brain networks of AD59

patients and control groups. Some studies have tried to map the progression of MCI60

to dementia due to AD[15,16]; thus, network analysis and the various graph metrics61

have shown potential as a tool to investigate the brain networks. Network analysis62

on AD is a practical application wherein it describes the Alzheimer’s brain network’s63

behaviour. Connectivity analysis using fMRI and EEG data reports provides mixed64

responses; when comparing AD patients and the control group[17], there is an increase65

or decrease in the network’s connectivity. A reduction in connectivity could explain the66

cortical atrophy/disruption of the network. An increase could explain the compensatory67

mechanism[18].68

Network Analysis on PET images related to A.D. mainly revolve around learning69

models or are limited to tracers that focus on the metabolic networks and the associated70

deviations of these networks[19,20]. Other methods include applying algorithms to the71

raw PET images to recognize patterns to resolve differences between healthy controls72

and patients with neurodegeneration[21]. The use of PET imaging and lumbar puncture73

to determine the levels of beta amyloids in either of them beyond the normal levels is74

the current standard of practice for the determination of dementia due to A.D.[22,23].75

To understand beta-amyloid propagation, we propose applying graph theoretic76

methods on PET images to understand beta-amyloid advancement. The main benefit of77

adding this method is that78

• This does not introduce any new steps for data collection from the patient and, at79

the same time.80

• Adds value to the existing data by computing the percolation centrality of a given81

node at a given time82

Network topology offers insights into the evolution of the network in a clinical83

setting. Studying such an evolution provides a possibility to understand the weak84

links within Julich atlas[24–26] based region of interest(ROI) networks. Such networks’85

structural connectivity information might yield the source and sink of neurodegeneration86

with the brain architecture.87
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Percolation centrality is defined as the proportion of ’percolated paths’ that pass88

through that node; this measure quantifies the relative impact of nodes based on their89

topological connectivity, as well as their percolated states. In other words, it is one90

such graph metric that looks at the extent to which a given node within a network91

has percolated information or can percolate information(Figure 1). The volume of92

information transmitted via a given node is provided by values ranging from 0.0 to93

1.0[27,28]. Prior exploration of percolation centrality on disease networks[28–31] and94

percolation centrality in disease networks of the brain[32] have shown this as a promising95

metric for brain network investigation.96

The knowledge on the application of percolation centrality on human PET-image-97

based networks is scarce at present. This work aims at adding knowledge to the gap.98

On the other hand, collective influence provides a minimum set of nodes or regions99

of the interest that can transfer information or spread disease with ease with optimal100

spread[33] based on the optimal percolation theory. By examining the network for the101

minimum set of nodes, this set will provide the regions of interest within the brain that102

optimally move beta-amyloid, disrupting the normal functioning of the existing neural103

networks.104

Thus, the ability to detect the disease and predict the rate of progression of the105

disease at an early stage is imperative. To this end, the study aims to answer two main106

questions:107

1) Can percolation centrality measure be used to determine the percolation of108

beta-amyloids within the brain?109

2) Can the collective influence algorithm provide a minimum set of nodes that are110

vital to the AD network?111

2. Materials and Methods112

2.0.1. Patient Distribution113

Based on the tracer agents used for acquiring the PET images, each diagnostic state114

subset of the data set is divided into the two available tracers; AV45[34] and PiB[6]. The115

patients are categorized as Cognitively normal, with Mild Cognitive Impairment, or116

having Alzheimer’s Disease (AD) based on the ADNI study’s psychometric assessments.117

Next, the PET image is matched with the patient’s diagnostic state at the time of the118

imaging procedure. This provided a set of observations for each type of tracer for each119

patient condition clinical group((Table 1). Finally, the resulting set of patients is matched120

with the demographic information providing 531 patients.121

2.1. Network Construction and Processing122

2.1.1. PET Image preprocessing123

Image preprocessing is carried out in two steps (Figure 2):124

1. Combining individual frames of the PET image to form a 4D raw activity image.125

This is done using the fslmerge utility included in FSL[35].126

2. The 4D raw activity image is converted to a 4D SUV image using the following
formula:

SUV =
cimg

cinj
(1)

where cimg (Mbq ml−1) is given by the raw activity image and cinj =
ID
BW . ID (MBq)127

is the injection dose[36], and BW (g) is the body weight of the patient, considering128

the equivalency 1g = 1ml129

3. Spatially realigning the PET frames to correct for motion. This was done using130

MCFLIRT.[37] The motion correction occurs with 6 DOF. The PET frames are131

realigned using the mean image as a template. The mean image is obtained by132

applying the motion correction parameters to the time series and averaging the133

volumes.134
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4. Coregistering the 4D SUV image from subject space to MNI[38] space. This is done135

using FreeSurfer[39]. The image used for coregistration is the MNI152_T1_2mm_brain.136

To parallelize this operation, GNU Parallel[40] is used.137

2.2. PET Image-based Network Construction138

The network is constructed using the regions of interest (ROIs) from the Julich139

Atlas. This atlas provides 121 ROIs, which translates to 121 nodes or vertices in the140

network((Figure 3). Building networks from the preprocessed images requires the141

generation of adjacency matrices. The adjacency matrix is computed by calculating the142

method described below.143

The Bivariate Pearson correlation performs poorly in cases of "confounding" or144

"chain" interactions. In such cases, partial correlation measures the direct connectivity145

between two nodes by estimating their correlation after regressing out effects from all146

the other nodes in the network, hence avoiding spurious effects in network modeling.147

Whereas in cases of "colliding" interactions, a partial correlation may induce a spurious148

correlation. Thus, Sanchez-Romero and Cole have introduced a combined multiple149

functional connectivity method[41].150

The network is constructed by computing the pairwise partial correlation values of151

voxel intensities in the PET images to produce an initial adjacency matrix (matrixpart). A152

second matrix (matrixbivar) is constructed by computing the bivariate correlation values153

of voxel intensities in the PET images. Now, matrixpart is modified using matrixbivar as154

follows:155

matrixpart(i, j) =

{
0 i f matrixbivar(i, j) = 0
no change otherwise

(2)

where matrixpart(i, j) and matrixbivar(i, j) is the element at (i, j) in the respective156

matrices. matrixpart is now the combinedFC adjacency matrix that defines the net-157

work((Figure 4).158

The partial correlation is calculated using the correlation between two residuals;159

the values are computed using N − 2 ROIs as co-factors for every pair of ROIs[42]. The160

partial correlation values serve as the edge weights and constitute the values in the161

adjacency matrices.162

Partial correlations are computed as correlation of residuals. The first order partial163

correlation (ρij.k) of xi and xj, controlling for xk is given by [43].164

corr(resid(i|k), resid(j|k)) =
cij − cikvkckj√

vi − cikvkcki
√

vj − cjkvkckj
(3)

where cij = cov(xi, xj) and vk = var(xk) Further,

ρij.k =
ρij − ρikρjk√

1− ρ2
ik

√
1− ρ2

jk

(4)

Since we are controlling for (N − 2) ROIs for each pair of ROIs ROIi and ROIj, we165

calculate the (N − 2)th order partial correlation. This is calculated recursively as166

For each ROIk ∈ ROIs

ρij.ROIs =
ρij.ROIs\{k} − ρik.ROIs\{k}ρkj.ROIs\{k}√

1− ρ2
ik.ROIs\{k}

√
1− ρ2

kj.ROIs\{k}

(5)

The base case of this recursive algorithm is given by equation 3. The estimation of167

partial correlations is a computationally intensive task, mainly due to the pre-calculation168
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of residuals before computing cross-correlation. And because the number of covariates is169

large; this calculation is done in a time-optimized manner using the R package ppcor[43].170

Next, the adjacency matrices with set threshold; using a) data-driven threshold171

scheme based on Orthogonal Minimal Spanning Trees (OMSTs)[21,44,45]. Network172

threshold serves to remove inconsequential (or low-impact) edges and reduce the net-173

work complexity. And b) shortest path thresholding scheme [46]. This is done to compare174

between the two common schemes used for threshold.175

The Networkx[47] Python library is used for network construction from the thresh-176

old adjacency matrices and subsequent percolation centrality computation and other177

graph metrics.178

2.3. Percolation Centrality Computation179

Percolation centrality is a nodal metric and is calculated for each node. The percola-
tion centrality for each node v at time t is calculated as shown below:

PCt(v) =
1

(N − 2) ∑
s 6=v 6=r

σs,r(v)
σs,r

xt
s

[∑ xt
v]− xt

v
(6)

Where σs,r is the number of shortest paths between nodes s and r pass-through node v,180

xt
i is the percolation state of node i at time t,181

xt
i = 0 indicates a non-percolated node and,182

xt
i = 1 indicates a fully percolated node.183

The percolation centrality value is calculated for each network using the inbuilt184

function of Networkx.(see supplementary data)185

2.4. Collective Influence Algorithm186

We define G(q) the fraction of occupied sites (or nodes) belonging to the gi-187

ant(largest) connected component. Percolation theory[48] tells us that if we choose188

these q fraction of nodes randomly, the network undergoes a structural collapse at a cer-189

tain critical fraction where the probability of existence of the giant connected component190

vanishes, G = 0. The optimal percolation problem is finding the minimum fraction qc of191

nodes to be removed such that G(qc) = 0 i.e. the minimum fraction of “influencers” to192

fragment the network. For any fixed fraction q < qc, we search for the configuration of193

removed nodes that provides the minimal non-zero giant connected component G. For194

further reading on how the problems of optimal immunization and spreading (optimal195

influencer problem) to the problem of minimizing the giant component of a network,196

i.e., optimal percolation problem, readers are encouraged to read [49].197

The algorithm is on the basis that, given a network: the flow of information within198

the network is optimal with a minimum number of nodes that weigh heavily on the199

flow of information through the said network[33]. In the context of this investigation,200

the small sets of nodes/ROIs would prove to be vital in the movement of beta-amyloid201

plaques.202

The core idea is that the overall functioning of a network in terms of the spread of203

information (or in our case, movement of beta-amyloid plaques) hinges on a specific204

set of nodes called influencers. This idea of finding the most influential nodes has been205

previously used in other contexts, for example, activating influential nodes in social206

networks to spread information[50] or de-activating or immunizing influential nodes to207

prevent large scale pandemics[30,51]. In recent applications to neuroscience, this method208

has been used to find nodes essential for global integration of a memory network in209

rodents[32]. Our work is the first to apply it to study the progression of AD, to the best210

of our knowledge. In the context of this investigation, these small sets of influential211

nodes/ROIs would prove to be vital in the movement of beta-amyloid plaques.212

With the implementation of Collective Influence (CI) algorithm, it facilitates to213

pinpoint the most influential nodes, more efficiently than previously known heuristic214
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techniques. CI is an optimization algorithm that aims to find the minimal set of nodes215

that could fragment the network in optimal percolation, or in a sense, their removal216

would dismantle the network in many disconnected and non-extensive components.217

In percolation theory, if we remove nodes randomly, the network would undergo a218

structural collapse at a critical fraction where the probability that the giant connected219

component exists is G = 0. The optimal percolation is an optimization problem that220

attempts to find the minimal fraction of influencers q to achieve the result G(q) = 0.221

2.5. Other Graph metrics222

Besides the percolation centrality measure, four other nodal metrics of a graph are223

calculated here. Below are the four metrics that are computed for the PET image based224

graphs.225

2.5.1. Betweenness Centrality226

The basic definition of betweenness centrality is defined as,227

CB(u) =
∑s 6=u 6=t

∂st(u)
∂st

(n− 1)(n− 2)/2
(7)

This centrality information provides the uniqueness of it within the network. In228

this study it provides the regions of interest that play a vital role in the information flow229

in the network; the information being beta-amyloids or tau proteins accumulation in230

those regions.231

2.5.2. Closeness Centrality232

The closeness centrality of a node denotes how close a node is in the given network.233

It is inversely proportional to the farness of the node. Freeman defined the closeness234

centrality as,235

Cc(u) =
n− 1

∑∀u,v 6=u d(u, v)
(8)

The distance between two nodes/ROIs u and v in a network, denoted d(u,v), is236

defined as the number of hops made along the shortest path between u and v. In this237

case, lesser the hops; closer are the two ROI’s and the ease with which the misformed238

proteins can travel.239

2.5.3. Current Flow Betweenness Centrality240

Given a source ROI(s) and a target ROI(t), the absolute current flow through edge241

(i, j) is the quantity Ai,j|v
(s,t)
i − v(s,t)

j |. By Kirchhoff’s law the current that enters a node is242

equal to the current that leaves the node. Hence, the current flow F(s,t)
i through a node i243

different from the source s and a target t is half of the absolute flow on the edges incident244

in i:245

F(s,t)
i =

1
2 ∑

j
Ai,j|v

(s,t)
i − v(s,t)

j |246

Moreover, the current flows F(s,t)
s and F(s,t)

t through both s and t are set to 1, if247

end-points of a path are considered part of the path, or to 0 otherwise. Since the potential248

v(s,t)
i = G+

i,s − G+
i,t, with G+ the generalized inverse of the graph Laplacian, the above249

equation can be expressed in terms of elements of G+ as follows:250

F(s,t)
i =

1
2 ∑

j
Ai,j|G+

i,s − G+
i,t + G+

j,t − G+
j,s|251
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Finally, the current-flow betweenness centrality bi of node i is the flow through i
averaged over all source-target pairs (s, t):

bi =
∑s<t F(s,t)

i
(1/2)n(n− 1)

(9)

2.5.4. Eigenvector Centrality252

Eigenvector centrality is a measure of the influence a node has on a network. If a253

node is pointed to by many nodes (which also have high Eigenvector centrality) then254

that node will have high Eigenvector centrality. In this case, the ROI’s are the nodes255

and PET images provide the intensity value for each ROI, which helps in computing256

the centrality values each scan. Another interpretation to the centrality measure is that257

it provides the list of prominent regions in the brain network hierarchy and helps in258

detection of localized differences between patient populations[52].259

Previous work on AD patients and comparison with normal patients provides the260

usefulness of Eigenvector centrality[53].261

3. Statistical Analysis262

For this study the null hypothesis is that percolation centrality value does not263

indicate the propagation of beta-amyloids within the brain network.264

To determine the impact the percolation value has over each PET scan, a compar-265

ison with the regions of interest from the brain atlas is done using the Multiple linear266

regression analysis.267

This study is exploratory in nature, and that the multiplicity problem is significant.268

And implementation of multiple test procedures does not solve the problem of making269

valid statistical inference for hypotheses that were generated by the data. But it does270

assist in describing the possible mechanism.271

3.1. Pairwise Analysis of Variance272

To obtain pairwise group differences, we carry out a post prior (post hoc) analysis273

using scikit-posthocs package; the Student T-test pairwise gives us the respective p274

values. The ANOVA test is performed for each node in the network with the null275

hypothesis that the mean percolation centrality of that node is the same across the three276

stages. To test the null hypothesis, Analysis of variance with significance level (α) of 0.05277

is used.278

3.2. Error Correction279

To control for multiple comparisons of 121 nodes, the Scheffe Test and control280

for Experiment-wise Error Rate (EER) is carried out. It is a single-step procedure that281

calculates the simultaneous confidence intervals for all pairwise differences between282

means.283

3.3. Multivariate Linear Regression284

A correlation between the percolation centrality values for all 121 nodes and psy-285

chometric test scores - MMSE and NPIQ - is computed to identify the regions of interest286

that can be used as reliable predictors. Instead of performing multiple correlations across287

all three diagnoses, a multivariate regression analysis using regularisation techniques,288

wherein the features are the nodal percolation centrality values, and the target variable289

is the MMSE or NPIQ score. The goal is not to build a predictive model but to use it290

to quantify each node’s influence in distinguishing between the clinical conditions for291

interpretation purposes. Had the purpose been building a machine learning model, it292

would imply the need to develop elaborate features sets (more than just percolation293

centrality) and utilize complex machine learning architectures (which provide less room294

for interpretability)295
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3.4. Regularization and Cross-Validation296

We use regularization in our multivariate linear regression (MLR) to make sure our297

regression model generalizes better to unseen data. Regularization is necessary to control298

for overfitting. Here, both Lasso regression (L1 penalty) as well as Ridge regression299

(L2 penalty) are tested, and both provide similar root mean squared errors (RMSE) and300

similar desired results. We choose Lasso with α = 0.1, for reporting our results (Figure 6).301

To quantify the robustness and reliability of our model, before and after regularization,302

we perform a leave one out cross-validation (LOOCV). We choose this cross-validation303

strategy because it is unbiased and better suited to our smaller sample sizes (especially in304

PiB tracer subset). We observe an improvement in validation RMSE with an increase in305

regularization (parameter α), but we also observe that excessive penalization of weights306

at very high values of α can result in the regression model converging to the mean of307

the output MMSE/NPIQ scores. To take this into account, we also plot the standard308

deviation in predicted MMSE/NPIQ outputs and choose α = 1 for sufficient but not309

excessive regularization (Further details in supplementary figures).310

4. Results311

4.1. Pairwise ANOVA312

The student t-test is performed on the resulting five centrality values for each313

tracer type and clinical conditions. There was a significant effect of the beta-amyloid314

accumulation on the five centrality values at p<0.05 level for the three clinical groups[F(3,315

454) = 3.002 for AV45 and F(3, 97) = 3.027 for PiB] (Table 2). A one-way between clinical316

groups ANOVA was conducted to compare the effect of beta-amyloid accumulation/tau317

protein on five centrality values in the cognitive normal, mild cognitive impairment and318

Alzheimer’s disease patient(Table 3 & Table 4)).319

4.1.1. Cross-Validation and Regularization320

Increasing regularization (α) improves the validation RMSE, making it more robust321

and generalize to unseen data. But at higher values of α, it is observed that the standard322

deviation of predicted MMSE scores decreases to less than < 2, irrespective of clinical323

condition. Which could mean that it saturates to predicting the mean MMSE value when324

regression weights are extremely penalized. Thereby choosing a reasonably small yet325

effective α value (less than 2), for which the validation RMSE and the standard deviation326

in output predicted MMSE.327

4.2. Multivariate Linear regression328

A linear regression model between the percolation centrality values for all 121 nodes329

and psychometric test scores - MMSE and NPIQ - is computed to identify the regions of330

interests that can be used as reliable predictors(Figure 4). Instead of performing multiple331

correlations across all three diagnoses, a multivariate regression analysis using leave332

one out cross validation is carried out, wherein the features are the nodal percolation333

centrality values and the target variable are the psychological assessment scores(Table 6334

& Table 7).335

4.3. Comparison of Threshold Schemes336

The two schemes are compared on the number of ROI’s that can be considered337

on the basis of ANOVA analysis(p≤0.05), The Juelich atlas has five clusters; frontal,338

parietal, temporal, occipital lobes and the white matter regions. As well as com- paring339

the performance of the threshold schemes between the two tracers(Table 5). Orthogonal340

Minimum Spanning Tree: provides a total of 112 ROI’s across the five nodal metrics.341

On the Basis of the tracers, 60 ROI’s are obtained for AV45 and 52 for PiB. Further, the342

ranking of ROI on the basis of the threshold scheme is listed for the three clinical groups343

for the respective tracers344
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Shortest Path Threshold: here a total of 66 ROI’s are obtained. 31 and 35 for AV45345

and PiB tracers respectively. On the basis of the collective influence algorithm the ROI’s346

are ranked for the three clinical groups and their respective tracers.347

Further, comparing the number of statistically valid(MLR) ROIs across the five348

centrality values with the psychometric tests; MMSE and NPI-Q is performed. This349

helps in comparing the function of the ROI with the assessment carried out on the350

test(Table 5 Also see supplementary material-Tables 11 through 18).351

4.4. Other Graph Metrics352

The Closeness Centrality provides the highest number of ROI’s across overall(Table353

10); 80 in total. Eigenvector Centrality provides 33 ROI’s(Table 9), whereas Percolation354

Centrality has 24 ROI’s followed by the Betweenness Centrality measure with a total of355

23 ROI’s and Current Flow Betweenness Centrality 19 ROI’s across the two tracers(Table356

8).357

4.5. Collective Influence Ranking358

The collective influence algorithm ranks the ROIs; here, the rank list is generated359

for the two tracers- AV45 and PiB. When a comparison of the rank is carried out between360

the clinical groups and tracers in the case of PiB, the ranking increases when moving361

from CN clinical condition to MCI, and then ranking decreases going from MCI to AD.362

Overall the ranking increases by 50% from cognitively normal condition to Alzheimer’s363

disease condition.364

4.6. Demographics365

On the basis of the selection criteria, 531 patients were available for this study. Of366

this, 48% of the females were of the Cognitively Normal group, 25% with Mild cognitive367

impairment, and 27% with Alzheimer’s disease.368

43% of the patients received more than 12 years of education as opposed to only369

16% who received less than 12 years of education, 31% received more than 12 years of370

education in the MCI group as opposed to 69% with less than 12 years of education.371

47% of the Left-handed patients were in the AD clinical group as opposed to 26%372

in the right-handed patients. One patient in the MCI, two in CN, and four in AD groups373

were multilingual.374

4.7. Figures, Tables and Schemes375

Figure 1. Generic example of a Percolation Network and Percolation Centrality
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Figure 2. PET image preprocessing flowchart.

Figure 3. Analysis Pipeline

Figure 4. A connected network of all the nodes using the Julich Atlas. Green circles indicate the
ROIs, the connecting lines indicate the edges with their weights as denoted by the accompanying
color bar
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Figure 5. Illustrates the ROIs that corresponds to MMSE and NPIQ. The green circles represent
ROIs associated with the MMSE psychometric assessment, the red circles represent ROIs associated
with the NPIQ psychometric assessment, and the blue circles represent ROIs associated with both
MMSE and NPIQ

Figure 6. Regularization using Lasso regression with L1 penalty.

Table 1: Distribution of patients

CN MCI AD
AV45 PiB AV45 PiB AV45 PiB
262 13 76 65 116 19

M - 122
F - 140

M - 8
F - 5

M - 54
F - 22

M - 45
F - 20

M - 67
F - 49

M - 11
F - 8

Total - 275; M - 130, F - 145 Total - 141; M - 99, F - 42 Total - 135; M - 78, F - 57

Table 2: Number of Scans per tracer type and corresponding critical F-values

Tracer AV45 PiB
No. of scans 454 97
Critical F-value 3.002 3.027

CN: Cognitively Normal, MCI: Mild Cognitive Impairment, AD: Alzheimer’s Disease, M: Male, F:376

Female377
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Table 3: Pairwise ANOVA for AV45 & PiB tracers for Betweenness Centrality

Tracer Type AV45 PiB

Thresholding
scheme

ROI f-value p-value ROI f-value p-value

GM Premo-
tor cortex
BA6 R

5.94059 0.00283 GM Broca’s
area BA45 R

5.17524 0.00738

GM Hip-
pocampus
subiculum L

4.96072 0.00738 GM Broca’s
area BA45 L

4.75064
0.01083

GM Visual
cortex V5 L

4.39253 0.01288 GM Ante-
rior intra-
parietal
sulcus hIP3
R

3.79312
0.02605

GM Superior
parietal lob-
ule 7M L

4.34316 0.01352 GM Broca’s
area BA44 L

3.41149
0.03713

GM Primary
motor cortex
BA4a L

3.73311 0.02463 GM Mamil-
lary body

3.28404
0.04182

GM Primary
somatosen-
sory cortex
BA1 R

3.56446 0.02908
OMST

GM Primary
auditory cor-
tex TE1.2 R

3.31334 0.03725

GM Insula
Ig2 L

4.58607 0.01065 GM Broca’s
area BA44 R

6.22323
0.00290

WM Acous-
tic radiation
R

4.20148 0.01554 GM Primary
auditory cor-
tex TE1.2 R

5.14313
0.00759

GM Hip-
pocampus
subiculum L

3.89671 0.02097 WM Cingu-
lum R

4.61277
0.01227

GM Mamil-
lary body

3.63729 0.02707 GM Inferior
parietal lob-
ule PFcm R

3.96185
0.02229

SPT

GM Inferior
parietal lob-
ule Pga R

3.04114 0.04872
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Table 4: Pairwise ANOVA for AV45 & PiB tracers for Percolation Centrality

Tracer Type AV45 PiB

Thresholding
scheme

ROI f-value p-value ROI f-value p-value

GM Premotor
cortex BA6 R

5.87528 0.00302 GM Broca’s
area BA45 R

5.14527
0.00758

GM Hip-
pocampus
subiculum L

4.85879 0.00815 GM Broca’s
area BA45 L

4.82934
0.01008

GM Superior
parietal lobule
7M L

4.48843 0.01172 GM Anterior
intra-parietal
sulcus hIP3 R

3.87541
0.02414

GM Visual
cortex V5 L

4.38407 0.01299 GM Broca’s
area BA44 L

3.42666
0.03661

GM Anterior
intra-parietal
sulcus hIP1 L

4.14044 0.01650 GM Mamil-
lary body

3.33030
0.04005

GM Superior
parietal lobule
7P R

3.83170 0.02235

GM Primary
motor cortex
BA4a L

3.77499 0.02364

GM Primary
somatosen-
sory cortex
BA1 R

3.65131 0.02670OMST

GM Primary
auditory cor-
tex TE1.2 R

3.34477 0.03611

GM Insula Ig2
L

4.64660 0.01004 GM Broca’s
area BA44 R

6.30152
0.00270

WM Acoustic
radiation R

4.38388 0.01299 GM Primary
auditory cor-
tex TE1.2 R

5.03631
0.00836

GM Hip-
pocampus
subiculum L

3.93752 0.02014 WM Cingu-
lum R

4.57068
0.01275

GM Mamil-
lary body

3.54618 0.02961 GM Inferior
parietal lobule
PFcm R

3.94533
0.02263

GM Inferior
parietal lobule
Pga R

3.17572 0.04266SPT

GM Lateral
geniculate
body L

3.05960 0.04784
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Table 5: Distribution of ROI’s across graph metrics and tracer type on the basis of
ANOVA test.

Threshold
Scheme OMST SPT

Tracer/
Centrality Measure AV45 PiB AV45 PiB

BC 9 5 5 4
CC 33 29 10 6

CFBC 5 2 1 12
EVC 4 11 9 9
PC 9 5 6 4

BC: Betweenness Centrality, CC: Closeness Centrality, CFBC: Current Flow Betweenness Centrality, EVC:378

Eigenvector Centrality and PC: Percolation Centrality379

380

Table 6: Multivariate Linear Regression Analysis- Number of Region of Interest Across
Clinical Conditions for Both Threshold Schemes for Betweenness Centrality

Clinical Condition CN MCI AD
Graph Metric PT Tracer OMST SPT OMST SPT OMST SPT

Betweenness Centrality
MMSE AV45 4 5 13 8 4 7

PiB 5 4 5 1 2 9

NPI-Q AV45 0 3 1 1 0 0
PiB 2 14 1 0 3 10

Table 7: Multivariate Linear Regression Analysis- Number of Region of Interest Across
Clinical Conditions for Both Threshold Schemes for Percolation Centrality

Clinical Condition CN MCI AD
Graph Metric PT Tracer OMST SPT OMST SPT OMST SPT

Percolation Centrality
MMSE AV45 4 6 12 2 4 7

PiB 5 3 5 0 2 9

NPI-Q AV45 6 3 2 1 0 0
PiB 2 14 0 1 3 10

PT: Psychometric Assessment, OMST: Orthogonal Minimum Spanning Tree, SPT: Shortest Path Thresh-381

old, MMSE: Mini Mental State Examination, NPIQ: Neuropsychiatric Inventory Questionnaire Questionnaire382

383

5. Discussion384

Here, a comparison of five nodal metrics; Betweenness centrality, closeness central-385

ity, current flow betweenness centrality, Eigenvector centrality, and percolation centrality,386

is carried out to better understand the study. Based on the variance analysis and multi-387

variate regression testing and the percolation centrality graph metric computed using388

the PET images, it is possible to show Alzheimer’s disease progressing through the389

beta-amyloid/tau protein networks.390

The student t-test provides nodes for each of the five centrality measures across the391

three clinical conditions, tracer types, and threshold schemes. Here, only the Current392

Flow Betweenness Centrality Measure fails to provide ROIs across all conditions (see393

tables 6 through 10), provides only three in cognitively normal condition and two in a394

mild cognitively impaired condition, both using the OMST scheme for threshold.395

It is observed that percolation centrality values of certain areas of the brain, such396

as inferior and superior parietal lobules, are reliable for the tracer PiB. In contrast, for397

most other cases, the brain areas differ for each tracer considerably. The variation due398
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to the tracers could be because AV45 and PiB bind to the amyloids differently. It is also399

observed that the percolation centrality of Broca’s area is a reliable differentiator between400

C.N. and A.D. clinical conditions, which validates previous findings that cognitive401

impairment affects speech production[54].402

The MLR analysis for each of the centrality measures across the clinical conditions403

for both the tracer types provides, on average, one to two ROIs across conditions that404

can be considered as markers for studying Alzheimer’s disease. Expect the current flow405

betweenness centrality measure, which performed poorly in this study providing only406

four(3-CN, 1-MCI) ROIs for both the threshold schemes and only one(MCI) ROI for407

AV45 and PiB tracers, respectively.408

Further, when MLR is carried out for the NPI questionnaire, it provides fewer409

ROIs for each of the centrality measures. When comparing the contribution of ROIs410

for MMSE-related tasks and NPIQ related tasks. Percolation centrality has the highest411

percentage of 41% of ROIs. Followed by Closeness centrality with 40.5%, Betweenness412

centrality with 30%.413

The results from the Scheffe test provide a means to validate and increase the414

confidence in the results—the leave one out cross-validation (LOOCV) strategy to test415

the robustness and reliability of our regression. Here cross-validation strategy is imple-416

mented because it is unbiased and better suited to our smaller sample size. Using the417

regularization (L1 - Lasso or L2 - Ridge) to control for overfitting, it is observed that418

increasing regularization on validation RMSE.419

The ROIs obtained from the pairwise t-test for between the clinical conditions show420

that the OMST scheme provides a higher number of valid ROIs across the five centrality421

measures. In comparison between the two tracer types and threshold schemes, AV45422

provides 92 ROIs, whereas PiB gives 88 ROIs. Of this, 33.7% and 39.8% of the ROIs are423

based on the Shortest Path threshold scheme.424

Previous studies show that the seeding of amyloid-beta occurs in neocortical and425

subcortical regions[55]; from this study, it is observed that for PiB, the following ROI -426

W.M. Superior occipito-frontal fascicle R is part of both the neocortical and subcortical427

regions of the brain. Apart from this, AV45 tracer has G.M. Medial geniculate body L428

ROI in the subcortical region and the following in the neocortical region -G.M. Superior429

parietal lobule 7P L, G.M. Anterior intra-parietal sulcus hIP3 R, G.M. Superior parietal430

lobule 7A L, and G.M. Superior parietal lobule 5L L, these are picked up with OMST431

scheme across all conditions when compared to SPT.432

Prior research shows that damage to the parietal lobe is common in A.D., which can433

lead to apraxia[54,56], which is attested by these results. A.D. is associated with atrophy434

of the cornu ammonis, the subfield of the hippocampus, and deficits in episodic memory435

and spatial orientation[57–59]436

And the following in the subcortical region - GM Amygdala-laterobasal group L,437

GM Amygdala-laterobasal group R and GM Hippocampus hippocampal- amygdaloid438

transition area R. Age factor not so important but the presence of beta amyloid deposits439

is[60], Since these ROIs stand out irrespective of the clinical condition or demographic440

backgrounds, the percolation centrality has a potential to be a reliable value for AD441

diagnosis, these ROIs are picked up by both tracers and threshold schemes.442

Recent methods include genetic and protein markers to improve predicting the443

course of the disease[61], Genetic testing[62]for markers of A.D., the apolipoprotein-e4444

(APOE-e4)[63], or the use of blood testing or brain imaging to rule out dementia due to445

other factors. These methods rely on many data points and equally reliable computing446

hardware; this is currently a challenge.447

Given that A.D. diagnosis is a global challenge, a method that works well in a448

spectrum of nations, from developed countries such as the United States to rural hospitals449

of southeast Asia or Africa[2] is necessary. Methods such as principal component analysis450

have a few drawbacks; for instance, choosing the number of principal components and451

data standardization for multiple PET scans of patients with different tracers leads452
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to controlling multiple variables. Or using regression analysis which is based on the453

assumption that there are cause and effect in place. Furthermore, a relationship that is454

present within a limited data set might get overturned with a detailed data set.455

5.0.1. Limitations456

This study does not give any evidence regarding the disease progression in terms457

of the ROIs or patient clinical group. However, this can be addressed by increasing the458

number of observations within each patient clinical group.459

The PET tracers used for acquiring the images, Pittsburgh Compound B (PiB) and460

Florbetapir (AV45), are compared to check for which among the two tracers provide461

a more consistent or reliable PCv. Here, the AV45 tracer binds with a high affinity to462

the beta-amyloid plaque, whereas PiB binds to oligomers or protofibrils. A possible463

explanation for the difference in PCv generated using these tracers would be their464

binding targets. The use of second-generation tracers can help improve the accuracy and465

test the applicability of percolation centrality on other neurodegenerative diseases and466

the possibility of using it in metastatic cancer scenarios.467

Expanding the dataset to include more patients and comprehensive data that factors468

in healthy aging shrinkage of the brain, which results in a decrease of the distances of469

the brain networks, can help improve the reliability of the percolation centrality value.470

This can then provide a setting for testing out other psychological assessments that can471

be used as early indicators for dementia due to Alzheimer’s disease, thereby tailoring it472

to specific demographics or population subsets.473

The current pipeline is built for tracers such as AV45 and PiB, which indicate beta-474

amyloid plaque concentrations directly and as a post-hoc implementation. However,475

the pipeline can work with second-generation tracers and tracers like FDG with some476

appropriate modifications, namely: taking the multiplicative inverse of the percolation477

states of each of the ROIs to reflect the behavior of the FDG tracer.478

A comparison of the ROIs across clinical conditions and tracers does not provide479

any new information at this stage regarding a common or group of common ROIs across480

the data(see Table 6. and 7.).481

6. Conclusions482

This study shows that percolation centrality is a reliable predictor and identifies483

the nodes that regulate the movement of beta-amyloid plaque and use them to track the484

disease.485

This work demonstrates that using the existing neuroimaging method, PET-CT,486

can add value with relatively short computation time provided sufficient hardware487

capability is present. The ability to provide a metric to the extent of the disease state is488

advantageous to the current world of Alzheimer’s. Prolonging life with modern-day489

medicine pushes patients to a world of medical experiences that deviate from the normal.490

Being able to show the deviation with a value such as percolation centrality has potential491

applications.492

The reliability of percolation centrality can be improved by addressing the concerns493

that arise by the factors such as the number of patients and the number of patients within494

each clinical group, time points of data collection, demographics, and the PET tracers495

used were the limiting factors. Thus, this study provides the usability of percolation496

centrality value to determine the patient’s state and sets the stage for studying other497

neurodegenerative diseases.498

Unlike measures such as hub centrality or betweenness centrality, which provide499

information regarding a vital vertex/node within a network, the collective influence algo-500

rithm provides a minimum set of nodes of the network that are key to the beta-amyloid501

plaque movement, which can provide information regarding a particular pathway that502

is susceptible to the neuropathology.503
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The threshold schemes implemented in this study indicate that a data-driven ap-504

proach such as the Orthogonal Minimum Spanning Tree provides better results compared505

to the Shortest Path approach. Finally, we rank the ROIs based on influence in the net-506

work using the CI algorithm. We compare the results on two thresholding approaches,507

SPT and OMST, along with finding the influential nodes; this will help us gauge the reli-508

ability across different threshold schemes. CI algorithm gives a ranked list of influential509

nodes for each network (or each scan).510

The rank of a node is then further calculated for each category as the sum of511

individuals ranks of that node for every scan-wise list, divided by the number of scans512

it occurs in. Nodes are then ranked accordingly in a given category. This provides a513

general ranking of nodes in a category (AD/MCI/CN) instead of looking at influential514

nodes in each scan separately. The results differ slightly based on the thresholding515

scheme adopted but broadly align with MLR results discussed earlier. Since this is an516

exploratory study, improving robustness across different thresholding schemes can be a517

possible future work.518

Supplementary Materials: Please follow the link https://www.mdpi.com//1/1/0/https://519

github.com/raghavprasad13/ADNI-Projectfor the analysis pipeline code,520

and follow this link https://www.mdpi.com//1/1/0/https://drive.google.com/file/d/1ZIVb6521

TFyJt68wb_N8mWgBr3xuhOcdZem/view?usp=sharing for Tables 11 through 18.522
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AD Alzheimer Disease
ANOVA Analysis of Variance
AV45 Florbetapir (18F- AV-45)
CI Collective Influence
CN Cognitively Normal
CSF Cerebrospinal Fluid
DOF Degrees of Freedom
EEG Electroencephalography
FAB Frontal Assessment Battery
fMRI functional Magnetic Resonance Imaging
FSL FMRIB Software Library
GNU GNU’s Not Unix
PCv Percolation Centrality Value
PET Positron Emission tomography
PiB Pittsburgh compound B (11C-PIB)
RMSE Root Mean Square Error
MCI Mild Cognitive Impairment
MEG Magnetoencephalography
MLR Multivariate Linear Regression
MMSE Mini-Mental State Examination
MST Minimum Spanning Tree
NPIQ Neuropsychiatric Inventory Questionnaire
OMST Orthogonal Minimum Spanning Tree

542

Appendix A.543

Appendix A.1. Percolation Centrality Computation544

The percolation centrality value is calculated for each network using the inbuilt545

function of Networkx. This has a worst-case time complexity of O(n3), where n is the546

number of nodes in the network. Using a modified form of Brandes’ fast algorithm547

for betweenness centrality, the complexity can be reduced to O(nm), where m is the548

number of edges. However, percolation centrality calculation with target nodes cannot549

take advantage of this optimization and has a worst-case time complexity of O(n3)550

Appendix A.2. Other Graph Metrics-Tables551

Table 8: Multivariate Linear Regression Analysis- Region of Interest Across Clinical
Conditions for Both Threshold Schemes for Current Flow Betweenness Centrality

Clinical Condition CN MCI AD
Graph Metric PT Tracer OMST SPT OMST SPT OMST SPT

Current Flow
Betweenness

Centrality

MMSE AV45 3 0 1 0 0 0
PiB 0 0 1 0 0 0

NPI-Q AV45 0 0 0 0 0 0
PiB 0 0 0 0 0 0

Table 9: Multivariate Linear Regression Analysis- Region of Interest Across Clinical
Conditions for Both Threshold Schemes for Eigenvector Centrality

Clinical Condition CN MCI AD
Graph Metric PT Tracer OMST SPT OMST SPT OMST SPT

Eigenvector
Centrality

MMSE AV45 2 2 11 4 7 10
PiB 2 2 6 6 8 3

NPI-Q AV45 1 4 1 1 0 0
PiB 3 0 3 3 2 9
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Table 10: Multivariate Linear Regression Analysis- Region of Interest Across Clinical
Conditions for Both Threshold Schemes for Closeness Centrality

Clinical Condition CN MCI AD
Graph Metric PT Tracer OMST SPT OMST SPT OMST SPT

Closeness Centrality
MMSE AV45 0 5 1 2 2 1

PiB 2 4 46 0 6 0

NPI-Q AV45 1 0 0 2 0 0
PiB 3 30 1 0 0 10

PT: Psychometric Assessment, OMST: Orthogonal Minimum Spanning Tree, SPT: Shortest Path Thresh-552

old, MMSE: Mini Mental State Examination, NPIQ: Neuropsychiatric Inventory Questionnaire Questionnaire553
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