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Abstract

The transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

becomes pandemic but presents different patterns in the world. To describe the epidemic

of coronavirus disease 2019 (covid-19) in each country or region, mathematical models

were formulated aiming the estimation of the basic reproduction number R0. The simplest

mathematical model, the SIR model, provided a lower estimation for R0, ranging from 1.5

∗Corresponding author: tel. + 55 19 3521-6031

1



to 3.0. However, more elaborate models, taking into account the natural history of covid-

19, must be used to obtain a more reliable estimation of R0. One of the elaborated models

presented here estimated a higher value for R0, that is, 6.54 and 5.88 for, respectively, São

Paulo State (Brazil) and Spain. It is worth stressing that this model assumed that severe

covid-19 cases were not participating in the SARS-CoV-2 transmission chain, which can

not be assumed in the SIR model.

Keywords: mathematical model; SEAPMDR model; SARS-CoV-2 transmission; es-

timation; covid-19 epidemic

1 Introduction

The epidemic of coronavirus disease 2019 (covid-19) caused by the severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) was first detected in China in December 2019, and, in

March 2020, covid-19 was declared a pandemic by WHO. At the beginning of the epidemic, and

also during the first months, we have two sets of covid-19 data: Severe covid-19 cases (those in

hospitals, where they were tested and confirmed), and deaths due to covid-19. Mathematical

models were formulated and used to fit the epidemic curve to estimate the basic reproduction

number R0.

In the literature, the usually assumed basic reproduction number R0 is around 2.5, see

for instance [1] and [2]. Li et al. [10] based on the SIR model and using data from January

10 to February 8, 2020, they explicitly cited that they estimated the effective reproduction

number Ref instead of R0, arguing that the most recent common ancestor could have occurred

on November 17, 2019. The time elapsed from November 17, 2019 (the first case) to January

10, 2020 (the first day in the estimation) is 54 days. However, on January 23, 2020, Wuhan

and other cities of Hubei province imposed a rigid lockdown. Therefore, they estimated Ref by

taking into account the range of data recorded 54 days after the onset of the epidemic, and 16

days after the lockdown.

The reliable estimation of R0 is important because this number determines the magnitude

of effort to eradicate infection. For instance, the efforts of vaccination to eradicate an infection

must be vaccinating a fraction equal or greater than 1 − 1/R0 of susceptibles [3]. Instead of

vaccination, if we consider the isolation of susceptible individuals, for a lower value of R0, a

small fraction of the population must be in lockdown (1− 1/R0) to control the transmission of
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SRS-CoV-2. In [4], analyzing vaccination as a control mechanism, if Ref is reduced lower than

one, the number of cases decreased following an exponential-type decay.

The estimation of the basic reproduction number R0, however, depends on the mathematical

model. We consider two examples. The first model is the simplest susceptible - infectious -

recovered (SIR) model, and the second is a model taking into account more aspects of the

natural history of covid-19 infection encompassing the lethality rate depending on the age. This

second model is structured in two subpopulations and considers, besides S and R compartments,

the compartments of exposed (E), asymptomatic (A), pre-diseased or pre-symptomatic (P),

mild (M) and severe (D) covid-19, called the SEAPMDR model. These models are fitted

taking into account the severe covid-19 data collections from São Paulo State (Brazil) [6] and

Spain [7].

The estimation of R0 is based on the severe covid-19 data restricted to the period when

there are not any kind of interventions. This period is in concordance with the definition of the

basic reproduction number: One infectious individual is introduced in a completely susceptible

population without constraints (interventions) [3].

2 Material and methods

We present the SIR and SEAPMDR models. From both models, we obtained R0 from the

steady-state analysis.

2.1 The SIR model

In the SIR model, the dynamical system is
d
dt
S = φN − β I

N
S − µS

d
dt
I = β I

N
S − (γ + µ+ α) I

e
dt
R = γI − µR,

(1)

where the total population N = S + I +R obeys

d

dt
N = φN − µN − αI. (2)

The parameters φ and µ are, respectively, the birth and natural mortality rates, β, γ, and α are,

respectively, the transmission rate, the infectious rate, and the additional mortality (lethality)

rate. If φ = µ+ αI/N , then N is constant.
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In Appendix A, the steady-state of a system of equations in terms of fractions corresponding

to equation (1) was analyzed to obtain the basic reproduction number R0. For simplicity, let

us consider φ = µ. The system of equations (1), using R = N − I − S, can be rewritten as{
d
dt
S = µN − β I

N
S − µS

d
dt
I = (γ + µ+ α) (Ref − 1) I

(3)

where the effective reproduction number Ref is defined by

Ref = R0
S

N
, (4)

with the basic reproduction number R0 being given by equation (A.2) in Appendix A changing

φ by µ, that is, R0 = β/ (γ + µ+ α).

Let us analyze the system of equations (3) at two boundaries. Let us assume that the first

case of covid-19 is introduced at t = 0, that is, the initial conditions supplied to equation (3)

are S(0) = N − 1 and I(0) = 1. For a large population, we can approximate S ∼ N and the

system of equations can be approximated by{
d
dt
S ∼ −βI

d
dt
I ∼ (γ + µ+ α) (R0 − 1) I,

with R = N − S − I, and at the beginning of the epidemic, if we estimate the transmission

rate β, we can calculate R0 using the expression obtained from the steady-state analysis. The

system of equations (3) does not approach to a steady-state, but attains it when α = 0. In this

case, asymptotically (t→∞), we have dI/dt = 0 if Ref = R0S/N = 1, that is, S → S∗ = s∗N

and I → I∗ = i∗N , where i∗ and s∗ are given by equations (A.6) and (A.7), respectively. Hence,

when α = 0, at t = 0, Ref = R0, and when t→∞ (steady-state), Ref = 1 (see equation (A.7)),

from which we retrieve the well known relationship s∗ = 1/R0 [3].

Therefore, based on Ref given by equation (4) when φ = µ and α = 0, the basic reproduction

number R0 obtained from mathematical modelings provides two useful information: At the

beginning of the epidemic (t = 0), R0 gives the magnitude of the initial takeoff of the epidemic,

and when epidemic reaches the steady-state (after many waves of the epidemic, that is, t→∞),

R0 measures its severity providing the fraction of susceptible individuals, that is, s∗ = 1/R0.

Between these two extremes, the effective reproduction number Ref dictates the course of an

epidemic, which follows decaying oscillations around Ref = 1 [4]. It is worth stressing that Ref

given by equation (4) is valid only when φ = µ and α = 0, and when one of these conditions is
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not valid, Ref given by equation (4) can be used as an approximated value.

The number of accumulated severe covid-19 cases Ω is given by the exit from S, and entering

into classes I, that is,
d

dt
Ω = β

I

N
S, with Ω(0) = 0, (5)

and this equation is accopled to the system of equations (1) to obtain numerically Ω.

2.2 The SEAPMDR model

One of the main aspects of covid-19 is increased lethality in elder individuals. For this reason,

a population is divided into two groups, composed of young (60 years old or less, denoted by

subscript y), and elder (60 years old or more, denoted by subscript o) individuals. The vital

dynamic of this community is described by the per-capita rates of birth (φ) and mortality (µ),

and ϕ is the aging rate, that is, the flow from young subpopulation y to elder subpopulation o.

Another aspect is the presence of the presymptomatic individuals, that is, individuals without

symptoms transmitting SARS-CoV-2 before the onset of the disease [5].

Since we are dealing with the initial phase of the epidemic, the model does not consider

the compartments related to quarantine and mass testing. Hence, for each subpopulation j

(j = y, o), individuals are divided into six classes: susceptible Sj, exposed and incubating Ej,

asymptomatic Aj, symptomatic individuals in the initial phase of covid-19 (or pre-diseased) Pj,

and symptomatic individuals with severe covid-19 Dj, mild covid-19 Mj. However, all young

and elder individuals in classes Aj, Mj, and Dj enter into the same recovered class R (this

is the 7th class, but common to both subpopulations). Hence, the SEAPMDR model has 13

compartments.

The natural history of covid-19 is the same for young (j = y) and elder (j = o) subpopula-

tions. We assume that individuals in the asymptomatic (Aj), pre-diseased (Pj), and a fraction zj

of mild covid-19 (Mj) classes are transmitting the virus, and other infected classes ((1− zj)Mj

and Dj) are under voluntary or forced isolation. Susceptible individuals are infected according

to λjSj (known as the mass action law [3]), where λj is the per-capita incidence rate (or force

of infection) defined by λj = λ (δjy + ψδjo), with λ being

λ =
1

N
(β1yAy + β2yPy + β3yzyMy + β1oAo + β2oPo + β3ozoMo) , (6)

where δij is Kronecker delta, with δij = 1 if i = j, and 0, if i 6= j; and β1j, β2j and β3j are

the transmission rates, that is, the rates at which a virus encounters a susceptible people and

infects him/her. In [8], a particular model was analyzed letting zy = zo = 0 and χy = χo = 1,
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that is, the force of infection defined by

λ =
1

N
(β1yAy + β2yPy + β1oAo + β2oPo) .

Susceptible individuals are infected at a rate λj and enter into class Ej. After an average

period 1/σj in class Ej, where σj is the incubation rate, exposed individuals enter into the

asymptomatic class Aj (with probability lj) or pre-diseased class Pj (with probability 1 −
lj). After an average period 1/γj in class Aj, where γj is the recovery rate of asymptomatic

individuals, asymptomatic individuals acquire immunity (recovered) and enter into recovered

class R. Possibly asymptomatic individuals can manifest symptoms at the end of this period,

and a fraction 1 − χj enters into mild covid-19 class Mj. For symptomatic individuals, after

an average period 1/γ1j in class Pj, where γ1j is the infection rate of pre-diseased individuals,

pre-diseased individuals enter into severe covid-19 class Dj (with probability 1 − kj) or mild

covid-19 class Mj (with probability kj). Individuals in class Dj acquire immunity after period

1/γ2j, where γ2j is the recovery rate of severe covid-19, and enter into recovered class R or die

under the disease-induced (additional) mortality rate αj. Individuals in mild covid-19 class Mj

acquire immunity after period 1/γ3j, where γ3j is the recovery rate of mild covid-19, and enter

into recovered class R.

The SARS-CoV-2 transmission model is described by the system of ordinary differential

equations, with j = y, o. Equations for susceptible individuals are
d

dt
Sy = φN − (ϕ+ µ)Sy − λSy

d

dt
So = ϕSy − µSo − λψSo,

(7)

for infectious individuals,

d

dt
Ej = λ (δjy + ψδjo)Sj − (σj + µ)Ej

d

dt
Aj = ljσjEj − (γj + µ)Aj

d

dt
Pj = (1− lj)σjEj − (γ1j + µ)Pj

d

dt
Mj = (1− χj) γjAj + kjγ1jPj − (γ3j + µ)Mj

d

dt
Dj = (1− kj) γ1jPj − (γ2j + µ+ αj)Dj,

(8)
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and for recovered individuals,

d

dt
R = χyγyAy + γ3yMy + γ2yDy + χoγoAo + γ3oMo + γ2oDo − µR, (9)

where Nj = Sj + Ej + Aj + Pj +Mj +Dj, and N = Ny +No + I obeys

d

dt
N = (φ− µ)N − αyDy − αoDo, (10)

with the initial number of population at t = 0 being N(0) = N0 = N0y + N0o, where N0y and

N0o are the size of young and elder subpopulations at t = 0.

The number of accumulated severe covid-19 cases Ω is obtained from

d

dt
Ω = (1− ky) γ1yPy + (1− ko) γ1oPo, with Ω(0) = 0, (11)

which are the exit from class P , and entering into class D.

Table 2 summarizes the model parameters. The description of the assigned values can be

found in [8]. The transmission rates are estimated.

Table 1: Summary of the model parameters (j = y, o) and values (rates in days−1, and
proportions are dimensionless). The values (∗) correspond to São Paulo State. For Spain,
φ = µ = 1/(83.4× 365) days−1, ϕ = 1.14× 10−5 days−1, and ψ = 1.1.

Symbol Meaning Value
µ∗ Natural mortality rate 1/(78.4× 365)
φ∗ Birth rate 1/(78.4× 365)
ϕ∗ Aging rate 6.7× 10−6

σy (σo) Incubation rate 1/5 (1/5)
γy (γo) Recovery rate of asymptomatic individuals 1/10 (1/11)
γ1y (γ1o) Infection rate of pre-diseased individuals 1/4 (1/4)
γ2y (γ2o) Recovery rate of severe covid-19 1/10 (1/14)
γ3y (γ3o) Infection rate of mild covid-19 individuals 1/10 (1/11)
αy (αo) Additional mortality rate 0.0018 (0.009)
zy (zo) Proportion circulating of mild covid-19 individuals 0.5 (0.2)
ψ∗ Scaling factor of transmission among elder individuals 1.15
χy (χo) Proportion of remaining as asymptomatic individuals 0.98 (0.95)
ly (lo) Proportion of asymptomatic individuals 0.8(0.75)
ky (ko) Proportion of mild (non-hospitalized) covid-19 0.8 (0.75)

In Appendix B, the steady-state of a system of equations in terms of fractions corresponding

to equations (7), (8) and (9) was analyzed to obtain the basic reproduction number R0. The
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basic reproduction number R0 given by equation (B.8) in Appendix B, with the fractions written

as s0y = N0y/N and s0o = N0o/N , is

R0 = (R1y +R2y)
N0y

N0

+ (R1o +R2o)
N0o

N0

, (12)

where N0y and N0o are the initial numbers of young and elder subpopulations with N0 =

N0y +N0o, and

R1y = ly
σy

σy + φ

β1y
γy + φ

+ (1− ly)
σy

σy + φ

β2y
γ1y + φ

R1o = lo
σo

σo + φ

β1oψ

γo + φ
+ (1− lo)

σo
σo + φ

β2oψ

γ1o + φ

R2y =

[
ly

σy
σy + φ

(1− χy)
γy

γy + φ
+ (1− ly)

σy
σy + φ

ky
γ1y

γ1y + φ

]
zyβ3y
γ3y + φ

R2o =

[
lo

σo
σo + φ

(1− χo)
γo

γo + φ
+ (1− lo)

σo
σo + φ

ko
γ1o

γ1o + φ

]
zoβ3oψ

γ3o + φ
.

(13)

Letting zy = zo = 0 (R2y = R2o = 0), we retrieve the basic reproduction number obtained in

[8].

3 Results

The basic reproduction number R0 is estimated considering the models presented in the fore-

going section. We estimate R0 for São Paulo State (Brazil) and Spain.

São Paulo State has 44.6 million inhabitants (demographic density, 177/km2) with 15.3%

of the population comprised of elder individuals. The first case was registered on February 26,

and partial quarantine was implemented on March 24. Considering that there is a delay of

around 9 days since the infection and the onset of covid-19, we estimate the basic reproduction

number considering collected data from February 26 to April 2.

Spain has 47.4 million inhabitants (demographic density, 92.3/km2) with 25.8% of the pop-

ulation comprised of elder individuals. The first case was registered on January 31, and the

lockdown was implemented on March 16. Considering a delay of around 9 days, we estimate

the basic reproduction number considering collected data from January 31 to March 25.

To evaluate the parameter β, we calculate

Sum =
n∑
i=1

ωi
[
Ω (β, ti)− Ωob (ti)

]2
, (14)
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where Ω (β, ti) is the accumulated severe covid-19 cases calculated from the dynamical system,

and Ωob (ti) is the accumulated severe covid-19 registered cases at day ti, that is,

Ωob (ti) =
i∑

j=1

Ωob
d (tj) ,

where Ωob
d (tj) is the severe covid-19 cases registered at day tj. We consider the same weight

for all data, that is, we let ωi = 1. The value of β that minimizes Sum is the fitted value.

3.1 The SIR model

To estimate the transmission rate, we use equation (14) and Ω given by equation (5). The

model parameters are γ = 1/10, α = 0.002, and, for São Paulo State, φ = µ = 1/(78.4× 365)

and, for Spain, φ = µ = 1/(83.4 × 365) (all in days−1). The transmission rate β is estimated

and the basic reproduction number R0 is calculated using equation (A.2). We estimate the

basic reproduction number using equation (1) with different infective individuals at t = 0.

For the data collected from São Paulo State, we obtained for I(0) = 1, R0 = 3.14 with

Sum = 8.02 × 105, for I(0) = 10, R0 = 2.4 with Sum = 8.49 × 105, for I(0) = 25, R0 = 2.11

with Sum = 1.86 × 106, and for I(0) = 100, R0 = 1.62 with Sum = 5.87 × 106. Other initial

conditions are S(0) = 44.6 million and R(0) = 0. The lowest Sum occurs when R0 = 3.14.

For the data collected from Spain, we obtained for I(0) = 1, R0 = 2.97 with Sum =

4.16 × 108, for I(0) = 10, R0 = 2.5 with Sum = 6.32 × 108, for I(0) = 25, R0 = 2.3 with

Sum = 1.13 × 109, and for I(0) = 100, R0 = 2.06 with Sum = 1.19 × 109. Other initial

conditions are S(0) = 47.4 million and R(0) = 0. The lowest Sum occurs when R0 = 2.97.

Figure 1 shows the estimated curve Ω for São Paulo (a) and Spain (b) with three different

initial conditions (I(0) = 1, 10, and 25).

We observed that the larger the value of I(0), the small is the estimated R0. By the stringent

definition of R0, we must consider I(0) = 1. However, the initial condition I(0) > 1 mimics

the first case of covid-19 occurring earlier than the time t = 0. The Singapore University of

Technology and Design [9] estimated R0 using I(0) = 100 for different countries.

3.2 The SEAPMDR model

To estimate the transmission rates, we consider βy = β1y = β2y = β3y and βo = β1o = β2o =

β3o = ψβy, and we use equation (14) and Ω given by equation (11). The values for the model

parameters are those given in Table 1. The basic reproduction number R0 is calculated using
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Figure 1: The estimated curve Ω for São Paulo (a) and Spain (b) with three different initial
conditions I(0) = 1 (continuous curve), 10 (dashed curve), and 25 (dashed and dotted curve).

equation (12).

The initial conditions supplied to the system of equations (7), (8) and (9) are, for young

and elder subpopulations,
young

(
Sy (0) = N0y, Ey (0) = 30, Ay(0) = 24, Py(0) = 6, My(0) = 6, Dy(0) = 0

)
and

elder
(
So (0) = N0o, Eo (0) = 20, Ao(0) = 16, Po(0) = 4, Mo(0) = 3, Do(0) = 1,

)
(15)

plus R(0) = 0, where the initial simulation time t = 0 corresponds to the calendar time when

the first case was confirmed (February 26 for São Paulo State, and January 31 for Spain). For

São Paulo State, N0y = 37.8 million and N0o = 6.8 million, and for Spain, N0y = 35.17 million

and N0o = 12.23 million.

For the data collected from São Paulo State, we obtained R0 = 6.54, with Sum = 7.75×105,

while for the data collected from Spain, we obtained R0 = 5.88, with Sum = 1.1× 108. Figure

2 shows the estimated curve Ω for São Paulo State (a) and Spain (b).

If we let zy = zo = 0 (mild covid-19 cases do not transmit) and χy = χo = 1 (asymptomatic

individuals do not relapse to mild covid-19), the estimated basic reproduction number is R0 =

6.26 for São Paulo State, with Sum = 7.56×105, andR0 = 5.67 for Spain, with Sum = 1.18×108.
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Figure 2: The estimated curve Ω and the observed accumulated cases for São Paulo State (a)
and Spain (b).

4 Discussion and conclusion

There are different manners to define an epidemic curve. For instance, one possible definition

is the curve formed by those positive for serological and PCR tests. However, in the early

phase of the epidemic, the covid-19 epidemic curve must be defined by severe cases, which are

the only available data. In the SEAPMDR model, the covid-19 epidemic curve was retrieved

by estimating the transmission rates of asymptomatic, pre-diseased, and a fraction of mild

classes. The estimated basic reproduction number was higher than that usually accepted (R0

approximately 3 using the SIR model): R0 = 6.54 for São Paulo State, and R0 = 5.88 for Spain.

In [8], it was shown that the ratio between non-apparent and apparent covid-19 is around 24,

showing that SARS-CoV-2 is being transmitted by a huge number of hidden cases.

In the SEAPMDR model, the initial conditions E(0) = 50 and I(0) = 1 were supplied to

the dynamical system, resulting in R0 = 6.54 (São Paulo State) and R0 = 5.88 (Spain). Instead

of comparing with the SIR model, let us compare with the SEIR model considering the same

initial conditions E(0) = 50 and I(0) = 1 supplied to the elaborated model (see Appendix C).

The estimated basic reproduction number for São Paulo State was R0 = 3.92, and for Spain,

R0 = 4.41.

Comparing SIR, SEIR, and SEAPMDR models, as the model incorporates more aspects

of the natural history of the infection, higher becomes the estimation of R0. For the SIR and

SEIR models, there is not any alternative except considering severe covid-19 cases as infective.

However, in the SEAPMDR model, the asymptomatic (A), pre-diseased (D1) and a fraction
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of mild covid-19 (Q2) individuals are transmitting SARS-CoV-2, but the severe covid-19 (D2)

individuals are isolated and do not contribute, except to infect the hospital staff [8].

The curve of accumulated covid-19 cases Ω obtained from equation (11) is a sigmoid-shape,

that is, presents a quick increase during the first phase (Ref > 1, wit upward concavity) followed

by a slow increase (Ref < 1, with downward concavity). For this reason, while the observed

accumulated covid-19 cases Ωob presents upward concavity, we can conclude that Ref > 1,

and when presents downward concavity, then Ref < 1. At Ref = 1, we have the inflexion

point (change from upward to downward concavity). In Figure 3 we show the daily and the

accumulated severe covid-19 cases in São Paulo State (a) and Spain (b), where A indicates

the time at which quarantine was introduced, and B represents the time at which inflexion

point occurred. The partial quarantine in São Paulo State isolated approximately 53% of the

population [6], while the rigid lockdown in Spain could have isolated 80% or more. In São Paulo

State, a partial quarantine was introduced on March 24, and a rigid lockdown in Spain was

introduced on March 16. Observing Figure 3, the inflexion point occurred approximately on

June 10 in São Paulo, and on March 26 in Spain. The elapsed time between the implementation

of quarantine (A) and the inflexion point (B) is 78 days in São Paulo State, and 10 days in

Spain.
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Figure 3: The daily (bars) and the accumulated (points) severe covid-19 cases in São Paulo
State (a) and Spain (b), where A indicates the time at which quarantine was introduced, and
B indicates the time at which the inflexion point occurred.

Let us define the threshold of the proportion in isolation in a population as qth = 1−1/R0. If

the proportion in quarantine q is q > qth, we must have Ref < 1 and the observed accumulated

covid-19 cases must present downward concavity. Using the value of R0 estimated in the

12



foregoing section, for the SIR model (R0 estimated with I(0) = 1) we have qth = 0.68 for São

Paulo State, and qth = 0.66 for Spain. For the SEAPMDR model, we have qth = 0.85 for São

Paulo State, and qth = 0.83 for Spain. Both models generically portrayed the observed data:

São Paulo State has q < qth (upward concavity), while Spain, q > qth (downward concavity).

Notice that the inflexion point occurred approximately 10 days after the implementation of

lockdown in Spain, hence the proportion in isolation must be closer or higher than 83%.

However, if we consider R0 = 2.11 estimated from the SIR model (using I(0) = 25), we

obtain qth = 0.53 for São Paulo State, and we have q = qth. In this case, the observed

severe covid-19 cases must follow that observed in Spain just after the implementation of the

partial quarantine, that is, downward concavity. Notwithstanding, the inflexion point occurred

approximately 78 days later. It is expected that the higher the difference qth − q, the more

the inflexion point must be delayed. The long time to reach the inflexion point in São Paulo

State (approximately 78 days) may be an indicator that R0 estimated by the SEAPMDR model

seems to be more reliable than that estimated by the SIR model.

As we have pointed out, at the beginning and also in the early phase of the covid-19 epidemic,

only hospitalized severe covid-19 cases were registered after the confirmation by serological

and/or PCR tests. These individuals are either isolated in hospitals (receiving treatment)

or discharged from hospitals but recommend to be isolated in their homes. Then, somehow,

the majority of these individuals are not participating in the populational SARS-CoV-2 chain

transmission.

In the SEAPMDR model, there are several infectious classes but the severe covid-19 cases do

not transmit the SARS-CoV-2, for this reason, R0 does not depend on the additional mortality

rates αy and αo (see equations (12) and (13)). On the other hand, in the SIR model, there

is only one infectious class, and R0 depends on the additional mortality rate α (see equation

(A.2)). Notice that in the SIR model, the unique way to estimate the transmission rate is

considering that severe covid-9 cases are forming the infective class I. Hence, the estimation

of R0 provided by the SIR model using severe covid-19 cases may not be accurate.

We conclude that models taking into account important aspects related to the natural

history of the infection must estimate more accurately R0. For instance, the incorporation of

the asymptomatic and pre-diseased individuals, mild covid-19 cases, different lethality according

to age must improve the mathematical model to describe the covid-19 epidemic. Additionally,

these more elaborated models could consider the severe covid-19 cases being isolated, and SARS-

CoV-2 is transmitted by asymptomatic and pre-diseased individuals, for instance. However,

the SIR model is structured in only one infectious compartment. For this reason, specifically

in the case of the covid-19 epidemic when the severe covid-19 cases may not transmit SARS-

13



CoV-2 populationally, this model (and also the SEIR model) is not suitable to estimate the

basic reproduction number R0.
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A The steady-state analysis of the SIR model

The system of equations (1) does not reach a steady-state, except if φ = µ + αI/N . However,

the system (1) in terms of fractions attains steady-state. Defining the fraction x = X/N , with

X = {S, I, R}, we have

d

dt

X

N
=

1

N

d

dt
X − X

N

1

N

d

dt
N =

1

N

d

dt
X − x (φ− µ− αi) ,
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using equation (2), and the system of equations (1) becomes
d
dt
s = φ− βis− φs+ αis

d
dt
i = βis− (γ + φ+ α) i+ αi2

d
dt
r = γi− φr + αir,

(A.1)

with s + i + r = 1, hence, the equation for r can be decoupled from the system, through

r = 1 − s − i. Notice that d (s+ i+ r) /dt = 0, and the system of equations in terms of

fractions attain a steady state.

The system of equations (A.1), dropping out the decoupled equation for r, has two equi-

librium points: The trivial (disease-free) equilibrium point P 0 = (s̄ = 1, ı̄ = 0) and non-trivial

(epidemic) equilibrium point P ∗ = (s̄ = s∗, ı̄ = i∗).

The Jacobian matrix J evaluated at the trivial equilibrium point P 0 = (s̄ = 1, ı̄ = 0) is

J =

[
−φ −β + α

0 β − (γ + φ+ α)

]
,

with eigenvalues ρ1 = −φ and ρ2 = (γ + φ+ α) (R0 − 1), where the basic reproduction number

R0 is given by

R0 =
β

γ + φ+ α
. (A.2)

Hence, P 0 is locally asymptotically stable if R0 < 1.

The non-trivial equilibrium point P ∗ = (s̄ = s∗, ı̄ = i∗) has the coordinates given by{
s∗ = φ

(β−α)i∗+φ

P2(i) = 0,
(A.3)

where i∗ is the positive root but small than one of the second degree polynomial P2(i) given by

P2(i) =
α

φ

[
(R0 − 1) +

γ + φ

γ + φ+ α

]
i2 −

[
γ + φ+ α

φ
(R0 − 1) +

(γ + φ)2 + γα

φ (γ + φ+ α)

]
i+ (R0 − 1) ,

(A.4)

which has the value, at i = 1,

P2(1) = −
[
γ

φ
(R0 − 1) +

γ (γ + φ) + φ (γ + φ− α)

φ (γ + φ+ α)

]
.

When R0 > 1, we have P2(1) < 0 (the condition γ + φ > α is satisfied once γ > α), and the
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two positive roots of P2(i) are such that 0 < i∗1 < 1 < i∗2. Hence the small root i∗1 is biologically

feasible. When R0 = 1, we have i∗1 = 0 and i∗2 > 1, hence i∗1 = 0 is biologically feasible. When

R0 < 1, we have i∗1 < 0 and i∗2 > 1, hence i∗1 = 0 is biologically feasible. Therefore, the small

root i∗1, which is biologically feasible, assumes a negative value for R0 < 1, zero at R0 = 1, and

positive value but lower than 1 for R0 > 1. The small root of P2(i) is given by

i∗1 =

[
γ+φ+α

φ
(R0 − 1) + (γ+φ)2+γα

φ(γ+φ+α)

]
−
√

∆

2α
φ

[
(R0 − 1) + γ+φ

γ+φ+α

] , (A.5)

where ∆ is

∆ =

[
γ + φ+ α

φ
(R0 − 1) +

(γ + φ)2 + γα

φ (γ + φ+ α)

]2
− 4

α

φ

[
(R0 − 1) +

γ + φ

γ + φ+ α

]
(R0 − 1) .

The complexity arises due to the non-constant population under the additional mortality

rate. Let us consider α = 0. In this case, P2(i) has a unique positive solution

i∗ =
φ (R0 − 1)

(γ + φ)R0

, (A.6)

and the fraction of susceptible individuals, from equation (A.3), is

s∗ =
1

R0

. (A.7)

When α > 0, comparing equations (A.3) and (A.5), we notice that s∗ has a complex dependency

with R0, not simply 1/R0.

B The steady-state analysis of the SEAPMDR model

The system of equations (7), (8) and (9) does not reach steady state, except if φ = µ +

(αyDy + αoDo) /N , when the total size of the population is constant. However, the system

of equations (7), (8) and (9) in term of fractions attains steady-state. Defining the fraction

xj = Xj/N , for j = y, o, with Xj = {Sj, Ej, Aj, Pj,Mj, Dj, R}, we have

d

dt

Xj

N
=

1

N

d

dt
Xj −

Xj

N

1

N

d

dt
N =

1

N

d

dt
Xj − xj (φ− µ− αydy − αodo) ,
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using equation (10), and the system of equations (7), (8) and (9) in terms of fractions become,

for susceptible and isolated persons,
d

dt
sy = φ− (ϕ+ φ) sy − λsy + sy (αydy + αodo)

d

dt
so = ϕsy − φso − λψso + so (αydy + αodo) ,

(B.1)

for infected persons,

d

dt
ej = λ (δjy + ψδjo) sj − (σj + φ) ej + ej (αydy + αodo)

d

dt
aj = ljσjej − (γj + φ) aj + aj (αydy + αodo)

d

dt
pj = (1− lj)σjej − (γ1j + φ) pj + pj (αydy + αodo)

d

dt
mj = (1− χj) γjaj + kjγ1jpj − (γ3j + φ)mj +mj (αydy + αodo)

d

dt
dj = (1− kj) γ1jpj − (γ2j + φ+ αj) dj + dj (αydy + αodo) ,

(B.2)

and for immune persons

d

dt
R = χyγyAy + γ3yMy + γ2yDy + χoγoAo + γ3oMo + γ2oDo − µR,

,

d

dt
r = χyγyay + γ3ymy + γ2ydy + χoγoao + γ3omo + γ2odo − φr + r (αydy + αodo) , (B.3)

where λ is the force of infection given by equation (6) re-written as

λ =
ε

ω
(β1yay + β2ypy + β3yzymy + β1oao + β2opo + β3ozomo) ,

and ∑
j=y,o

(sj + ej + aj + pj +mj + dj) + r = 1.

This new system of equation has steady-state, that is, the number of persons in all classes varies

with time, however, their fractions attain steady-state (the sum of derivatives of all classes is

zero).

The trivial (disease-free) equilibrium point P 0 of the new system of equations (B.1), (B.2)
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and (B.3) is given by

P 0 =
(
s0j , e

0
j = 0, a0j = 0, p0j = 0,m0

j = 0, d0j = 0, r0 = 0
)
,

for j = y and o, where 
s0y =

φ

φ+ ϕ

s0o =
ϕ

φ+ ϕ
,

(B.4)

with s0y + s0o = 1.

Let us assess the stability of P 0 by applying the next generation matrix theory considering

the vector of variables x = (ey, ay, py,my, eo, ao, po,mo) [11]. We apply method proposed in [12]

and proved in [13]. To obtain the basic reproduction number, diagonal matrix V is considered.

Hence, the vectors f and v are

fT =



λsy + ey (αydy + αodo)

lyσyey + ay (αydy + αodo)

(1− ly)σyey + py (αydy + αodo)

(1− χy) γyay + kyγ1ypy +my (αydy + αodo)

λψso + eo (αydy + αodo)

poσoeo + ao (αydy + αodo)

(1− po)σoeo + po (αydy + αodo)

(1− χo) γoao + koγ1opo +mo (αydy + αodo)


(B.5)

and

vT =



(σy + φ) ey

(γy + φ) ay

(γ1y + φ) py

(γ3y + φ)my

(σo + φ) eo

(γo + φ) ao

(γ1o + φ) po

(γ3o + φ)mo


, (B.6)

where the superscript T stands for the transposition of a matrix, from which we obtain the

matrices F and V (see [11]) evaluated at the trivial equilibrium P 0, which were omitted. The
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next generation matrix FV −1 is

FV −1 =



0
β1ys0y
γy+φ

β2ys0y
γ1y+φ

β3yzys0y
γ3y+φ

0
β1os0y
γo+φ

β2os0y
γ1o+φ

β3ozos0y
γ3o+φ

lyσy
σy+φ

0 0 0 0 0 0 0
(1−ly)σy
σy+φ

0 0 0 0 0 0 0

0 (1−χy)γy
γy+φ

kyγ1y
γ1y+φ

0 0 0 0 0

0 β1yψs0o
γy+φ

β2yψs0o
γ1y+φ

β3yzyψs0o
γ3y+φ

0 β1oψs0o
γo+φ

β2oψs0o
γ1o+φ

β3ozoψs0o
γ3o+φ

0 0 0 0 poσo
σo+φ

0 0 0

0 0 0 0 (1−po)σo
σo+φ

0 0 0

0 0 0 0 0 (1−χo)γo
γo+φ

koγ1o
γ1o+φ

0


and the characteristic equation corresponding to FV −1 is

κ3
[
κ3 − ε

ω

(
R1ys

0
y +R1os

0
o

)
κ − ε

ω

(
R2ys

0
y +R2os

0
o

)]
= 0, (B.7)

with the basic reproduction number R0 being given by

R0 = (R1y +R2y) s
0
y + (R1o +R2o) s

0
o, (B.8)

where the initial fractions s0y and s0o are given by equation (B.4), and the partial basic repro-

duction numbers R1y, R2y, R1o, and R2o are given by equation (13) in the main text. The

spectral radius ρ (FV −1) is the biggest solution of a third degree polynomial, which is not easy

to evaluate. The procedure proposed in [12] allows us to obtain the threshold R0 as the sum of

coefficients of the characteristic equation, where R0 is the basic reproduction number given by

equation (12) in the main text. Hence, the trivial equilibrium point P 0 is locally asymptotically

stable if R0 < 1.
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C The SEIR model

Including the exposed class E in the SIR model, we have the SEIR model
d
dt
S = φN − β I

N
S − µS

d
dt
E = β I

N
S − (σ + µ)E

d
dt
I = σE − (γ + µ+ α) I

e
dt
R = γI − µR,

(C.1)

where σ is the incubation rate. As the previous analysis for the SIR model, we can obtain the

basic reproduction number R0, which is given by

R0 =
σ

σ + µ
× β

γ + µ+ α
, (C.2)

when φ = µ, and the accumulated cases Ω obeys

d

dt
Ω = σE, with Ω(0) = 0.

To estimate R0 for the SEAPMDR model in the main text, we used as the initial conditions

E(0) = 50 and I(0) = 1 among others. For the SEIR model, let us consider as the initial

conditions E(0) = 50 and I(0) = 1, but S(0) and R(0) are the same supplied to the SIR model.

We let σ = 1/5 days−1 (as in the SEAPMDR model), and the values for other parameters

are those provided in the SIR model. The value γ = 1/10 days−1 in somehow considered

an average value among γ, γ1, γ2 and γ3 in the SEAPMDR model. The estimated basic

reproduction number for São Paulo State was R0 = 3.53 with Sum = 1.56× 106, and for Spain,

R0 = 4.07 with Sum = 2.53× 108.

Notice that σ/ (σ + µ) = 0.99999, hence, R0 given by equations (A.2) and (C.2) must

be equal if β is the same for the SIR and SEIR models. However, β is estimated by the

dynamical systems (1) or (C.1) against the accumulated severe covid-19 cases. For this reason,

the estimated β must be different between SIR and SEIR models. Let us consider SEIR model

considering the initial conditions S(0) = N0, E(0) = 0, R(0) = 0, and varying I(0).

For the data collected from São Paulo State, with S(0) = 44.6 million, we obtained for

I(0) = 1, R0 = 7.25 with Sum = 1.36× 106, for I(0) = 10, R0 = 4.7 with Sum = 4.52× 105, for

I(0) = 25, R0 = 3.82 with Sum = 1×106, and for I(0) = 100, R0 = 2.6 with Sum = 3.68×106.

The lowest Sum occurs when R0 = 4.7.

For the data collected from Spain, with S(0) = 47.4 million, we obtained for I(0) = 1,
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R0 = 6.27 with Sum = 2.39×108, for I(0) = 10, R0 = 4.75 with Sum = 7.64×107, for I(0) = 25,

R0 = 4.21 with Sum = 2.21× 108, and for I(0) = 100, R0 = 3.38 with Sum = 7.57× 108. The

lowest Sum occurs when R0 = 4.75.

Figure C.1 shows the estimated curve Ω for São Paulo (a) and Spain (b) with three different

initial conditions (I(0) = 1, 10, and 25).
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Figure C.1: The estimated curve Ω for São Paulo (a) and Spain (b) with three different initial
conditions I(0) = 1 (continuous curve), 10 (dashed curve), and 25 (dashed and dotted curve).

Comparing with the estimated R0 provided by the SIR model (see the main text), we

observe that the SEIR model estimated with a higher value. Let us assess the role played by

the incubation period σ−1 in the SEIR model considering the initial conditions S(0) = N0,

E(0) = 0, I(0) = 1 and R(0) = 0. For σ−1 = 10 days, R0 = 11.27 with Sum = 1.15× 106, for

σ−1 = 1 day, R0 = 3.92 with Sum = 8.92×105, for σ−1 = 10−1 days (2.4 hours), R0 = 3.2 with

Sum = 8.06× 105, and for σ−1 = 10−3 days (1.44 minutes), R0 = 3.14 with Sum = 7.96× 105.

As σ−1 decreases, R0 approaches to that estimated by the SIR model (R0 = 3.14 for σ−1 = 5

days).

The SIR model, by disregarding the incubation period, provides a relatively lower estimation

for R0 in comparison with the SEIR model. Suppose that the incubation period of SARS-CoV-

2 is very long, for instance, 10 years. To overcome this long period and fit the same set of

the severe covid-19 cases, the transmission rate of SARS-CoV-2 must be much higher in the

SEIR than the SIR model. Therefore, the inclusion of the exposed individuals delays the onset

of disease (or the entering into an infectious compartment), and the virus must infect more

individuals (increased R0).
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