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ABSTRACT

Background

Open science is a movement seeking to make scientific research accessible to all, including publication of code
and data. Publishing patient-level data may, however, compromise the confidentiality of that data if there
is any significant risk that data may later be associated with individuals. Use of synthetic data offers the
potential to be able to release data that may be used to evaluate methods or perform preliminary research
without risk to patient confidentiality.

Methods
We have tested five synthetic data methods:

1. A technique based on Principal Component Analysis (PCA) which samples data from distributions
derived from the transformed data.

2. Synthetic Minority Oversampling Technique, SMOTE which is based on interpolation between near
neighbours.

3. Generative Adversarial Network, GAN, an artificial neural network approach with competing networks
- a discriminator network trained to distinguish between synthetic and real data. , and a generator
network trained to produce data that can fool the discriminator network.

4. CT-GAN, a refinement of GANs specifically for the production of structured tabular synthetic data.

5. Variational Auto Encoders, VAE, a method of encoding data in a reduced number of dimensions, and
sampling from distributions based on the encoded dimensions.

Two data sets are used to evaluate the methods:
1. The Wisconsin Breast Cancer data set, a histology data set where all features are continuous variables.

2. A stroke thrombolysis pathway data set, a data set describing characteristics for patients where a decision
is made whether to treat with clot-busting medication. Features are mostly categorical, binary, or
integers.

Methods are evaluated in three ways:
1. The ability of synthetic data to train a logistic regression classification model.
2. A comparison of means and standard deviations between original and synthetic data.

3. A comparison of covariance between features in the original and synthetic data.

Results

Using the Wisconsin Breast Cancer data set, the original data gave 98% accuracy in a logistic regression
classification model. Synthetic data sets gave between 93% and 99% accuracy. Performance (best to worst)
was SMOTE > PCA > GAN > CT-GAN = VAE. All methods produced a high accuracy in reproducing
original data means and stabdard deviations (all R-square > 0.96 for all methods and data classes). CT-GAN
and VAE suffered a significant loss of covariance between features in the synthetic data sets.

Using the Stroke Pathway data set, the original data gave 82% accuracy in a logistic regression classification
model. Synthetic data sets gave between 66% and 82% accuracy. Performance (best to worst) was SMOTE
> PCA > CT-GAN > GAN > VAE. CT-GAN and VAE suffered loss of covariance between features in the
synthetic data sets, though less pronounced than with the Wisconsin Breast Cancer data set.

Conclusions

The pilot work described here shows, as proof of concept, that synthetic data may be produced, which
is of sufficient quality to publish with open methodology, to allow people to better understand and test
methodology. The quality of the synthetic data also gives promise of data sets that may be used for screening
of ideas, or for research project (perhaps especially in an education setting).

More work is required to further refine and test methods across a broader range of patient-level data sets.
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1 Introduction

Open science is a movement seeking to make scientific
research accessible to all'. This includes not only
open publication of scientific papers, but provision
of code (using open source software), and underlying
data. Publishing patient-level data may, however,
compromise the confidentiality of that data if there is
any significant risk that data may later be associated
with individuals.

If we are to publish analysis or models, such as ma-
chine learning models, with data we therefore need
a means of producing data that contains all the fea-
tures of the original data but does not present any
significant risk to patient confidentiality. We may
take two approaches to solving this problem. Firstly
we may add noise to the data to sufficiently protect
anonymity; this approach is used in the differential
privacy method?. A second approach is to try to pro-
duce synthetic data that is a reasonable facsimile of
the original data, but that does not directly recreate
original data points.

In this paper we present experiments with five differ-
ent methods of producing synthetic data:

1. A method based on Principal Component Anal-
ysis, PCA, a classical statistical method for
dimensionality reduction?. Data is transformed
into k orthogonal dimensions. We use this ap-
proach to create synthetic data by sampling
from distributions for each Principal Compo-
nent dimension, and transforming these sam-
pled data points back into the original data
dimension space.

2. Synthetic Minority Oversampling Technique,
SMOTE*. This is a method normally used
to enhance data with extra points created by
interpolation between near neighbours. Here we
follow the same methodology used for data aug-
mentation, but remove the original data points,
leaving only the synthetic data points.

3. Generative Adversarial Network, GAN®. This
method relies on two adversarial artificial neural
networks. A discriminator network is trained
to distinguish between synthetic and real data.
A generator network is trained to produce data
that can fool the discriminator network. The
performance of each improves as the two net-
works are trained in contest with each other.

4. Conditional Tabular GAN, CT-GANS®. CT-
GAN is a development of a general GAN with
the aim of providing synthetic tabular data. A
conditional GAN framework is used to help pre-
vent modal collapse, a problem where a GAN
may generate realistic synthetic data, but that
the the population variance of the synthetic

data is significantly reduced compared to the
original data set.

5. Variational Auto Encoders, VAE". An autoen-
coder is a type of artificial neural network that
encodes data in a reduced dimension space®.
The network is trained so that data is forced
down through a layer (the latent space layer
with fewer dimensions than the original data.
Decoding layers then expand back to the origi-
nal number of dimensions, and the network is
trained to minimise the loss between the de-
coded data and the original data. Variational
Auto Encoders are an adaptation to allow this
framework to be used for synthetic data pro-
duction, using a specialised way of regulating
the network to avoid over-fitting to the original
data. The latent layer is framed as a distribu-
tion for each dimension, with the loss function
for training the model incorporating a penalty
for low variance distributions. Synthetic data is
produced by sampling values for the latent lay-
ers using the distribution parameters obtained
in training of the network.

Clinical data can take various forms. Here we inves-
tigate techniques using two different data sets.

1. The Wisconsin Breast Cancer data set®. This
is a set of histology data. There are two classes:
samples that come from malignant tumours and
samples that come from benign tumours. All
features are continuous variables. The data
set contains 569 tissue samples each with 30
features.

2. A stroke thrombolysis pathway data set'®. This
is a data set of clinical characteristics for pa-
tients in an acute Stroke Pathway. There are
two classes: patients that receive thromboly-
sis (treatment to dissolve a clot in the brain),
and patients that do not receive thrombolysis.
The majority of features are categorical, binary,
or integer values. The data set contains 1862
patients each with 50 features.

This work describes initial pilot work to test the five
synthetic data methods applied to the two data sets.
Methods are not fully optimised, and the two data
sets while intending to represent two different types
of data, do not represent all types of clinical data.

2 Methods

All data and code for the experiments de-
scribed here may be found at https://github.
com/MichaelAllenl1966/synthetic_data_pilot/
releases/tag/1.0.0 (DOI:10.5281/zen0do.4075288).
All methods are coded in Python!!.
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2.1 Synthetic methods
Methods coded are:

1. Principal Component Analysis, PCA3, imple-
mented using the decomposition package in
SciKit Learn!2.

2. Synthetic Minority Oversampling Technique,
SMOTE*, implemented using the IMBLearn
package 3.

3. Generative Adversarial Network, GAN ®, imple-
mented in PyTorch !4

4. Conditional Tabular GAN, CT-GAN 8, imple-
mented using the CT-GAN package (https:
//github.com/sdv-dev/CTGAN).

5. Variational Auto Encoders, VAE " implemented
in TensforFlow!® and Keras (https://github.
com/fchollet/keras.)

Additional numerical calculations are performed us-
ing NumPy!6 and Pandas!”. Results are plotted
using MatPlotLib 8.

All synthetic methods have been constructed to to
initially produce continuous variable outputs. Non
continuous outputs are generated as follows:

1. Binary: values of 0.5 or greater are set to 1,
otherwise 0.

2. Integer: values are set as the rounded integer of
the continuous variable. No clipping is applied.

3. Categorical: values are converted to one-hot
encoding in the raw data. In the synthetic data
the one-hot feature with the greatest value is
set to 1, and all others are set to 0.

2.2 evaluation

For each method the synthetic method is run sepa-
rately for the negative and positive class examples.

Methods are evaluated in three ways:

1. A logistic regression model (SciKit Learn'?) is
trained using synthetic data. This is then tested

against 25% of the original data (the remaining
75% of the original data is used to train another
logistic regression model for comparison).

2. Means and standard deviations are compared
between original and synthetic data. Coefficient
of correlation of the comparison is described in
the results section. Detailed plots are provided
in the appendix.

3. Covariance between features is evaluated in the
original and synthetic data. The pair-wise co-
efficient of correlation for each feature pair is
compared between original and synthetic data
and an overall coefficient of correlation (of the
pair-wise coefficients of correlation between orig-
inal and synthetic data) provided in the results.
Detailed plots are provided in the appendix.

3 Results

3.1 Training a logistic regression clas-
sification model

Table 1 shows the performance of a logistic regression
classification model trained on original or synthetic
data (when original data is used to train the model,
the model is tested on 25% of the data not used to
train the model). Results are shown for accuracy
(proportion of all cases identified correctly), sensitiv-
ity (proportion of positive cases identified correctly)
and specificity (proportion of negative cases identified
correctly). The experiment was repeated five times.

3.2 Comparison of means and stan-
dard deviations

Table 2 shows a summary of correlations between
original and synthetic means and standard deviations
(see appendix for detailed charts). Further detailed
results are available in the Jupyter Notebooks in the
on-line GitHub repository.

Table 3 shows a summary of correlation coefficients
between original and synthetic pair-wise feature corre-
lation coefficients (see appendix for detailed charts).
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Table 1: Performance of original and synthetic data sets when used to train a logistic regression model, which
is tested against original data. Results show mean + sem (n=>5).

Data set Synthesis  Accuracy Sensitivity Specificity

Wisconsin ~ Original ~ 0.975 (0.007) 0.944 (0.011) 0.995 (0.004)
PCA 0.976 (0.003) 0.971 (0.098) 0.980 (0.005)
SMOTE  0.990 (0.003) 0.985 (0.013) 0.993 (0.002)
GAN 0.957 (0.008) 0.934 (0.016) 0.968 (0.007)
CT-GAN 0.933 (0.015) 0.825 (0.030) 0.998 (0.002)
VAE 0.933 (0.009) 0.965 (0.019) 0.998 (0.002)

Stroke Original ~ 0.815 (0.005) 0.806 (0.008) 0.821 (0.005)
PCA 0.801 (0.010) 0.875 (0.005) 0.752 (0.015)
SMOTE  0.824 (0.004) 0.853 (0.012) 0.804 (0.010)
GAN 0.678 (0.012) 0.725 (0.056) 0.644 (0.048)
CT-GAN 0.684 (0.034) 0.877 (0.029) 0.556 (0.075)
VAE 0.664 (0.004) 0.692 (0.031) 0.648 (0.002)

Table 2: R-squared for correlations between original and synthetic means and standard deviations (SD).
Results show mean + sem (n=>5).

Means Standard Deviations

Data set Synthesis Negative Positive Negative Positive

Wisconsin  PCA 1.000 (0.000) 1.000 (0.000)  1.000 (0.000) 1.000 (0.000)
SMOTE  1.000 (0.000) 1.000 (0.000)  1.000 (0.000) 1.000 (0.000)
GAN 0.999 (0.000) 0.999 (0.000)  1.000 (0.000) 0.999 (0.000)
CT-GAN 0.985 (0.006) 0.967 (0.010)  0.996 (0.001) 0.975 (0.003)
VAE 0.998 (0.001) 0.983 (0.007)) 0.980 (0.011) £0.974 (0.008)

Stroke PCA 1.000 (0.000) 1.000 (0.000)  0.999 (0.000) 1.000 (0.000)
SMOTE  1.000 (0.000) 1.000 (0.000)  0.999 (0.000) 0.998 (0.000)
GAN 0.999 (0.000) 1.000 (0.000)  0.967 (0.004) 0.987 (0.003)
CT-GAN 0.998 (0.001) 0.996 (0.001)  0.996 (0.001) 0.988 (0.003)
VAE 0.998 (0.001) 0.999 (0.000)  0.987 (0.005) 0.989 (0.004)

Table 3: R-squared for correlation between original and synthetic pair-wise feature correlation coefficients.
Results show mean + sem (n=>5).

Data set Synthesis Negative Positive

Wisconsin  PCA 0.996 (0.000) 0.995 (0.000)
SMOTE  0.984 (0.002) 0.981 (0.002)
GAN 0.918 (0.009) 0.832 (0.039)
CT-GAN 0.134 (0.002) 0.146 (0.006)
VAE 0.535 (0.044) 0.166 (0.038)

Stroke PCA 0.939 (0.002) 0.934 (0.001)
SMOTE  0.923 (0.001) 0.910 (0.002)
GAN 0.833 (0.006) 0.828 (0.008)
CT-GAN 0.388 (0.003) 0.448 (0.003)
VAE 0.844 (0.008) 0.827 (0.006)
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4 Discussion

In the data sets we have examined here synthetic
approaches based on PCA and SMOTE have the best
performance overall: classification model performance
is maintained, means and standard deviations of the
synthetic data closely match the original data set,
and covariance between features is well maintained.
A standard GAN performed reasonably well in all cat-
egories. CT-GAN, however performed more poorly in
the classification model training for the stroke model
and, while means and standard deviations closely
matched the original data set, there was a significant
loss in covariance between the features. The VAE
performance was similar to the standard GAN, but
also suffered from some loss in covariance between
features, especially in the Wisconsin Breast Cancer
data set.

PCA and SMOTE currently appear the best choices
for synthesising tabular patient data, but testing on
more data sets is required. PCA may struggle as
feature sets become larger and computation of the
principal components becomes more computationally
challenging.

GANs are a rapidly developing type of network.
They are able to synthesise complex data includ-
ing non-structured data such as images (see https:
//thispersondoesnotexist.com as an example of
a GAN creating realistic images of people. Here we
have used just a simple GAN and CT-GAN. There
is potential in testing developments of the GAN ap-
proach, such as the Wasserstein GAN ¥ which im-
proves stability of GANs and helps prevent modal
collapse where the synthetic data is realistic but from
the population of the synthetic data is more limited
in variance than that of the original data.

Instability in GANs is a well known phenomenon,
hence the development of techniques such as Wasser-
stein GAN to improve stability. One practical ap-
proach may also be to train an ensemble of GANs,
and choose the one that produces the highest quality
synthetic data.

The relatively poor performance of the CT-GAN, es-
pecially the profound loss of the expected covariance
between features in the synthetic data, was a surprise,
as this method is targeted at replicating tabular data.
From our results, this method should be used with
caution where preservation of feature covariance is
important.

The overall performance of the VAEs was similar
to the GAN, except that there was some loss in co-
variance between features. Unlike PCA there is no
requirement of the encoded reduced dimension layer
to have encoded features that are orthogonal to each
other, so it is perhaps not surprisingly that the VAE
does not necessarily maintain feature covariance.

Whether performance of a synthetic method is suffi-
ciently good, and which method is best, depends on
the purpose of the synthetic data. Is the synthetic
data to be used as an illustrative data set, or will
detailed analysis be performed on it? For Open Sci-
ence, the former will probably most common - the
synthetic data must resemble the original data with
close enough approximation that the methods and
results being presented may be understood using the
synthetic data. A next step up the synthetic data
quality ladder is to use of synthetic data that may
be made publicly available and that can be used to
test ideas before an application is made for robust
analysis of the original data. The final rung of the
synthetic data quality ladder is when synthetic data
may totally replace original data for research, with no
need even to confirm results using the original data.
The quality of patient-level synthetic data, from our
pilot experiments, appears to be within this spectrum
- easily good enough to be used to help people un-
derstand and test published methodology, and likely
good enough to be used to screen ideas (e.g. in an
educational research setting).

4.1 Limitations
Two key limitations of the work described here are:

1. We have so far used only two patient-level data
sets. Those these data sets were chosen to rep-
resent different types of data, further evaluation
is needed using alternative patient-level data
sets.

2. We have used methods in their basic configu-
ration. Further optimisation, or use of refined
approaches, may improve on performance ob-
served here.

3. In all our methods we trained the synthetic data
engines on data from each data class separately.
We have yet to evaluate the performance of ma-
chine learning classification trained on synthetic
data where the class is treated as just one of
the features in the data set (a single synthetic
data engine would be trained and used, rather
than class-based engines).

4.2 Further work

Further work will focus on the following areas:

1. Optimising methods and using refinements to
methods (especially more advanced GAN tech-
niques).

2. Testing on a broader range of patient-level data
sets.

3. Testing the ability to produce synthetic data
suitable for machine learning classification with-
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out the need to separately train methods on 53 Conclusions

different classes of data.
The pilot work described here shows, as proof of con-

cept, that synthetic data may be produced, which is
of sufficient quality to publish with open methodology,
to allow people to better understand and test method-

. Testing ensembles of artificial neural nets ology. The quality of the synthetic data also gives

(GANSv VAES)] PiCkin the best performing  promise of data sets that may be used for screening
engine and testing against a separate held-back  of jdeas, or for research project (perhaps especially

data set (for machine learning classification). in an education setting).
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Appendices

A Wisoconsin Breast Cancer data set

Figures 1 to 10 show a) a comparison of means and standard deviations between the original and synthetic
data sets, and b) correlation between all features in original and synthetic data sets. The figures show five
synthetic runs for each method.
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Figure 1: Comparison of mean and standard deviations of features between original and synthetic Wisconsin
Breast Cancer data, with synthetic data produced using a Principal Component based approach. Different
colours represent five alaternative model runs.
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Figure 2: Comparison of correlation between all features in original and synthetic Wisconsin Breast Cancer
data with synthetic data produced using a Principal Component based approach. Different colours represent
five alaternative model runs.
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Figure 3: Comparison of mean and standard deviations of features between original and synthetic Wisconsin
Breast Cancer data, with synthetic data produced using SMOTE. Different colours represent five alaternative

model runs.

12


https://doi.org/10.1101/2020.10.09.20210138
http://creativecommons.org/licenses/by/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2020.10.09.20210138; this version posted October 13, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in
perpetuity.
It is made available under a CC-BY 4.0 International license .

Negative label samples correlation of features Positive label samples correlation of features
1.00 }
0.75
C C
2 050 s
© ©
e [
S 025 3
S 8
© ©
kel el
£ 0.00 o
[} [
< <
€ €
& -0.25 &
—0.50 ;’
—-0.75 i
-06 -0.4 -02 00 02 04 06 08 10 -04 -02 00 02 04 06 08 10
Original data correlation Original data correlation

Figure 4: Comparison of correlation between all features in original and synthetic Wisconsin Breast Cancer
data with synthetic data produced using SMOTE. Different colours represent five alaternative model runs.
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Figure 5: Comparison of mean and standard deviations of features between original and synthetic Wisconsin
Breast Cancer data, with synthetic data produced using a Generate Adversarial Network. Different colours
represent five alaternative model runs.
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Figure 6: Comparison of correlation between all features in original and synthetic Wisconsin Breast Cancer
data with synthetic data produced using a Generate Adversarial Network. Different colours represent five
alaternative model runs.
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Figure 7: Comparison of mean and standard deviations of features between original and synthetic Wisconsin
Breast Cancer data, with synthetic data produced using CT-GAN. Different colours represent five alaternative

model runs.
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Figure 8: Comparison of correlation between all features in original and synthetic Wisconsin Breast Cancer
data with synthetic data produced using CT-GAN. Different colours represent five alaternative model runs.
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Figure 9: Comparison of mean and standard deviations of features between original and synthetic Wisconsin
Breast Cancer data, with synthetic data produced using a Variational Auto Encoder. Different colours
represent five alaternative model runs.

18


https://doi.org/10.1101/2020.10.09.20210138
http://creativecommons.org/licenses/by/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.10.09.20210138; this version posted October 13, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in
perpetuity.
It is made available under a CC-BY 4.0 International license .

Negative label samples correlation of features Positive label samples correlation of features
1.00
0.75
§ §
S = 0.50
© ©
[ °
3 S 025
8 8
© ©
kel el
= £ 0.00
(9] (]
< e
= S
< <
) » —0.25
—-0.50
T T —0.75 T T T
-0.6 -04 -02 00 02 04 06 08 1.0 -04 -02 00 02 04 06 08 10
Original data correlation Original data correlation

Figure 10: Comparison of correlation between all features in original and synthetic Wisconsin Breast Cancer
data with synthetic data produced using a Variational Auto Encoder. Different colours represent five
alaternative model runs.
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B Stroke thrombolysis pathway data set

Figures 11 to 20 show a) a comparison of means and standard deviations between the original and synthetic
data sets, and b) correlation between all features in original and synthetic data sets. The figures show five
synthetic runs for each method.
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Figure 11: Comparison of mean and standard deviations of features between original and synthetic stroke
thrombolysis pathway data, with synthetic data produced using a Principal Component based approach.
Different colours represent five alaternative model runs.
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Figure 12: Comparison of correlation between all features in original and synthetic stroke thrombolysis
pathway data with synthetic data produced using a Principal Component based approach. Different colours
represent five alaternative model runs.
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Figure 13: Comparison of mean and standard deviations of features between original and synthetic stroke
thrombolysis pathway data, with synthetic data produced using SMOTE. Different colours represent five
alaternative model runs.
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Figure 14: Comparison of correlation between all features in original and synthetic stroke thrombolysis
pathway data with synthetic data produced using SMOTE. Different colours represent five alaternative model
runs.
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Figure 15: Comparison of mean and standard deviations of features between original and synthetic stroke
thrombolysis pathway data, with synthetic data produced using a Generate Adversarial Network. Different
colours represent five alaternative model runs.
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Figure 16: Comparison of correlation between all features in original and synthetic stroke thrombolysis
pathway data with synthetic data produced using a Generate Adversarial Network. Different colours represent
five alaternative model runs.
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Figure 17: Comparison of mean and standard deviations of features between original and synthetic stroke
thrombolysis pathway data, with synthetic data produced using CT-GAN. Different colours represent five
alaternative model runs.

27


https://doi.org/10.1101/2020.10.09.20210138
http://creativecommons.org/licenses/by/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.10.09.20210138; this version posted October 13, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in
perpetuity.
It is made available under a CC-BY 4.0 International license .

Negative label samples correlation of features Positive label samples correlation of features
1.00 & 1.00
0.75 A 0.75 A
§ 0501 § 050
- -
o ©
9@ 0.25- [4
5 § 0.25
v
8 o00{ @ o8 gdnsmt el g s
3 s © WE%M%’W‘ ® S 0.00
v o
T —0.25 1 8 -,% [
= - £ —-0.25 1
@ —0.50 g o o® &
. ] —0.50 -
—0.75 - e e °3
-0.751 & o2
. e =3
-1.00 1@ ()
-1.00-0.75-0.50-0.25 0.00 0.25 0.50 0.75 1.00 —-1.00-0.75-0.50-0.25 0.00 0.25 0.50 0.75 1.00
Original data correlation Original data correlation

Figure 18: Comparison of correlation between all features in original and synthetic stroke thrombolysis
pathway data with synthetic data produced using CT-GAN. Different colours represent five alaternative
model runs.
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Figure 19: Comparison of mean and standard deviations of features between original and synthetic stroke
thrombolysis pathway data, with synthetic data produced using a Variational Auto Encoder. Different colours
represent five alaternative model runs.
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Figure 20: Comparison of correlation between all features in original and synthetic stroke thrombolysis
pathway data with synthetic data produced using a Variational Auto Encoder. Different colours represent
five alaternative model runs.
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