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Abstract 
This study uses mobility statistics combined with business census data for the eight 

Japanese prefectures with the highest COVID-19 infection rates to study the effect of mobility 

reductions on the effective reproduction number (i.e., the average number of secondary cases caused 

by one infected person). Mobility statistics are a relatively new data source created by 

compiling smartphone location data. Based on data for the first wave of infections in Japan, we 

found that reductions targeting the hospitality industry were more effective than restrictions on 

general business activities. Specifically, we found that to hold back the pandemic (that is, to reduce 

the effective reproduction number to one or less for all days), a 20-35% reduction in weekly mobility 

is required, depending on the region. A lesser goal, 80% of days with one or less observed 

transmission, can be achieved with a 6-30% reduction in weekly mobility. These are the results if 

other potential causes of spread are ignored; more careful observations and expanded data sets are 

needed. 

Introduction 
Many countries have suffered from the COVID-19 pandemic and have experienced severe 

economic impacts due to the restrictions on socio-economic activities. GDP losses have been 
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significant (e.g., -7.9% in Japan during the second quarter of 2020 [1]), and unemployment numbers 

are increasing. Several countries have managed to restart socio-economic activities to near 

pre-pandemic levels, but most have suffered a second wave of the pandemic.  

The conditions of first, second, and higher-round waves can differ because individual or 

organizational countermeasures (e.g., masks, hand washing, antiseptic solutions, and partitioning) 

have advanced. However, analyzing the infection risks and degree of lockdown/voluntary restriction 

of socio-economic activities in the first wave, the only currently available data, is meaningful for 

creating better activity restriction policies. 

Traffic flows or mobility habits are a representative measure of lockdown restriction levels. 

Therefore, many previous studies have focused on the relationship between infection levels and 

traffic flows to demonstrate the effects of lockdowns/voluntary restrictions. For example, focusing 

on traffic data obtained from 1200 automatic traffic sensors in Italy, Cratenì et al. [2] constructed a 

multiple regression model to explain the number of daily new positive cases of COVID-19. In their 

regression model, the explanatory variables on particulate matter pollutant, number of tests per day, 

travel time decay from outbreak, and temperatures are statistically significant, but the mobility habits 

21 days before an onset is shown to be most influential. Similarly, rail-based transport accessibility 

[3] and traffic volumes on express ways [4] also have the capability to explain the number of 

infections.  

Person-based mobility statistics, which have recently become available through 

smartphone devices, are a powerful tool for understanding regional overviews of socio-economic 

activities. For example, Google Mobility Report [5] provides population statistics for retail and 

recreation, grocery and pharmacy, parks, transit stations, workplaces, and residential areas all over 

the world. Engle et al. [6] used GPS locational data for 94,116 observations in 3,142 U.S. counties 

from 2/24/2020 to 3/25/2020 and found that a rise in the local infection rate from 0% to 0.003% is 

associated with a 2.31% reduction in mobility. These smart-device based mobility statistics are also 

utilized to understand the effect of control measures in China [7] and to estimate the number of the 

Covid-19 infections in New York [8]. 

As for the Japanese case, Yabe et al. [9] employed 200,000 anonymized mobile phone 

users in Tokyo and concluded that by April 15th (one week into the state of emergency), human 

mobility behavior decreased by approximately 50%. Similarly, Arimura et al. [10] analyzed the case 

of Sapporo City, Japan to understand the effect of the emergency declarations from the local and 

national government. 

Our approach also utilizes mobility data (hourly and 500m grid scale populations across 

Japan) considering its powerful ability to capture the actual rate at which people stayed at home 

during the pandemic crisis. The goal of this study is to perform two major exploratory data analyses. 

First, we pick up the question, besides stay-at-home rates, what types of mobility measures are more 
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correlated with infection risk? For this purpose, recent business census data at a 500m grid scale is 

combined with mobility statistics and the effective reproduction number (how many people are 

infected by one infected person, denoted by R(T)). The second focus question is, to what degree do 

we need to restrict our (daily) travel to reduce the pandemic crisis?  

Compared to previous research with similar aims [2][3][7][8], the data set is constructed at 

a very detailed spatial scale and substantial effort is put into data processing to provide evidence that 

reinforces/complements the results in the literature. The effective reproduction number, estimated in 

this study is also helpful for interpreting the results because it is a direct indicator of an increasing or 

decreasing trend in infections. Understanding the relationship between mobility levels and the 

effective reproduction number can help policymakers make informed policy choices to reduce local 

infections. 

 

Data set and approach 
In this study, three different types of statistics are utilized: the number of infected people 

[11], mobility statistics [12], and business census data from Japan’s Ministry of Internal Affairs and 

Communications (MIC) [13]. The number of infected people is recorded on the date that the 

infections are confirmed by Japan’s Ministry of Health, Labor and Welfare (MHLW). Here, we 

focused on the eight prefectures where the number of infections exceed500 by May 31, 2020. We 

then prepared the associated data sets for these eight prefectures.  

Fig 1 illustrates the time series for the number of infected people in the eight target 

prefectures. Tokyo had the most infected people, and the second largest city, Osaka, follows. 

Explosions of infections can be seen from the end of March. It is assumed that people reduced their 

restriction levels during the holidays before this large wave came. April 7th is the day the emergency 

statement was issued by the Japanese Government, after which the first wave of the pandemic 

gradually abated.  

The effective reproduction number (or instantaneous effective reproduction number due to 

time dependent characteristics) can be calculated from this data and the serial interval distribution 

(time between successive infections from one person to another). Basically, the infection process is 

normally regarded as a stochastic phenomenon due to the difference in infectivity among people and 

observation errors, and a certain type of probability distribution needs to be assumed. To estimate the 

effective reproduction number, we employed the model provided by Cori et al. [14], which assumes 

a gamma distribution for the number, the researchers validated the model by checking the 

consistency of the estimates for five historical outbreaks. We adopted Nishiura et al. [15] for the 

serial interval distribution: 4.8 days for the mean and 2.3 days for the standard deviation, which are 

relatively consistent with the report by Kramer et al. [7], which estimated 4.8 days for the mean and 
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3.3 days for the standard deviation.  

 

 

Fig 1. Number of Infected People [11]. 

 

NTT docomo is one of the largest carriers in Japan, and it holds 37.4 % of all mobile 

phone contracts in Japan [16]. Populations of people ages 15 to 79 are counted with the following 

rule for target “hourly duration” (i.e., one day is divided into 24 time slots such as 15:00-16:00.): If a 

person stays within the grid for 15 minutes during a target hour, then 1/4 is added to the population. 

The rule is applied for every 15 minutes of stay. Based on the duration of each person’s stay in a grid, 

either 1/4, 1/2, 3/4, or 1 is added to the population. The mobility data are not raw data, but are 

magnified based on the carrier’s, NTT docomo, share in each region. People below age 15 and over 

80 as well as people that do not have a smartphone are not counted. Therefore, the estimated 

population tends to be lower than the actual population, but the majority of the population is 

explained by this data set. 

Fig 2 depicts the mobility statistics in Tokyo for a single hour, 15:00-16:00, on two 

different days: On March 13 (Friday), a relatively dense population is observed, while in the same 

time period on Apr 23 (Friday), the population was reduced in central Tokyo. In Fig 2-1, the total 

number of people observed in the grids during the time period in March is 12,943,780 people, while 

a 2015 national census survey, the most recent data available, indicates a daytime population in 

Tokyo of 15,920,405 (Tokyo metropolitan government, 2018 [17] ). In Fig 2-2, 12,128,864 people 

were counted in April. Reductions are seen in inflows from other prefectures and abroad as well as in 

inflows from residential areas to the center of the prefecture. 

 

Fig 2-1. Mobility statistics in Tokyo at 15:00 (Mar 13, 2020). 

 

Fig 2-2. Mobility statistics in Tokyo at 15:00 (Apr 23, 2020) 

 

The last statistic introduced is the 2016 economic census for businesses conducted by the 

MIC [13], which is the most recent data set available. The statistics include the number of employees 

in over 100 business sectors, and it is aggregated in a 500m grid scale. By using the mobility 

statistics and business census, we employ the following criterion as a measure of potential contacts 

in the business and commercial districts. This criterion should have a strong (negative) correlation to 

the level of stay home activity. The measure of (daily) potential contacts (PC) in the business and 

commercial districts is defined as the sum of the weighted average of the hourly population as 

follows: 
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,              (1) 

where W��� is a variable for the weight at grid s, and ���, �� is the mobility statistics at grid s and 

time t. In the analysis, we investigate two cases: ���� 	 
��
��� as the total employees in all 

business sectors and ���� 	 ���
��� as the total employees in all hospitality sectors (wholesale 

and retail, hotel and restaurant, living related and personal services, amusement, education, and 

medical and healthcare sectors). In either case, if people are crowded in business and commercial 

areas, where the number of employees is large, the value of the measure increases. This measure 

cannot capture the actual contacts (e.g., distance, meeting duration, mask use, and other 

countermeasures), but it is expected to explain the potential contacts considering that that literature 

has shown that a decrease in trips leads to a statistical decrease in infections. 

The daily effective reproduction number R(T) is estimated over a weekly sliding window 

before T (i.e., R(T) represents the number from day T-6 to T). PC�T� is also estimated as a weekly 

average (from T-6 to T), but a 5 days lag is used to comparing R(T) (i.e., the incubation time is 

approximately 5 days, based on previous studies [19]). For simplicity, we denote the weekly average 

of PC�T� as PC����(T). The period for estimating R(T) and PC����(T) can be changed, but a good 

correlation is seen so far between R(T) and PC����(T-5) in the later analysis. 

Based on the estimates of PC����(T) and R(T), the mobility restriction levels required to 

reduce the pandemic can be calculated. That is, the threshold value of PC����(T-5) that can achieve R(T) 

� 1, is regarded as a minimum activity level. (If the PC����(T-5) is smaller than the threshold, all the 

observed R(T) are smaller than or equal to 1.) If the threshold values of PC����(T) and ���, �� are set 

as PC����’(T) and ����, ��, respectively, and the values of PC����(T) and ���, �� at the normal period are 

set as PC���� and ����, ��, respectively, then the relative ratio of PC���� to PC���� is given as: 

  ,                 (2) 

where N’(s,t) is the required population at grid s at time t, which is one of the solutions to achieve 

the threshold value. From Equation (2), we can understand that one of the solutions to achieve the 

target PC����’(T) is to set the relative population ����, ��/����, �� equals to PC����’(T)/PC��T� for all s� S 

and t� T.  
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Results and discussion 
We adopt the Pearson correlation coefficients to investigate the relationships between 

PC����(T) and R(T). To use the Pearson correlation coefficients, both variables must satisfy normality or 

linearity conditions. Therefore, we have applied the Kolmogorov-Smirnov test1 to PC����(T) and R(T), 

respectively. As a result, we set the target period to the days from Apr 1st to May 6th (from about one 

week before the emergency declaration in the severely affected region to the end of the long holiday), 

which is regarded as the duration of the first severe wave. Unfortunately, the PC����(T)s for two 

prefectures (Chiba and Saitama) did not pass the normality test (reject the null hypothesis on 

normality with 5 % significance level), but the other data sets are regarded as a normal distribution. 

The results of Chiba and Saitama are similarly analyzed as those in other prefectures in the later 

analysis for reference purpose only. 

Fig 3 describes the Pearson correlation coefficients between R(T) and PC����(T-5) for two 

cases of employment (total and hospitality sector). From this figure, the correlation coefficients are 

generally better when employees in the hospitality sector are selected as the weight of PC����(T). This 

indicates that infections tend to occur in the hospitality sector.  

 
Fig 3. Pearson correlation coefficients between effective reproduction numbers (R(T)) and the 

measure of potential contacts (������(T-5)) in the business and commercial district (applied to the 

daily data set from Apr 1 to May 6, 2020). 

 
Fig 4 plots the daily time series of PC����(T-5) and R(T) in the eight prefectures. The number 

of infections was small during the first few weeks, and the R(T)s were not stable during this period. 

In the figure for Hokkaido, the target days after Apr1st are highlighted for a reference. In many 

prefectures, the potential contacts decreased considerably in April and the beginning of May, but 

gradually started to return to pre-pandemic conditions at the end of May. The state of emergency 

declared by the central government ended on May 16th in Hokkaido and on May 31st in all the other 

prefectures, but people gradually restarted their activities, probably because the atmosphere of 

emergency was alleviated after many of the other prefectures ended emergency actions on May 6th. 

 
(Fig 4-1. 

Fig 4-2. 

Fig 4-3. 

Fig 4-4. 

                                                   
1 This test investigates the hypothesis regarding whether the empirical distribution (observations) and theoretical 
distribution are statistically identical. A detailed explanation is given, for example, by Massey (1951)[18]. 
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Fig 4-5. 

Fig 4-6. 

Fig 4-7. 

Fig 4-8.) 

 

Fig 4. Effective reproduction number (R (T)) and measure of potential contacts (������(T-5)) in 

the eight prefectures (5 days lag for potential contacts is assumed, e.g., ������(T-5) on March 27sh 

is plotted on April 1st) 

 

Based on the estimates of PC����(T-5) and R(T) described in Fig 4, the required mobility 

restriction levels can be calculated for reducing the pandemic from Equation (2). That is, the 

threshold value of PC����(T-5) can achieve R(T) � 1. Our study adopts the average PC����(T) in February 

2020 as the PC��T� for Equation (2). Fig 5 shows the estimated population (mobility) restriction 

levels (����, ��/ ����, �� from t-6 to t) to ensure achievement of R(T) � 1 in each prefecture. 

Because potential contacts are the sum of the weighted average of the population of employees in the 

hospitality sector, PC��T� can be more easily achieved if the rate of people is reduced more in 

places where the hospitality sector is agglomerated.  

From the figure, Tokyo requires the largest reduction (35%), followed by Osaka. This 

result can be naturally interpreted as these prefectures are the largest in Japan, and the population in 

the hospitality sector tends to be large. As shown in Fig 4, the scale of potential contacts in these 

prefectures is more than two times larger than the scale in the other prefectures. Hokkaido, 

Kanagawa, Hyogo, and Fukuoka also require high restriction levels on visits to the hospitality sector. 

Among these prefectures, Hyogo is a less populated prefecture, and the index of PC�T� is low. Its 

population characteristics are generally reflected in the low value of R(T) in Hyogo, but a large 

restriction on visits to the hospitality sector is still required to guarantee R(t) � 1. Another index, 

such as R(t) � 1 with an 80% chance, may be appropriate to capture the relationships between 

PC����(T) and an average low value of R(T). Saitama and Chiba may be classified into a third group, 

where the required restrictions are not so strict. However, these two sectors do not pass the normality 

test, and the relationship between mobility and the number of infections in these prefecture is not yet 

clear.  

 

Fig 5. Necessary reduction level of visits to hospitality sector businesses to achieve R(t)<1 for 

“100% of days” 

 

Based on the discussion above, in order to better understand the case of Hyogo, another 

index “R(T) � 1 for 80% of days” is introduced to capture the relationships between PC����(T-5) and 
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R(t) in Fig 6. This provides a slightly different view from Fig 5. The required reduction level 

becomes much lower, especially in Kanagawa, Osaka, and Hyogo, where generally low R(T)s are 

observed. In these prefectures, a large number of infections were observed from an early stage, and 

the introduction of countermeasures (e.g., the number of people wearing masks and social distancing 

at local spots within a 500m grid) might have been preventative. 

On the other hand, Hokkaido, Tokyo, and Fukuoka still require a large reduction in the 

number of visits to the hospitality sector. Among these prefectures, Hokkaido and Fukuoka has a 

large agglomeration of hospitality sector businesses, especially restaurants and night spots for 

visitors, which possibly affected the infection rates.  

 

Fig 6. Necessary reduction level of visits to hospitality sector businesses to achieve R(T)<1 for 

“80% of days” 

 

The above result is based on a case in which an 80% reliability level is arbitrarily 

determined, but more discussion is needed to determine a reliability level that we can accept. A 

better discussion would be to investigate on the relationships between the mobility reduction levels 

at different reliability levels for R(T) �1 and to estimate the economic impacts of mobility 

reductions as well. However, this is beyond the scope of this study. 

There are several studies that explain the change in total cases with a decrease in mobility. 

A quantitative comparison of these studies with our result is difficult because the data items and 

approach are different. For example, Glaser et al. (2020)[8] founds that 10% reduction in trips leads 

to a 0.27 log point drop in per capita Covid-19 prevalence. A 0.27 log point fall in Covid-19 

represents five fewer cases per 1000 habitants, from a sample mean of 17 per 1000. Roughly 

speaking, 29.4% (=5/17) of cases are reduced by 10% reduction in trips. We interpret that mobility 

reduction leads to the effective reduction of new incidences. Their approach is favorable because the 

number of essential workers, which cannot avoid visiting areas with large numbers of infections, are 

considered an instrumental variable. Considering that our results indicate the reduction level needs to 

be around 20.3-35.4% to reduce new incidences, we cannot clearly say that lower percentage of 

mobility reduction would have a large potential to reduce new infections. We agree, at least, that the 

effects of mobility reduction have a statistical relationship with the number of infections, but varies 

depending on population density, especially in the hospitality sector. 

Another necessary discussion point lies in the difference between the first wave treated in 

this study and the second or higher round waves. Considering that the countermeasures have 

advanced and the temperature has changed, further analysis is needed to know how much restrictions 

on mobility achieve R(T) �1. Continuous monitoring is necessary to understand when we will 

establish a new life with COVID-19. 
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Conclusions 
This study utilized mobility statistics and a business frame census, analyzed on a fine 

spatial scale, to capture the effective reproduction number of COVID-19, which is an important 

indicator in epidemiology. The weighted average of population density is estimated as a measure of 

congestion by using employees in the hospitality sector/total business sector. The study examines the 

correlation between these measures and the effective reproduction number in eight Japanese 

prefectures, where the incidence is large. One of the major conclusions in this study is that the 

measure of potential contacts in the hospitality sector (weighted average of population in the 

hospitality sector) has a fair correlation with the effective reproduction number.  

From this measure, the necessary population reduction level to hold back the pandemic can 

be derived. Our analysis indicated 0.20 (Hyogo)-0.35 (Tokyo) reductions are required to achieve 

R(T) �1 for all days, depending on the conditions of the prefectures, but 0.06 (Hyogo)-0.30 (Tokyo) 

are enough to achieve R(T) �1 for 80% of days. Because of the regional variety in values, and the 

high sensitivity to the required reliability to achieve R(T) �1, these relationships should be carefully 

checked in each prefecture to determine mobility restriction policies. An analysis of the relationships 

between mobility reduction and economic impacts would also assist in this kind of policy making. 

However, there are many limitations in the current study. As discussed, there are more 

explanatory variables with regard to natural and social conditions, which should be included in the 

analysis. Our analysis focused only on population density and business sector locations, but the 

attributes of the population are unknown. For example, age and job type largely affect the type of 

activity in the visited area. In addition to mobility and personal attributes, the number of incidences 

should be analyzed on a more detailed spatial scale. The current study uses the total number on a 

prefecture scale, which has a less significant relationship with mobility information in specific areas, 

especially when number of incidences is small. Delays on reported infections also affect the results 

in our study, and necessary modifications are required. 

Moreover, for additional future studies on Japanese conditions, a comparative study 

between the first and second or higher round waves will be important to identify the progress of 

countermeasures and the effects of temperatures. A similar analysis in other countries would also 

help to understand what level of mobility restrictions and local countermeasures would contribute to 

a low infection risk. 
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Fig 1. Number of Infected People [11]. 

 

 

 

 
Fig 2-1. Mobility statistics in Tokyo at 15:00 (Mar 13) 
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Fig 2-2. Mobility statistics in Tokyo at 15:00 (Apr 23) 

 

 
Fig 3. Pearson correlation coefficients between effective reproduction numbers (R(T)) and the 

measure of potential contacts (������(T-5)) in the business and commercial district (applied to the 

daily data set from Apr 1 to May 6, 2020). 
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Figs 4-1-4-8. Fig 4. Effective reproduction number (R (T)) and measure of potential contacts 

( (T-5)) in the eight prefectures (5 days lag for potential contacts is assumed, e.g., (T-5) on 

March 27sh is plotted on April 1st) 
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Fig 5. Necessary reduction level of visits to hospitality sectors to achieve R(t)<1 for “100% of 

days” 

 

 
Fig 6. Necessary reduction level of visits to hospitality sectors to achieve R(t)<1 for “80% of 

days” 
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