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Linking phone mobility data to the effective replication number (Rt) could help evaluation of the impact of social distancing 
on the coronavirus disease 2019 (COVID-19) spread and estimate the time lag (TL) needed for the effect of movement 
restrictions to appear. We used a time-series analysis to discover how patterns of five indicators of mobility data relate to 
changes in Rt of 125 countries distributed over three groups based on Rt-mobility correlation. Group 1 included 71 
countries in which Rt correlates negatively with residential and positively with other mobility indicators. Group 2 included 
25 countries showing an opposite correlation pattern to Group 1. Group 3 included the 29 remaining countries. We chose 
the best-fit TL based on forecast and linear regression models. We used linear mixed models to evaluate how mobility 
indicators and the stringency index (SI) relate with Rt. SI reflects the strictness of governmental responses to COVID-19. 
With a median of 14 days, TLs varied across countries as well as across groups of countries. There was a strong negative 
correlation between SI and Rt in most countries belonging to Group 1 as opposed to Group 2. SI (units of 10%) associated 
with decreasing Rt in Group 1 [β -0.15, 95% CI -0.15 – (-0.14)] and Group 3 [-0.05, -0.07 – (-0.03)], whereas, in Group 2, SI 
associated with increasing Rt (0.13, 0.11 – 0.16). Mobile phone mobility data could contribute evaluations of the impact of 
social distancing with movement restrictions on the spread of the COVID-19.  
 

Introduction 
By October 6, 2020, nearly 36 million humans have come 
down with the coronavirus disease 2019 (COVID-19) with 
the death toll exceeding one million.[1] While the virus 
continues to spread exponentially in some countries and 
others brace for a second wave of the disease, governments 
are tracking the effective reproduction number (Rt) to 
evaluate disease spread and the effectiveness of social 
distancing and movement restrictions.[2] Whereas the more 
commonly known basic reproduction number (R0) reflects 
the innate capacity of an infectious agent to spread,[3] Rt 
captures the dynamic changes of its spread that vary over 
time as a result of societies changing their behavior and 
gaining immunity. To reduce an individual’s capacity to 
transmit COVID-19, governments have been implementing 
a variety of movement restrictions. To evaluate the 
effectiveness of these measures, researchers have attempted 
to systematically associate changes in COVID-19 incidence 
with changes in Rt to schedule restriction actions. For 
example, Alfano and Ercolano[4] used the ACAPS 
#COVID19 Government Measures Dataset, which gathers 
implementation dates of restriction interventions in several 
countries and regions.[5] Despite including some regional 
data, the dataset does not allow proper aggregation of 
restriction interventions at the country level. Moreover, the 
dataset lacks information regarding the strength of 
restriction actions. 

To account for the strength of restriction actions, 
researchers from Blavatnik School of Government 
developed the stringency index (SI), an indicator of the 
strictness of governmental responses to COVID-19.[6] Based 
on qualitative measures of restriction policies, SI, however, 
does not reflect the extent to which the legislated measures 
are enforced in practice or the social compliance and 
response, which could vary across cultures, regions, and 
times independently of the restriction policies. 

Aggregated mobile community mobility data track the 
population mobility behavior and, during a pandemic, the 
data could provide good indicators of the regional extent of 
social distancing. Multiple studies have used mobility data 
to evaluate the social adherence to movement restriction 
policies against COVID-19[7] and to investigate how 
changes in mobility relate to the COVID-19 incidence and 
Rt.[8] 

As a function of the performance of health systems in 
tracking, testing, and reporting cases, a time lag (TL) is 
expected between the implementation of a restriction action 
and the possible change in disease incidence. Linka et al. 
have identified great variability in TLs across countries 
regarding COVID-19 incidence.[8] TLs can i) provide an idea 
of countries’ early detection capabilities of COVID-19 cases, 
ii) improve planning of lockdown exit strategies, iii) guide 
the length of recommended quarantines, and iv) permit a 
timeframe to prepare for predicted disease peaks. 
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The object of this study is to analyze how patterns of 
mobility data can be linked to COVID-19 Rt changes in 125 
countries with and without consideration of SI. 

Methods 
Data Sources and Variables of Interest 
COVID-19 Community Mobility Reports[9] provided coun-
try-specific mobility data. Google aggregates anonymized 
position data from users who have the Location History ac-
tivated on their mobile phones to reflect regional trends of 
community mobility in different regions and varied places. 
The dataset consists of daily regional percentages of change 
from the median value of the corresponding weekday during 
the 5-week baseline period (Jan 3 to Feb 6, 2020.) By Septem-
ber 18, 2020, the dataset was publicly available. In addition 
to the mobility data, we obtained data on COVID-19 daily 
case incidence from the GitHub COVID-19 repository of 
Johns Hopkins University[1] and data on policy responses 
and stringency of government measures for 180 countries 
from the Oxford COVID-19 Government Response Tracker 
(OxCGRT).[6]  

In this study, we focused on the period from 15 February 
to 11 September 2020 with days as a time unit. For each 
country, we considered days starting from the 2nd con-
firmed COVID-19 case. After excluding countries with less 
than 60 days reporting new cases, mobility, or SI, we re-
tained 125 countries for the analysis. The analyzed countries 
had a median observation time of 188 days. COVID-19 
Open-Data GitHub repository eased access to data 
sources.[10] This study needed no ethical review since the 
observations concerned countries, not identified per-
sons.[11] 

With the help of the R-package Epi-Estim,[12] we calcu-
lated daily changes in Rt for each country based on the 
COVID-19 incidence. As the virus is suggested to spread 
faster than SARS but slower than H1N1,[13] we used, as a 
parameter in our computations of Rt, the serial interval of 
COVID-19 proposed by Nishiura et al.[14] [mean 4.7, stand-
ard deviation (SD) 2.9]. From Google’s COVID-19 Commu-
nity Mobility Reports we obtained the indicators of daily 
changes in mobility in five categories: retails and recreation 
places (named in analyses as ‘retail’), grocery stores and 
pharmacies (grocery), transit stations (transit), residential 
places (residential), and workplaces (work). Google Com-
munity Mobility Reports also comprises information on mo-
bility in parks, but like Vokó and Pitter,[15] we omitted this 
variable from our analyses as the effect of the time spent in 
parks on disease spread is unclear. 

We used the daily SI computed by the OxCGRT[6] as a 
single numerical measure to aggregate different types of gov-
ernmental responses and levels of restriction policies in each 
country. From Wikidata we obtained demographics, the 
number of internet users, and the Human Development in-
dex (HDI) for each country. 
Data Analysis 
We performed all analyses by means of the R version 
4.0.2.[16] 
Preliminary Analysis 
First, we organized the data as timeseries of daily mobility, 
SI, and Rt. Second, we derived 30 datasets from the 
timeseries for each country by lagging the mobility 
observations by 1 to 30 days forward (corresponding to 
possible TL values).[17] As a preliminary analysis, we 
evaluated trends in mobility indicators and SI and estimated 
change-points in country-specific trends for each mobility 
indicator and SI using the Buishand range test.[18] 
Moreover, based on the directions of Pearson’s correlation 
coefficients (r) between mobility indicators and Rt changes, 
we identified three groups of countries. Group 1 included 71 
countries with positive correlations of Rt with retail, grocery, 
transit, and work mobility but a negative correlation of Rt 
with residential mobility. The reason of that choice was that 
increased residential mobility is expected to associate with a 
decrease in disease spread as opposed to the other mobility 
indicators. Group 2 included 25 countries showing an 
opposite correlation pattern to Group 1. Group 3 included 29 
remaining countries. We compared the groups’ 
sociodemographic characteristics using Kruskal-Wallis 
Ranks Sum test. 
Predictive Modeling 
We applied Facebook Prophet, an open-source forecasting 
package for timeseries,[19] to fit additive non-linear models 
regarding changes of Rt in each country over its 30 datasets 
(the possible TL values) and used the five mobility variables 
as regressors. We did not adjust for seasonality or trend. We 
evaluated the accuracy of each Prophet forecast using the 
mean absolute percentage error (MAPE), estimated by 
means of the Prophet’s cross validation function, and the 
adjusted explanatory power, R². 

Similarly, for each country’s 30 datasets, we fitted a linear 
regression model with Rt as the dependent variable and the 
five lagged mobility indicators as independent variables.  
Selection of the Best Fitting Time Lag 
We assumed that the TL remains constant over time and 
does not vary across mobility indicators. To select the best-
fit TL value for each country, we evaluated the following 
parameters for the Prophet’s forecast models: MAPE and the 
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adjusted R², and the following parameters for the linear 
regression models: p-value, the adjusted R², the F-test value, 
and the likelihood-ratio. We also examined cross-correlation 
plots of Rt with all mobility indicators.[20] 

We based the final choice regarding the best-fit TL on 
manual inspections of country-anonymized plots of rescaled 
performance indicators (Supplementary material). We 
prioritized early change points over the late ones, criteria 
concerning the regression models over Prophet-forecasts’ 
performances, MAPE over Prophet-forecasts’ adjusted R², 
and rapid changes in curves over extreme values. 
The Stringency Index  
After lagging each country’s mobility data using its best-fit 
TL, we fitted a linear mixed model for each Group to 
evaluate the role of mobility indicators and stringency as 
fixed effects factors and countries as random factors in 
predicting Rt. We also fitted linear mixed models to predict 
Rt with SI alone. We applied the maximum likelihood 
method and we scaled the fixed factors to their respective 
datasets prior to modeling. We used the R packages 
‘lme4’[21], ‘afex’[22], and ‘insight’[23] to fit and assess the 
mixed effects models.  

Results 
The inspection of mobility trends suggested the existence of 
two major changing points in most countries. The first 
changing point in mobility trends corresponded to the first 
change from normal to social distancing with an increase of 
residential mobility and a decrease of grocery, transit, retail, 

and workplace mobility. It occurred mostly (in 40 – 60 
countries) during the second and third weeks of March 
coinciding with the beginning of rigorous lockdown policies, 
as the US and European countries started closing borders. 
The second changing point of mobility trends was more 
widely scattered and occurred around mid-June, 
corresponding to the slow return to baseline patterns of 
mobility. 

The mean best-fit TL was 14.6 days [median 14, 
interquartile range (IQR) 10 – 19] (Figs. 1 and 2). Continent-
wise, Europe had the lowest median TL (12.5 days, IQR 10 – 
14.75) followed by Asia & Oceania (14, 10 – 20), the 
Americas (16, 10 – 19), and Africa (16, 9.5 – 22). 

In comparison to Group 2, Group 1 had significantly 
shorter TLs, lower percentages of forecasting error (MAPE), 
an older population, and a higher HDI (Table 1). The 
forecasting models performed well, especially in Group 1, 
with MAPE as low as 6% in the US for example (Table 2).  

In all countries, SI associated with mobility indicators 
through correlation and linear regressions (p-values < 0.001 
in the models of 124 countries). There was a strong negative 
correlation between SI and Rt in most countries belonging 
to Group 1. In most countries belonging to Group 2, the 
correlation was positive (Fig. 3). 

Table 3 summarizes results of the analysis of the full 
linear mixed models with effect sizes labelled according to 
Funder & Ozer.[24] Models fitted to Groups 1 and 2 showed 
substantial explanatory power (conditional R² = 0.44 and 

Fig. 1 Distribution of the estimated time lag over groups and continents Group 1 (n = 71) includes countries with a positive correlation of the 
effective replication number with mobility in retail, grocery, transit, and workplace, and a negative correlation of the effective replication number with 
residential mobility; group 2 (n = 25) includes countries with a negative correlation of the effective replication number with mobility in retail, grocery, 
transit, and workplace, and a positive correlation of the effective replication number with residential mobility; group 3 (n = 29) includes the remaining 
countries. 
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0.42, respectively), unlike the model fitted to Group 3 
(conditional R² = 0.05). Removing SI from the mixed models 
brought significance to retail mobility in Group 1 [β 0.09, 
95% confidence interval (CI) 0.05 – 0.14], and to grocery (-
0.14, -0.22 – -0.06) and transit (0.12, 0.01 – 0.23) mobility in 
Group 3; the other factors retained the same pattern. The 
analysis of the mixed models of Rt on SI without mobility 
variables (rescaling not needed) suggested an association of 
high stringency with disease spread in Group 2, with an 
increase of 0.13 in Rt for every 10% of increase in SI (95% CI, 
0.11 – 0.16).  SI without mobility variables associated with a 
decrease in Rt in Group 1 (β -0.15 for units of 10% of SI, 95% 
CI -0.15 – -0.14) and Group 3 (-0.05, -0.07 – -0.03). 

Discussion 
Through a timeseries regression study, we examined how 
mobility patterns from aggregated mobile phones data relate 
to the variation of COVID-19 Rt in 125 countries during the 
period from February 15 to September 11, 2020. Our 
analyses showed that changes in community mobility for 
their part explain the variation in Rt and that community 

mobility forecasts Rt even with 
an accuracy of 90%. Based on 
our findings, specifically the 
directions of correlations 
between community mobility 
indicators and Rt, we suggest 
that it is possible to distribute 
countries into distinct groups 
that differ from each other 
regarding the effectiveness of 
social distancing and movement 
restrictions in reducing Rt. Most 
European countries belonged to 
Group 1 and none belonged to 
Group 2. 

Countries differ from each 
other regarding how promptly 
they report diseased persons as 
confirmed COVID-19 cases. 
This TL is termed as the time 
delay,[8] or the positivity 
detection time,[25] and it could 
correspond to the necessary 
time before the effect of 
restriction actions is seen on 
COVID-19 disease spread. As an 
estimator of this TL, we propose 
a country-specific value relying 

on cross-correlation and performance criteria of regression 
models. Based on our results, the effects of restriction actions 
appear after a median of 14 days. This estimation is in 
accordance with TLs proposed by Alfano and Ercolano[4] 
(10 days), and Linka et al.[8] (17 days). Furthermore, our 
results indicate that the median TL in Europe (12.5 days) is 
shorter than in the rest of the world (15 days). 

If we assume that social distancing works at reducing Rt, 
the association between mobility data and Rt could function 
as an indicator of the accuracy of daily case incidence esti-
mates. However, our findings propose that social distancing 
could have the opposite effect on COVID-19 spread in some 
countries. Whether or not this paradoxical effect is due to bi-
ased mobility data or to residential community spread, we 
confirmed the observation with the results of the mixed 
models regarding SI and Rt. Undoubtedly, also factors other 
than social distancing and restriction measures, such as the 
non-compliance with hygiene measures[26] or the lack of 
public trust in their government[27], can affect Rt. 

Table 1 Characteristics of the studied countries by Group 
      
 Total Group 1 Group 2 Group 3 p-value* 
      
      
n 125 71 25 29  

Timeseries length (days) 
188.0 
[179.0, 
198.0] 

194.0 
[185.5, 
201.5] 

176.0 
[173.0, 
182.0] 

186.0 [179.0, 
193.0] 

<0.001 

Best-fit time lag 14.0 [10.0, 
19.0] 

13.0 [9.0, 
15.0] 

18.0 [16.0, 
22.0] 

12.0 [9.0, 
23.0] 

<0.001 

Rt ~ mobility linear re-
gression (adjusted R²) a 

0.3 [0.2, 
0.5] 

0.4 [0.2, 
0.6] 

0.3 [0.1, 0.4] 0.2 [0.1, 0.3] <0.001 

MAPE of Rt forecast b 0.2 [0.1, 
0.4] 

0.2 [0.1, 
0.3] 

0.3 [0.2, 0.4] 0.3 [0.2, 0.5] 0.01 

Cumulative cases (%) 0.2 [0.1, 
0.7] 

0.4 [0.1, 
0.8] 

0.1 [0.0, 0.4] 0.1 [0.0, 0.3] 0.007 

Population aged 19 and 
younger (%) 

34.2 [22.3, 
43.3] 

25.5 [20.1, 
37.3] 

46.6 [41.5, 
54.0] 

32.6 [25.4, 
49.1] 

<0.001 

Population 20 – 39 years 
(%) 

31.1 [26.5, 
34.0] 

28.7 [25.1, 
33.2] 

33.6 [32.0, 
36.4] 

31.1 [26.9, 
33.9] 

<0.001 

Population 40 – 59 years 
(%) 

23.4 [18.3, 
27.7] 

25.4 [21.3, 
28.6] 

18.4 [14.6, 
20.8] 

25.0 [16.8, 
27.7] 

<0.001 

Population aged 60 and 
older (%) 

11.8 [7.0, 
23.2] 

16.3 [8.8, 
25.5] 

6.8 [4.8, 9.2] 11.8 [6.8, 
23.7] 

<0.001 

Human Development In-
dex 

0.8 [0.6, 
0.9] 

0.8 [0.7, 
0.9] 

0.6 [0.5, 0.7] 0.8 [0.7, 0.8] <0.001 

Internet users (%) 64.4 [35.8, 
81.4] 

74.5 [56.3, 
86.5] 

33.0 [13.4, 
45.2] 

64.4 [26.5, 
81.4] 

<0.001 

Urban population (%) 66.0 [47.5, 
81.2] 

73.9 [56.1, 
83.4] 

51.2 [36.5, 
66.2] 

58.8 [42.7, 
80.4] 

0.001 

SI ~ mobility correlation c 0.7 [0.6, 
0.8] 

0.8 [0.7, 
0.8] 

0.7 [0.6, 0.7] 0.6 [0.6, 0.7] <0.001 

Rt ~ SI correlation -0.4 [-0.6, 
0.0] 

-0.6 [-0.7, -
0.4] 

0.1 [0.1, 0.4] -0.1 [-0.4, 
0.1] 

<0.001 

      

Note. Numbers indicate median [interquartile range]. * Kruskal-Wallis Ranks Sum test for across 
groups comparison. (%) as a proportion of the country’s population, in per cent. MAPE, mean abso-
lute percentage error; Rt, effective replication number; SI, Stringency Index. a as a measure of good-
ness-of-fit of the linear regression model of Rt on mobility indicators. b mean absolute percentage 
error for accuracy of the forecast model predicting Rt with mobility indicators. c mean of the absolute 
values of the Pearson correlations of SI with each of the five mobility indicators. 

 
 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 12, 2020. ; https://doi.org/10.1101/2020.10.08.20209064doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.08.20209064
http://creativecommons.org/licenses/by-nd/4.0/


Social Distancing and Rt of COVID-19 

Ould Setti & Voutilainen 2020 (preprint)  5 

Benin
Burkina Faso

Papua New Guinea
Cambodia

Jamaica
Mozambique

Uganda
Peru
Togo

Uruguay
Bangladesh

Brazil
Qatar

Yemen
Afghanistan

Ghana
Namibia

Trinidad and Tobago
Zambia
Bahrain

Kenya
Venezuela

Pakistan
Philippines

Tajikistan
Belarus

Bulgaria
Chile

Guatemala
Oman
Belize
Burma
Nepal

Barbados
Bolivia

Bosnia and Herzegovina
Niger

Nigeria
Romania

United Arab Emirates
Angola

Belgium
Panama

Paraguay
South Africa

Botswana
Czechia

El Salvador
Georgia

India
Italy

Mexico
Moldova

Russia
Austria

Cote dƋIvoire
Greece

Israel
Kuwait

Kyrgyzstan
Slovakia
Slovenia

US
Cabo Verde

Finland
Iraq

Jordan
Laos

Norway
Serbia

United Kingdom
Ireland
Japan

Nicaragua
Switzerland

Ukraine
Canada

Fiji
France

Kazakhstan
Latvia

Lithuania
Luxembourg

Australia
Estonia

Honduras
Malaysia

Mali
Morocco
Sweden
Thailand
Denmark

Gabon
Hungary
Senegal

Tanzania
Colombia
Indonesia

Korea, South
Singapore

Croatia
Ecuador

Germany
Haiti

Lebanon
Netherlands

New Zealand
Poland
Turkey

Vietnam
Dominican Republic

Portugal
Spain

Argentina
Costa Rica

Egypt
Cameroon

Libya
Rwanda

Saudi Arabia

0 10 20 30
Time lag (days)

Group
1

2

3

Kenya
Namibia

Cambodia
Papua New Guinea

South Africa
Angola

Trinidad and Tobago
Haiti

Belize
Tajikistan

Libya
Mali

Gabon
Nepal

Yemen
Barbados

Fiji
Benin

Bulgaria
Togo

El Salvador
Ghana

Nicaragua
Zimbabwe
Botswana

Bolivia
Sri Lanka

Venezuela
Ukraine

Pakistan
Uruguay

Burkina Faso
Mongolia
Paraguay

Nigeria
Uganda

Cote dƋIvoire
Laos

Mauritius
Mozambique

Jordan
Burma

Kazakhstan
Senegal

Guatemala
Niger

Kyrgyzstan
Rwanda
Panama
Vietnam

Kuwait
Afghanistan

Denmark
Zambia
Taiwan

Cabo Verde
Egypt

Bahrain
Georgia
Slovakia

Saudi Arabia
Latvia

Poland
Estonia

Honduras
New Zealand

Lebanon
Moldova
Greece
Japan

Luxembourg
Turkey
Croatia

Lithuania
Cameroon

Bosnia and Herzegovina
Jamaica
Sweden
Finland

Korea, South
Israel

United Arab Emirates
Slovenia

Oman
Malaysia

Singapore
Morocco

Serbia
Norway

Romania
Italy

Hungary
Ecuador

Indonesia
Belarus

Brazil
Philippines

Czechia
France

Iraq
Costa Rica

Thailand
Colombia

Peru
Austria

Bangladesh
India

Ireland
Spain
Chile

Australia
Mexico
Russia

Switzerland
Dominican Republic

Qatar
Germany
Belgium

Netherlands
Tanzania

United Kingdom
Argentina
Portugal
Canada

US

-1.0 -0.5 0.0 0.5
Pearson's correlation coefficient

Group
1

2

3

Fig. 2 Estimated time lag by country Note. The following countries 
had a p-value > 0.05 of the regression model of their effective reproduc-
tion number on lagged mobility, and were so excluded: Sri Lanka, Mon-
golia, Mauritius, Taiwan, and Zimbabwe. 
 

Fig. 3 Pearson’s correlation coefficient of the association between 
the effective reproduction number and the stringency index by 
country Note. Positive correlation values suggest that a high stringency 
was favoring disease spread. 
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In the absence of a single criterium not contradicting 
with other performance criteria, we had to select the best 
model based on plots inspections. This approximate 
inspection is often used in sensitivity analyses for variable 
selection, but although we tried to reduce the bias by 
anonymizing the plots, we recognized the reproducibility 
limit and the human error susceptibility of this method. 
Another limitation in our TL estimation is the lack of 
confidence intervals. 

Conclusion 
Mobile phone data could contribute to predictions of the Rt 
of COVID-19 and to estimations of the TL between social 
distancing with movement restrictions and Rt, which, 
according to our results, greatly vary across countries. In 
general, social distancing and high stringency indices are 
associated with a reduction in the spread of COVID-19. We 
recommend authorities to estimate country-specific TLs 
through a more accurate method, such as using 
individualized tracking data. The country-specific TL could 
be particularly practical in revising the commonly enforced 
14-day quarantine period for susceptible individuals and 
travelers returning to their home country. 
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